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Solutions to exercise set 3

Below follows one possible solution to the exercise set.

1 a) Consider the metric space (Z, d) where d(x, y) = |x− y| is the usual metric. We
want to give an example of a Cauchy sequence, and to show that this metric
space is complete.
Fix q ∈ Z, and define the constant sequence xn = q for all n. This is necessarily
a Cauchy sequence, as for any m,n ∈ Z, and all ε > 0 we have

|xn − xm| = |q − q| = 0 < ε.

This is an example of a Cauchy sequence in (Z, d).
In order to show that this space is complete, we have to show that any Cauchy
sequence converges to an element in Z with respect to the metric d. Let us first
make a crucial observation. Namely, for any q, p ∈ Z where q 6= p, we have

|q − p| ≥ 1.

Let {qn}∞n=0 be a Cauchy sequence in (Z, d). Then for every ε > 0, there exists
N ∈ N such that

|qn − qm| < ε,

for all n,m > N . In particular, by choosing ε = 1/2, we can find N such that
for all m,n > N

|qn − qm| <
1

2
.

However, by the observation made above this can only happen if qn = qm for
all n,m > N . Let us denote this constant integer q = qn ∈ Z for all n > N . It
then follows that for any n > N

|q − qn| = |q − q| = 0,

and so the Cauchy sequence converges to an integer. We therefore conclude that
the space is complete, as the choice of Cauchy sequence was arbitrary.
What we have observed above is that any Cauchy sequence in (Z, d) necessarily
has to have a constant tail.

b) Consider the metric space (R, d), where

d(x, y) = | arctan(x)− arctan(y)|.

Is this a complete metric space.
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We claim that (R, d) is not a complete metric space. To see why, we note that the
function arctan(x) is a strictly increasing function which is bounded from above by
π/2. Moreover, since

lim
x→∞

arctan(x) =
π

2
,

we can, for every ε > 0, find an xε ∈ R such that∣∣∣π
2
− arctan(x)

∣∣∣ = π

2
− arctan(x) < ε,

for all x ≥ xε.
Now choose a strictly increasing sequence {xi}i∈N, such that

lim
i→∞

xi =∞ /∈ R.

Then for every ε > 0, we can find an N ∈ N such that xn > xε for all n > N . Since
arctan(x) is a strictly increasing function, it follows that arctan(xε) < arctan(xn) <
π/2 for all n > N . Therefore, if we choose n,m > N , we have

d(xn, xm) = | arctan(xn)− arctan(xm)| < π

2
− arctan(xε) < ε,

and thus the sequence {xi}i∈N is Cauchy. On the other hand, we know that our
sequence does not converge to an element in R. This shows that (R, d) is not a
complete metric space.

Alternatively: We can also show this more directly. We claim that the sequence
{n}n∈N is Cauchy in (R, d). Namely, for m > n

arctan(m)− arctan(n) =

∫ m

n

1

x2 + 1
dx

≤
∫ m

n

1

x2
dx

=
1

n
− 1

m
≤ 1

n
.

In particular, for any ε > 0 we can find N ∈ N such that

1

N
< ε,

and so for any m > n > N

d(n,m) ≤ 1

n
≤ 1

N
< ε.

On the other hand, the sequence n→∞, and so is an example of a Cauchy sequence
which does not converge in R.

2 Let `∞ be the vector space of bounded real-valued sequences

`∞ =

{
x = (xn)n∈N : ‖x‖ = sup

n∈N
|xn| <∞

}
.
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a) Show that d∞, defined by d∞(x, y) = ‖x− y‖∞ is a metric on `∞.
Recall that there are four criteria which need to hold for d∞ to be a metric.
These are non-negativity, uniqueness, symmetry and the triangle inequality. Let
us start by showing non-negativity. Given x, y ∈ `∞, we have

d∞(x, y) = ‖x− y‖∞ = sup
n∈N
|xn − yn| ≥ |xi − yi| ≥ 0,

for all i ∈ N, by the definition of the supremum.
For uniqueness, we note that given x, y ∈ `∞ such that d∞(x, y) = 0, we must
have

0 = sup
n∈N
|xn − yn| ≥ |xi − yi| ≥ 0,

for all i ∈ N. However, this implies that xi = yi for all i ∈ N, and so x = y.
The symmetry follows easily from the symmetry of the absolute value, namely

d∞(x, y) = sup
n∈N
|xn − yn| = sup

n∈N
|yn − xn| = d∞(y, x).

