Norwegian University of Science and Technology
Department of Mathematical
Sciences

Below follows one possible solution to the exercise set.

1 Define the linear transformation T by

$$
T\left(\sum_{k=1}^{n} c_{k} v_{k}\right)=\left(c_{1}+c_{2}\right) v_{1}+\ldots+\left(c_{n-1}+c_{n}\right) v_{n-1}+c_{n} v_{n}
$$

T is a linear transformation. More generally, for any $u_{j} \in V$, there is a unique linear transformation T such that $T\left(v_{j}\right)=u_{j}$.
The columns of the matrix representation of T in the basis $\left\{v_{1}, \ldots, v_{n}\right\}$ are the coefficients of $T\left(v_{1}\right), \ldots, T\left(v_{n}\right)$ in this basis. Let A denote this matrix representation. Then A is on the form

$$
A=\left[\begin{array}{ccccc}
1 & 1 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 1 \\
0 & 0 & \cdots & 0 & 1
\end{array}\right]
$$

2 We will consider \mathbb{R}^{3} with the usual inner product

$$
\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

Moreover, we let $\|\cdot\|$ be the norm induced by the inner product, and d denote the metric induced by the norm.
Consider the linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by the matrix.

$$
A=\left[\begin{array}{ccc}
\frac{1}{4} & 0 & \frac{1}{4} \\
0 & \frac{1}{2} & 0 \\
\frac{1}{4} & 0 & \frac{1}{4}
\end{array}\right]
$$

Determine if the following statements are true.

1. This is true; T is a self-adjoint operator. Since A is a symmetric, real matrix, we have that

$$
A^{*}=A^{\top}=A
$$

so the corresponding operator is self-adjoint.
2. This is true; T is a normal operator. Recall that T is normal if $T T^{*}=T^{*} T$. This corresponds to showing that $A^{*} A=A A^{*}$. We have already seen that $A^{*}=A$ in 1., and it follows that

$$
A^{*} A=A A=A A^{*}
$$

so A is a normal matrix, and thus T is a normal operator.
3. This is false; T is not a unitary operator. For an operator T to be unitary, we need that $T T^{*}=T^{*} T=I$. However, a simple calculation shows that

$$
A^{*} A=\left[\begin{array}{ccc}
\frac{1}{4} & 0 & \frac{1}{4} \\
0 & \frac{1}{2} & 0 \\
\frac{1}{4} & 0 & \frac{1}{4}
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{4} & 0 & \frac{1}{4} \\
0 & \frac{1}{2} & 0 \\
\frac{1}{4} & 0 & \frac{1}{4}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{8} & 0 & \frac{1}{8} \\
0 & \frac{1}{4} & 0 \\
\frac{1}{8} & 0 & \frac{1}{8}
\end{array}\right] \neq\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I .
$$

This shows that A is not unitary, hence neither is T.
4. This is true; T is a contraction on the metric space $\left(\mathbb{R}^{3}, d\right)$. For $x \in \mathbb{R}^{3}$, we have

$$
T x=A x=\left(\begin{array}{c}
\frac{1}{4} x_{1}+\frac{1}{4} x_{3} \\
\frac{1}{2} x_{2} \\
\frac{1}{4} x_{1}+\frac{1}{4} x_{3}
\end{array}\right)=x_{1}\left(\begin{array}{c}
\frac{1}{4} \\
0 \\
\frac{1}{4}
\end{array}\right)+x_{2}\left(\begin{array}{c}
0 \\
\frac{1}{2} \\
0
\end{array}\right)+x_{3}\left(\begin{array}{c}
\frac{1}{4} \\
0 \\
\frac{1}{4}
\end{array}\right)
$$

Thus, we can see that for $x, y \in \mathbb{R}^{3}$,

$$
\begin{aligned}
\|T x-T y\|^{2}= & \left(\frac{1}{4}\left(x_{1}-y_{1}\right)+\frac{1}{4}\left(x_{3}-y_{3}\right)\right)^{2}+\frac{1}{4}\left(x_{2}-y_{2}\right)^{2} \\
& +\left(\frac{1}{4}\left(x_{1}-y_{1}\right)+\frac{1}{4}\left(x_{3}-y_{3}\right)\right)^{2} \\
= & \frac{1}{8}\left(\left(x_{1}-y_{1}\right)+\left(x_{3}-y_{3}\right)\right)^{2}+\frac{1}{4}\left(x_{2}-y_{2}\right)^{2} \\
\leq & \frac{3}{8}\left(x_{1}-y_{1}\right)^{2}+\frac{1}{4}\left(x_{2}-y_{2}\right)^{2}+\frac{3}{8}\left(x_{3}-y_{3}\right)^{2} \\
\leq & \frac{3}{8}\|x-y\|^{2} .
\end{aligned}
$$

Here we used the hint that $(a+b)^{2} \leq 3\left(a^{2}+b^{2}\right)$ for all $a, b \in \mathbb{R}$. Taking the square root, we see that

$$
\begin{equation*}
\|T x-T y\| \leq \sqrt{\frac{3}{8}}\|x-y\|, \quad \forall x, y \in \mathbb{R}^{3} \tag{1}
\end{equation*}
$$

