TMA4145
Linear Methods
Fall 2021
Norwegian University of Science
and Technology
Solutions to exercise set 11
Department of Mathematical
Sciences

Below follows one possible solution to the exercise set.

1 We will prove the statement by induction. If $k=1$ we only have one vector v_{1}, and since we assume that v_{1} is an eigenvector, we know that v_{1} is non-zero. Hence the set $\left\{v_{1}\right\}$ is linearly independent; if $c_{1} v_{1}=0$ for some scalar c_{1} and non-zero vector v_{1}, then clearly $c_{1}=0$.
Now assume that the statement is true for $k-1$ eigenvalues, and assume that

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+\cdots c_{k} v_{k}=0 \tag{1}
\end{equation*}
$$

where c_{j} are scalars and v_{j} are non-zero eigenvectors of an operator T corresponding to distinct eigenvalues λ_{j}. We need to show that $0=c_{1}=c_{2} \cdots=c_{k}$. Since $T v_{k}=\lambda_{k} v_{k}$, we have that $\left(T-\lambda_{k} I\right) v_{k}=0$, where I is the identity operator. We can therefore get rid of v_{k} in equation (1) by applying $T-\lambda_{k} I$ to the equation. We then get

$$
0=\left(T-\lambda_{k} I\right)\left(c_{1} v_{1}+\cdots c_{k} v_{k}\right)=c_{1}\left(\lambda_{1}-\lambda_{k}\right) v_{1}+\cdots+c_{k-1}\left(\lambda_{k-1}-\lambda_{k}\right) v_{k-1}
$$

where we have used that the v_{j} are eigenvectors. By the induction assumption, $\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\}$ is a linearly independent set. Therefore

$$
0=c_{1}\left(\lambda_{1}-\lambda_{k}\right)=c_{2}\left(\lambda_{2}-\lambda_{k}\right)=\ldots=c_{k-1}\left(\lambda_{k-1}-\lambda_{k}\right)
$$

and since we assume that the eigenvalues are distinct this implies that

$$
0=c_{1}=c_{2}=\ldots=c_{k-1}
$$

Therefore equation (1) reads

$$
c_{k} v_{k}=0
$$

and as before this implies that also $c_{k}=0$, hence $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is a linearly independent set.

2 Let T be the linear operator on the space of polynomials \mathcal{P}_{2} of degree at most 2 defined by $T f(x)=-f(x)-f^{\prime}(x)$
a) In the basis $\left\{1, x, x^{2}\right\}$, we can write any polynomial $f(x)=a+b x+c x^{2}$, where $a, b, c \in \mathbb{R}$. Thus, when applying the operator T, we see that
$T f(x)=-f(x)-f^{\prime}(x)=-\left(c x^{2}+b x+a\right)-(2 c x+b)=-(a+b)-(b+2 c) x-c x^{2}$.
The matrix representation of T in the basis $\left\{1, x, x^{2}\right\}$ is then given by

$$
T=\left(\begin{array}{ccc}
-1 & -1 & 0 \\
0 & -1 & -2 \\
0 & 0 & -1
\end{array}\right)
$$

b) Assume that there exists some $\lambda \in \mathbb{R}$ such that $T f=\lambda f$. Then we have

$$
T f=-f-f^{\prime}=\lambda f \quad \Longrightarrow \quad f^{\prime}=-(1+\lambda) f
$$

which has the solution $f(x)=C e^{-(1+\lambda) x} \notin \mathcal{P}_{2}$, except for $\lambda=-1$, where the solution is a constant. Thus, the operator T has only one eigenvalue, $\lambda=-1$, and corresponding eigenvectors are the constant functions.

3 1. Assume that λ is an eigenvalue of T with eigenvector $y=\left(y_{1}, y_{2}, \ldots\right)$. Then $T y=\lambda y$, and writing out both sides we find

$$
\begin{equation*}
\left(0, y_{1}, y_{2}, \ldots\right)=\left(\lambda y_{1}, \lambda y_{2}, \lambda y_{3} \ldots\right) \tag{2}
\end{equation*}
$$