To show the triangle inequality, we choose x, y, z ∈ `∞. For any i ∈ N, we then
have

|xi − yi| ≤ |xi − zi|+ |zi − yi|.

By taking the supremum on both sides it follows that

d∞(x, y) ≤ sup
n∈N

(|xn − zn|+ |zn − yn|)

≤ sup
n∈N
|xn − zn|+ sup

n∈N
|zn − yn|

=d∞(x, z) + d∞(z, y).

This shows that d∞ is a metric on `∞.

b) Show that `∞ is complete with respect to d∞.
To show that (`∞, d∞) is a complete metric space, we have to show that every
Cauchy sequence converges to an element in `∞.
In order to easier keep track of indices during the proof, we will denote sequences
in `∞ by a superscript. That is, we denote a sequence of sequences in `∞ by
{xi}i∈N, where each element in the sequence is given by

xi = (xi1, x
i
2, . . .) ∈ `∞.

Now let {xi}i∈N be a Cauchy sequence in (`∞, d∞). Then for every ε > 0, there
exists N ∈ N such that

d∞(xi, xj) = sup
n∈N
|xin − xjn| < ε,

whenever i, j > N . This implies that for every m ∈ N,

|xim − xjm| < ε,

and (xim)i∈N is therefore a Cauchy sequence in (R, | · |). Since the latter metric
space is complete, there exists xm ∈ R such that limi→∞ x

i
m = xm, for all

m ∈ N.
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This gives us a candidate for the limit of {xi} ∈ `∞, namely

x = (x1, x2, . . .).

Let us start by showing that x is a limit point of xi. For every ε > 0, we can
find N ∈ N such that for all i > N we have

|xim − xm| <ε,

for all m ∈ N. This follows from the fact that xim → xm. Moreover, this implies
that

d∞(x, xi) = sup
n∈N
|xin − xn| < ε,

as the supremum is the least upper bound. This shows that xi → x with respect
to d∞.
To show that x ∈ `∞, we use that {xi}i∈N is Cauchy. Namely we can find an N
such that d∞(x, xN ) < 1. Whence it follows that

‖x‖∞ = d∞(x, 0) ≤ d∞(x, xN ) + d∞(xN , 0) < 1 + ‖xN‖∞ <∞,

as xN ∈ `∞. This shows that x ∈ `∞. Moreover, since the Cauchy sequence
{xi}i∈N ⊂ `∞ was arbitrary, it follows that every Cauchy sequence in (`∞, d∞)
converges to an element in `∞, and thus (`∞, d∞) is complete.

3 Show that every Cauchy sequence {xn}n∈N in a metric space (X, d) is bounded.

A set E is bounded in a metric space if there exists x ∈ X and r > 0 such that

E ⊆ Br(x) = {y ∈ X : d(x, y) < r}.

This is definition 2.3.2 on page 53 in Heil’s book.

Since the sequence {xn}n∈N is Cauchy, we know that for every ε > 0 there exists
N ∈ N such that

d(xn, xm) < ε,

for all n,m > N .

Let us choose ε = 1. Then there is a constant N1 such that

d(xn, xm) < 1,

for all n,m > N1. Now define

M := max
1≤n≤N1

d(xn, xN1+1).

We claim that
{xn}n∈N ⊆ BM+1(xN1+1).

If we can show this inclusion, we have proven that the sequence is bounded.

Note that every element xn ∈ BM+1(xN1+1) for 1 ≤ n ≤ N1. To see why, we have
for all 1 ≤ i ≤ N1,

d(xi, xN1+1) < max
1≤n≤N1

d(xn, xN1+1) =M < M + 1.
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Moreover, xN1+1 ∈ BM+1(xN1+1) as d(xN1+1, xN1+1) = 0 < M + 1.

