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Below follows one possible solution to the exercise set.

1 We will prove the statement by induction. If k = 1 we only have one vector v1, and
since we assume that v1 is an eigenvector, we know that v1 is non-zero. Hence the
set {v1} is linearly independent; if c1v1 = 0 for some scalar c1 and non-zero vector
v1, then clearly c1 = 0.
Now assume that the statement is true for k ≠ 1 eigenvalues, and assume that

c1v1 + c2v2 + · · · ckvk = 0 (1)

where cj are scalars and vj are non-zero eigenvectors of an operator T corresponding
to distinct eigenvalues ⁄j . We need to show that 0 = c1 = c2 · · · = ck. Since
Tvk = ⁄kvk, we have that (T ≠ ⁄kI)vk = 0, where I is the identity operator. We
can therefore get rid of vk in equation (1) by applying T ≠ ⁄kI to the equation. We
then get

0 = (T ≠ ⁄kI)(c1v1 + · · · ckvk) = c1(⁄1 ≠ ⁄k)v1 + · · · + ck≠1(⁄k≠1 ≠ ⁄k)vk≠1,

where we have used that the vj are eigenvectors. By the induction assumption,
{v1, v2, ..., vk≠1} is a linearly independent set. Therefore

0 = c1(⁄1 ≠ ⁄k) = c2(⁄2 ≠ ⁄k) = ... = ck≠1(⁄k≠1 ≠ ⁄k),

and since we assume that the eigenvalues are distinct this implies that

0 = c1 = c2 = ... = ck≠1.

Therefore equation (1) reads
ckvk = 0,

and as before this implies that also ck = 0, hence {v1, v2, . . . , vk} is a linearly inde-
pendent set.

2 Let T be the linear operator on the space of polynomials P2 of degree at most 2
defined by Tf(x) = ≠f(x) ≠ f Õ(x)
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a) In the basis {1, x, x2}, we can write any polynomial f(x) = a + bx + cx2, where
a, b, c œ R. Thus, when applying the operator T , we see that

Tf(x) = ≠f(x)≠f Õ(x) = ≠(cx2 +bx+a)≠(2cx+b) = ≠(a+b)≠(b+2c)x≠cx2.

The matrix representation of T in the basis {1, x, x2} is then given by

T =

Q

ca
≠1 ≠1 0
0 ≠1 ≠2
0 0 ≠1

R

db .

b) Assume that there exists some ⁄ œ R such that Tf = ⁄f . Then we have

Tf = ≠f ≠ f Õ = ⁄f =∆ f Õ = ≠(1 + ⁄)f,

which has the solution f(x) = Ce≠(1+⁄)x /œ P2, except for ⁄ = ≠1, where the
solution is a constant. Thus, the operator T has only one eigenvalue, ⁄ = ≠1,
and corresponding eigenvectors are the constant functions.

3 1. Assume that ⁄ is an eigenvalue of T with eigenvector y = (y1, y2, . . . ). Then
Ty = ⁄y, and writing out both sides we find

(0, y1, y2, . . . ) = (⁄y1, ⁄y2, ⁄y3 . . . ). (2)

In particular ⁄y1 = 0, which implies that either y1 = 0 or ⁄ = 0. If ⁄ = 0, then
equality (2) becomes

(0, y1, y2, . . . ) = (0, 0, . . . )

which shows that y = 0, hence not an eigenvector since eigenvectors are non-
zero by definition. We may therefore assume that y1 = 0 and ⁄ ”= 0. In this
case the equality (2) becomes

(0, 0, y2, . . . ) = (0, ⁄y2, ⁄y3 . . . ), (3)

which implies that y2 = 0. Inserting this back into the equation, we find

(0, 0, 0, . . . ) = (0, 0, ⁄y3 . . . ), (4)

hence y3 = 0. We may clearly continue like this to show that all entries of y
are 0, hence y = 0 and y is not an eigenvector.

2. We know from the lectures (and it is not di�cult to show) that T ú(x1, x2, . . . ) =
(x2, x3, . . . ). This operator has eigenvalues. For instance, let

y =
3

1,
1
2 ,

1
22 , . . . ,

1
2p≠1 , . . .

4
.

Then
T úy =

31
2 ,

1
22 , . . . ,

1
2p

, . . .
4

= 1
2y,

hence y is an eigenvector with eigenvalue 1
2 . Note that y œ ¸2, which we needed

since we defined T on ¸2.

November 1, 2021 Page 2 of 5



Solutions to exercise set 11

4 Note that the column ui is of the form ui = (u1,i, u2,i, . . . , un,i)T , and the inner
product between two columns is given by

Èui, ujÍ =
nÿ

k=1
uk,iuk,j = ui · uú

j ,

where ui · uú
j is the usual dot product for vectors in Cn and

uú
j =

Q

ccca

u1,j

u2,j

. . .
un,j

R

dddb .