In particular $\lambda y_{1}=0$, which implies that either $y_{1}=0$ or $\lambda=0$. If $\lambda=0$, then equality (2) becomes

$$
\left(0, y_{1}, y_{2}, \ldots\right)=(0,0, \ldots)
$$

which shows that $y=0$, hence not an eigenvector since eigenvectors are nonzero by definition. We may therefore assume that $y_{1}=0$ and $\lambda \neq 0$. In this case the equality (2) becomes

$$
\begin{equation*}
\left(0,0, y_{2}, \ldots\right)=\left(0, \lambda y_{2}, \lambda y_{3} \ldots\right) \tag{3}
\end{equation*}
$$

which implies that $y_{2}=0$. Inserting this back into the equation, we find

$$
\begin{equation*}
(0,0,0, \ldots)=\left(0,0, \lambda y_{3} \ldots\right) \tag{4}
\end{equation*}
$$

hence $y_{3}=0$. We may clearly continue like this to show that all entries of y are 0 , hence $y=0$ and y is not an eigenvector.
2. We know from the lectures (and it is not difficult to show) that $T^{*}\left(x_{1}, x_{2}, \ldots\right)=$ $\left(x_{2}, x_{3}, \ldots\right)$. This operator has eigenvalues. For instance, let

$$
y=\left(1, \frac{1}{2}, \frac{1}{2^{2}}, \ldots, \frac{1}{2^{p-1}}, \ldots\right)
$$

Then

$$
T^{*} y=\left(\frac{1}{2}, \frac{1}{2^{2}}, \ldots, \frac{1}{2^{p}}, \ldots\right)=\frac{1}{2} y
$$

hence y is an eigenvector with eigenvalue $\frac{1}{2}$. Note that $y \in \ell^{2}$, which we needed since we defined T on ℓ^{2}.

4 Note that the column u_{i} is of the form $u_{i}=\left(u_{1, i}, u_{2, i}, \ldots, u_{n, i}\right)^{T}$, and the inner product between two columns is given by

$$
\left\langle u_{i}, u_{j}\right\rangle=\sum_{k=1}^{n} u_{k, i} \overline{u_{k, j}}=u_{i} \cdot u_{j}^{*},
$$

where $u_{i} \cdot u_{j}^{*}$ is the usual dot product for vectors in \mathbb{C}^{n} and

$$
u_{j}^{*}=\left(\begin{array}{c}
\overline{u_{1, j}} \\
\overline{u_{2, j}} \\
\cdots \\
\overline{u_{n, j}}
\end{array}\right) .
$$

$1 \Rightarrow 2$

Assume that $U^{*} U=I$. Recall that element (i, j) of the matrix product $U^{*} U$ is the dot product of row i of U^{*} with column j of U. Since row i of U^{*} is u_{i}^{*}, this means that element (i, j) of $U^{*} U$ is $u_{i}^{*} \cdot u_{j}$. Furthermore $U^{*} U=I$, which implies that $u_{i}^{*} u_{j}=\delta_{i, j}$ for $i, j=1, \ldots, n$. We thus have

$$
\left\langle u_{j}, u_{i}\right\rangle=u_{i}^{*} \cdot u_{j}=\delta_{i, j},
$$

hence $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ is an orthonormal system of vectors in \mathbb{C}^{n}. To show that it is a basis for \mathbb{C}^{n} it is enough to note that \mathbb{C}^{n} has dimension n, and the system consists of n vectors. Hence the columns form a linearly independent subset of n vectors in an n-dimensional space, and it follows that the columns form a basis.

$\underline{2 \Rightarrow 1}$

Assume that the columns $u_{1}, u_{2}, \ldots, u_{n}$ of U are an orthonormal basis of \mathbb{C}^{n}, i.e.

$$
\left\langle u_{i}, u_{j}\right\rangle=\delta_{i, j},
$$

for $i, j=1, \ldots, n$. Then we have

$$
u_{i} \cdot u_{j}^{*}=\left\langle u_{i}, u_{j}\right\rangle=\delta_{i, j},
$$

hence we have $U^{*} U=I$. One gets that $U^{*} U=I$ from exactly the same argument.

5 If $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ is normal, the it can be diagonalized by the spectral theorem. Namely, there exists a unitary matrix U, and a diagonal matrix Λ, with the eigenvalues of A on the diagonal, such that

$$
A=U \Lambda U^{*} .
$$

In particular, since $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$, we have

$$
\begin{aligned}
\operatorname{det}(A) & =\operatorname{det}\left(U \Lambda U^{*}\right) \\
& =\operatorname{det}(U) \operatorname{det}(\Lambda) \operatorname{det}\left(U^{*}\right) \\
& =\operatorname{det}(U) \operatorname{det}\left(U^{*}\right) \operatorname{det}(\Lambda) \\
& =\operatorname{det}\left(U U^{*}\right) \operatorname{det}(\Lambda) \\
& =\operatorname{det}(I) \operatorname{det}(\Lambda) \\
& =\operatorname{det}(\Lambda)=\prod_{j=1}^{n} \lambda_{j},
\end{aligned}
$$

where we used that the determinant of a diagonal matrix is the product of the diagonal elements, and that $\operatorname{det}(I)=1$.