For the rest of the sequence, we will use that the sequence is Cauchy. Namely for
any n > N1 + 1, we have

d(xn, xN1+1) < 1 ≤ 1 +M.

This proves that
{xn}n∈N ⊆ BM+1(xN1+1),

and so we have shown that every Cauchy sequence in a metric space is bounded.

4 Let X = R, and find the interior E◦, the boundary, ∂E and the closure E of each of
the subsets.

a) We consider the following set

E =

{
1,

1

2
,
1

3
, . . .

}
.

Note that for any r > 0, and n ∈ N, we can find

x ∈ Br

(
1

n

)
=

{
y ∈ R :

∣∣∣∣ 1n − y
∣∣∣∣ < r

}
,

such that x /∈ E. In particular, there are no open balls Br(n
−1) which are

contained in E, and so the only open set contained in E is the empty set ∅.
Since E◦ is the largest open set contained in E, it follows that E◦ = ∅.
The boundary ∂E is the set of all boundary points of E. A boundary point
x ∈ E is such that for any r > 0

Br(x) ∩ E 6= ∅ Br(x) ∩ EC 6= ∅.

This is definition 2.5.4 on page 64 in Heil’s book.
By the same argument as above we see that for any r > 0 and n ∈ N we have
E ∩Br(n

−1) 6= ∅ and EC ∩Br(n
−1) 6= ∅. This means that

E ⊆ ∂E.

Note that for any r > 0, there exists n ∈ N such that n−1 < r, and so

1

n
∈ Br(0).

This means that 0 is also a boundary point.
There cannot be any other boundary points. If this was the case, then there
would be an x ∈ R such that for any r > 0 we can find n−1r ∈ E satisfying∣∣∣∣x− 1

nr

∣∣∣∣ < r.

This means that n−1r converges to x as r → 0. However, the only limit points of
sequences in E are either in E or 0 as the sequences have either constant tails
or are subsequences of n−1 which converge to 0. We can therefore conclude that

∂E = E ∪ {0}.
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The closure of a set is the collection of all limit points of E by Theorem 2.6.2
on page 67 in Heil’s book. By the previous argument E = E ∪ {0}.
To summarize

E◦ = ∅, ∂E = E = E ∪ {0}.

b) Consider the set E = [0, 1). The largest open set contained in E is the open
interval (0, 1), so E◦ = (0, 1).
The boundary points of E are the points 0 and 1, as these are the only two
points p for which

Br(p) ∩ [0, 1) 6= ∅ and Br(p) ∩ [1,∞) 6= ∅,

for any r > 0. We write ∂E = {0, 1}.
For the closure, we note that [0, 1] is the smallest closed set which contains E.
It therefore follows from definition 2.6.1 on page 66 of Heil’s book that

E = [0, 1].

To summarize
E◦ = (0, 1), ∂E = {0, 1} E = [0, 1].

c) Consider E = R\Q, the set of irrational numbers. Note that each irrational
x ∈ E can be approximated arbitrarily well by a rational number. This implies
that for no x ∈ E can we find r > 0 such that Br(x) ⊂ E, which in turn implies
that

E◦ = ∅.

Likewise, for every point x ∈ R and any r > 0 there exists q ∈ Q and y ∈ E
such that q, y ∈ Br(x). We thus have

∂E = R.

For the closure of E we use the fact that any real number can be written as the
limit of a sequence of irrational numbers. Hence, we have

E = R.

To summarize
E◦ = ∅, ∂E = E = R.

5 Let us consider the following subsets of `∞.

c00 ={x = (x1, . . . , xN , 0 . . .) : N > 0, x1, . . . , xN ∈ R}
c0 ={x ∈ `∞ : lim

k→∞
xk = 0}.

a) By theorem 2.6.2, we have that the closure of a set is the collection of all its
limit points. That is

c00 = {y ∈ `∞ : ∃{xn}n∈N ⊂ c00 such that lim
x→∞

xn = y}.