1 ∆ 2
Assume that UúU = I. Recall that element (i, j) of the matrix product UúU is the
dot product of row i of Uú with column j of U . Since row i of Uú is uú

i , this means
that element (i, j) of UúU is uú

i · uj . Furthermore UúU = I, which implies that
uú

i uj = ”i,j for i, j = 1, . . . , n. We thus have

Èuj , uiÍ = uú
i · uj = ”i,j ,

hence (u1, u2, . . . , un) is an orthonormal system of vectors in Cn. To show that it is
a basis for Cn it is enough to note that Cn has dimension n, and the system consists
of n vectors. Hence the columns form a linearly independent subset of n vectors in
an n-dimensional space, and it follows that the columns form a basis.
2 ∆ 1
Assume that the columns u1, u2, . . . , un of U are an orthonormal basis of Cn, i.e.

Èui, ujÍ = ”i,j ,

for i, j = 1, . . . , n. Then we have

ui · uú
j = Èui, ujÍ = ”i,j ,

hence we have UúU = I. One gets that UúU = I from exactly the same argument.

5 If A œ Mn◊n(C) is normal, the it can be diagonalized by the spectral theorem.
Namely, there exists a unitary matrix U , and a diagonal matrix �, with the eigen-
values of A on the diagonal, such that

A = U�Uú.

In particular, since det(AB) = det(A) det(B), we have

det(A) = det(U�Uú)
= det(U) det(�) det(Uú)
= det(U) det(Uú) det(�)
= det(UUú) det(�)
= det(I) det(�)

= det(�) =
nŸ

j=1
⁄j ,

where we used that the determinant of a diagonal matrix is the product of the
diagonal elements, and that det(I) = 1.

November 1, 2021 Page 3 of 5



Solutions to exercise set 11

6 Find the general solution to the system of di�erential equations

xÕ
1 =x1 + x3,

xÕ
2 =x2 + x3,

xÕ
3 =2x3.

The system can be written as
xÕ = Ax,

where the vector xÕ, and matrix A is given by,

xÕ =

Q

ca
xÕ

1
xÕ

2
xÕ

3

R

db , A =

Q

ca
1 0 1
0 1 1
0 0 2

R

db .

A general solution x œ Rn to the equation

xÕ = Ax,

is given by

x =
nÿ

j=1
cjvje⁄jt, cj œ C.

where ⁄j are the eigenvalues of A, and vj are the corresponding eigenvectors.
In our case, the matrix A is upper triangular, and so the eigenvalues are given by
⁄1 = ⁄2 = 1, ⁄3 = 2, which are the diagonal entries of A.
Let us therefore find the eigenvectors corresponding to these eigenvalues. For ⁄1 =
⁄2 = 1, we have the eigenvectors,

v1 =

Q

ca
1
0
0

R

db , v2 =

Q

ca
0
1
0

R

db .

For ⁄3 = 2, we have the eigenvector,

v3 =

Q

ca
1
1
1

R

db .

Combining these results, we see that the general solution to the di�erential equation
is given by

x(t) = c1

Q

ca
1
0
0

R

db et + c2

Q

ca
0
1
0

R

db et + c3

Q

ca
1
1
1

R

db e2t.

7 Consider the matrix

A =

Q

ca
≠1.8 0 ≠1.4
≠5.6 1 ≠2.8
2.8 0 2.4

R

db .
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We want to diagonalize it, and find Am for m œ N. Let us therefore start by finding
the eigenvalues of A, by solving

det(⁄I ≠ A) = (⁄ ≠ 1)(⁄ ≠ 1)(⁄ + 0.4) = 0,

in order to see that the eigenvalues are ⁄1 = ⁄2 = 1, and ⁄3 = ≠0.4. For the
eigenvectors, we find that

v1 =

Q

ca
≠1
0
2

R

db , v2 =

Q

ca
0
1
0

R

db , v3 =

Q

ca
≠1
≠2
1

R

db .

Let V and � be the matrices

V =
1
v1 v2 v3

2
=

Q

ca
≠1 0 ≠1
0 1 ≠2
2 0 1

R

db and � =

Q

ca
1 0 0
0 1 0
0 0 ≠2

5

R

db .

then the inverse matrix is given by

V ≠1 =

Q

ca
1 0 1

≠4 1 ≠2
≠2 0 ≠1

R

db ,

and so the diagonalization of A is given by

A = V �V ≠1 =

Q

ca
≠1 0 ≠1
0 1 ≠2
2 0 1

R

db

Q

ca
1 0 0
0 1 0
0 0 ≠2

5

R

db

Q

ca
1 0 1

≠4 1 ≠2
≠2 0 ≠1

R

db .

To calculate Am, for m œ N, we note that

A2 = V �V ≠1V �V ≠1 = V �2V ≠1.

Thus, a simple induction argument shows that

Am = V �mV ≠1 =

Q

ca
≠1 0 ≠1
0 1 ≠2
2 0 1

R

db

Q

ca
1 0 0
0 1 0
0 0

1
≠2

5

2m

R

db

Q

ca
1 0 1

≠4 1 ≠2
≠2 0 ≠1

R

db .

Moreover, the entry-wise limit limmæŒ Am does exists, and is given by

lim
mæŒ

Am =

Q

ca
≠1 0 ≠1
0 1 ≠2
2 0 1

R

db

Q

ca
1 0 0
0 1 0
0 0 0

R

db

Q

ca
1 0 1

≠4 1 ≠2
≠2 0 ≠1

R

db =

Q

ca
≠1 0 ≠1
≠4 1 ≠2
2 0 2

R

db .
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