6 Find the general solution to the system of differential equations

$$
\begin{aligned}
x_{1}^{\prime} & =x_{1}+x_{3}, \\
x_{2}^{\prime} & =x_{2}+x_{3}, \\
x_{3}^{\prime} & =2 x_{3} .
\end{aligned}
$$

The system can be written as

$$
x^{\prime}=A x
$$

where the vector x^{\prime}, and matrix A is given by,

$$
x^{\prime}=\left(\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right), \quad A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

A general solution $x \in \mathbb{R}^{n}$ to the equation

$$
x^{\prime}=A x
$$

is given by

$$
x=\sum_{j=1}^{n} c_{j} v_{j} e^{\lambda_{j} t}, \quad c_{j} \in \mathbb{C}
$$

where λ_{j} are the eigenvalues of A, and v_{j} are the corresponding eigenvectors.
In our case, the matrix A is upper triangular, and so the eigenvalues are given by $\lambda_{1}=\lambda_{2}=1, \lambda_{3}=2$, which are the diagonal entries of A.

Let us therefore find the eigenvectors corresponding to these eigenvalues. For $\lambda_{1}=$ $\lambda_{2}=1$, we have the eigenvectors,

$$
v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad v_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

For $\lambda_{3}=2$, we have the eigenvector,

$$
v_{3}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

Combining these results, we see that the general solution to the differential equation is given by

$$
x(t)=c_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) e^{t}+c_{2}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) e^{t}+c_{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) e^{2 t}
$$

7 Consider the matrix

$$
A=\left(\begin{array}{ccc}
-1.8 & 0 & -1.4 \\
-5.6 & 1 & -2.8 \\
2.8 & 0 & 2.4
\end{array}\right)
$$

We want to diagonalize it, and find A^{m} for $m \in \mathbb{N}$. Let us therefore start by finding the eigenvalues of A, by solving

$$
\operatorname{det}(\lambda I-A)=(\lambda-1)(\lambda-1)(\lambda+0.4)=0,
$$

in order to see that the eigenvalues are $\lambda_{1}=\lambda_{2}=1$, and $\lambda_{3}=-0.4$. For the eigenvectors, we find that

$$
v_{1}=\left(\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right), \quad v_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad v_{3}=\left(\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right)
$$

Let V and Σ be the matrices

$$
V=\left(\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 0 & -1 \\
0 & 1 & -2 \\
2 & 0 & 1
\end{array}\right) \quad \text { and } \quad \Sigma=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -\frac{2}{5}
\end{array}\right) .
$$

then the inverse matrix is given by

$$
V^{-1}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
-4 & 1 & -2 \\
-2 & 0 & -1
\end{array}\right),
$$

and so the diagonalization of A is given by

$$
A=V \Sigma V^{-1}=\left(\begin{array}{ccc}
-1 & 0 & -1 \\
0 & 1 & -2 \\
2 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -\frac{2}{5}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 1 \\
-4 & 1 & -2 \\
-2 & 0 & -1
\end{array}\right) .
$$

To calculate A^{m}, for $m \in \mathbb{N}$, we note that

$$
A^{2}=V \Sigma V^{-1} V \Sigma V^{-1}=V \Sigma^{2} V^{-1} .
$$

Thus, a simple induction argument shows that

$$
A^{m}=V \Sigma^{m} V^{-1}=\left(\begin{array}{ccc}
-1 & 0 & -1 \\
0 & 1 & -2 \\
2 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \left(-\frac{2}{5}\right)^{m}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 1 \\
-4 & 1 & -2 \\
-2 & 0 & -1
\end{array}\right) .
$$

Moreover, the entry-wise limit $\lim _{m \rightarrow \infty} A^{m}$ does exists, and is given by

$$
\lim _{m \rightarrow \infty} A^{m}=\left(\begin{array}{ccc}
-1 & 0 & -1 \\
0 & 1 & -2 \\
2 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 1 \\
-4 & 1 & -2 \\
-2 & 0 & -1
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 0 & -1 \\
-4 & 1 & -2 \\
2 & 0 & 2
\end{array}\right) .
$$