September 6, 2021 Page 6 of 8



Solutions to exercise set 3

Let us first show that c00 ⊂ c0. Let {xn}n∈N be a sequence converging to y ∈ `∞.
Then for every ε > 0 we can find N ∈ N such that

‖xn − y‖∞ = sup
m∈N
|xnm − ym| < ε,

when n > N . However, since xn ∈ c00, it follows that there is some M > 0 such
that

|xnm − ym| = |ym| < ε,

for m > M . This implies that

lim
m→∞

|ym| = 0,

and c00 ⊆ c0.
Now take any y = (y1, y2, . . .) ∈ c0, then we can define the sequence

xn = (y1, y2, . . . , yn, 0, 0 . . .).

Since limm→∞ ym = 0, it follows that for every ε > 0 there exists N ∈ N such
that

|ym| < ε,

for all m > N .
In particular, we have for n > N ,

‖y − xn‖∞ = sup
m>n
|ym| < ε,

and so y is the limit point of xn, and hence y ∈ c00. This shows that c0 ⊆ c00.
We can therefore conclude that c0 = c00.

b) We want to show that c0 is closed in (`∞, d).
This follows directly from a), as c0 = c00, and the closure of a set E is the
smallest closed set containing E. This is definition 2.6.1 on page 66 in Heil’s
book.
Alternatively: This can also be shown directly. By theorem 2.4.2 on page
59, a set E is closed if and only if for each sequence {xn}n∈N ⊂ E such that
xn → x ∈ X, we have x ∈ E.
Let {xn}n∈N ⊂ c0 be a sequence converging to y ∈ `∞. Then for every ε > 0 we
can find N ∈ N, and M ∈ N such that{

‖xn − y‖∞ = supi∈N |xni − yi| < ε
2 n > N,

|xnm| < ε
2 , m > M.

The first inequality follows from the fact that xn → y, while the second follows
as xn ∈ c0. However, this means that for n > N and m > M , we have

|ym| ≤ |ym − xnm|+ |xnm| < ε,

and so ym → 0 as m→∞, and y ∈ c0. It follows from theorem 2.4.2 that c0 is
closed.
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6 Challenge: Let E be a subset of a metric space (X, d). Prove that E is dense in X
if and only if E ∩ U 6= ∅ for every non-empty open set U ⊂ X.

Recall that a set E is called dense if E = X. By theorem 2.6.2 the closure of the set
E is the set of all limit points of E.

(⇒)Let us start by assuming that E is dense. Then for every element x ∈ X there
exists sequence {xn}n∈N ⊂ E such that xn → x in (X, d).

Let U ⊂ X be a non-empty open set. Since U is non-empty, there exists x ∈ X such
that x ∈ U . Moreover, U is open. This means that there exists r > 0 such that
Br(x) ⊂ U . Since E is dense, there is a sequence {xn}n∈N ⊂ E and an Nr ∈ N such
that

d(x, xn) < r,

for all n > Nr However, this implies that xn ∈ Br(x) ⊂ U , and since xn ∈ E, we
must have E ∩ U 6= ∅. Since U was arbitrary, we conclude that E ∩ U 6= ∅ for all
open sets U ⊂ X.

(⇐) Assume that E ∩U 6= ∅ for every open set U ⊂ X. In particular, this is true for
any open ball in X. Thus for every x ∈ X, and every n ∈ N, we have

B 1
n
(x) ∩ E 6= ∅.

Now fix any x ∈ X, and construct a sequence {xn}n∈N ⊂ E such that for any n ∈ N,
we have

xn ∈ B 1
n
(x) ∩ E.

This sequence converges to x. To see this, observe that for every ε > 0, we can find
N ∈ N such that N−1 < ε. In particular we have,

d(x, xn) <
1

n
<

1

N
< ε,

for n > N as xn ∈ Bn−1(x). This shows that any x is a limit point of E, and thus E
is dense in X.
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