This shows that T is a contraction in $\left(\mathbb{R}^{3}, d\right)$, with contraction constant

$$
c=\sqrt{\frac{3}{8}}<1
$$

5. This is false; The operator norm of T is $\|T\|=\sup _{\|x\|=1}\|A x\| \neq 1$. This follows from the previous result. Inserting $y=0$ in (1), we get

$$
\|T x\|=\|T x-0\| \leq \sqrt{\frac{3}{8}}\|x-0\|=\sqrt{\frac{3}{8}}\|x\|
$$

and taking the supremum over all x with $\|x\|=1$, it follows that

$$
\|T\|=\sup _{\|x\|=1}\|T x\| \leq \sqrt{\frac{3}{8}}<1
$$

3 Let $T: X \rightarrow X$ be a bounded linear operator on a Hilbert space X. Show that

$$
\left\|T T^{*}\right\|=\left\|T^{*} T\right\|=\|T\|^{2}
$$

Let us start by showing that $\left\|T^{*} T\right\|=\|T\|^{2}$. By the definition of the operator norm, it follows that, for each $x \in X$

$$
\left\|T^{*} T x\right\|=\left\|T^{*}(T x)\right\| \leq\left\|T^{*}\right\|\|T x\| \leq\left\|T^{*}\right\|\|T\|\|x\|=\|T\|^{2}\|x\|,
$$

where we have used the fact that $\|T\|=\left\|T^{*}\right\|$. Taking the supremum of all $x \in X$, with $\|x\|=1$, yields

$$
\left\|T^{*} T\right\| \leq\|T\|^{2} .
$$

For the reverse inequality, we note that for any $x \in X$

$$
0 \leq\|T x\|^{2}=\langle T x, T x\rangle=\left\langle x, T^{*} T x\right\rangle=\left|\left\langle x, T^{*} T x\right\rangle\right| \leq\left\|T^{*} T x\right\|\|x\| \leq\left\|T^{*} T\right\|\|x\|^{2},
$$

where we have used Cauchy-Schwarz' inequality. In particular, this means that

$$
\frac{\|T x\|}{\|x\|} \leq\left\|T^{*} T\right\|^{\frac{1}{2}} .
$$

Taking the supremum over all non-zero elements of X yields $\|T\| \leq \sqrt{\left\|T^{*} T\right\|}$, or equivalently

$$
\|T\|^{2} \leq\left\|T^{*} T\right\| .
$$

Thus, we must have $\left\|T^{*} T\right\|=\|T\|^{2}$.
Finally, we show that $\left\|T^{*} T\right\|=\left\|T T^{*}\right\|$. Let $A=T^{*}$, and note that by the argument above, and using that $T^{* *}=T$, we get

$$
\left\|T T^{*}\right\|=\left\|A^{*} A\right\|=\|A\|^{2}=\left\|T^{*}\right\|^{2}=\|T\|^{2}=\left\|T^{*} T\right\|,
$$

which concludes the proof.

4 Let X_{1}, and X_{2} be two Hilbert spaces and $T \in \mathcal{B}\left(X_{1}, X_{2}\right)$.
a) Show that there exists $T^{*} \in \mathcal{B}\left(X_{2}, X_{1}\right)$ such that

$$
\langle T x, y\rangle_{X_{2}}=\left\langle x, T^{*} y\right\rangle_{X_{1}} .
$$

For each fixed $y \in X_{2}$, we can define the linear functional, $l_{y}: X_{1} \rightarrow \mathbb{C}$, by

$$
l_{y}(x):=\langle T x, y\rangle_{X_{2}} .
$$

By Cauchy-Schwarz' inequality and the fact that $T \in \mathcal{B}\left(X_{1}, X_{2}\right)$, we have

$$
\left|l_{y}(x)\right|=\left|\langle T x, y\rangle_{X_{2}}\right| \leq\|T x\|_{X_{2}}\|y\|_{X_{2}} \leq\|T\|\|y\|_{X_{2}}\|x\|_{X_{1}},
$$

and since T and y are fixed, it follows that l_{y} is a bounded linear functional. Thus, by Riesz' representation theorem, there exists a unique $z_{y} \in X_{1}$ such that

$$
\langle T x, y\rangle_{X_{2}}=l_{y}(x)=\left\langle x, z_{y}\right\rangle_{X_{1}} .
$$

Note that this holds for any $y \in X_{2}$, so we define the map $T^{*}: X_{2} \rightarrow X_{1}$ by $y \mapsto z_{y}$. By definition, we then have

$$
\left\langle x, T^{*} y\right\rangle_{X_{1}}=\left\langle x, z_{y}\right\rangle_{X_{1}}=l_{y}(x)=\langle T x, y\rangle_{X_{2}}
$$

We need to show that T^{*} is linear and bounded. To show linearity, let $y, \eta \in X_{2}$, and $a, b \in \mathbb{C}$. Then for each $x \in X_{1}$, we have

$$
\begin{aligned}
\left\langle x, T^{*}(a y+b \eta)\right\rangle_{X_{1}} & =\langle T x, a y+b \eta\rangle_{X_{2}} \\
& =\bar{a}\langle T x, y\rangle_{X_{2}}+\bar{b}\langle T x, \eta\rangle_{X_{2}} \\
& =\bar{a}\left\langle x, T^{*} y\right\rangle_{X_{1}}+\bar{b}\left\langle x, T^{*} \eta\right\rangle_{X_{1}} \\
& =\left\langle x, a T^{*} y+b T^{*} \eta\right\rangle_{X_{1}} .
\end{aligned}
$$

Since this holds for all $x \in X_{1}$, we conclude that $T^{*}(a y+b \eta)=a T^{*} y+b T^{*} \eta$, which shows that T^{*} is linear.
It only remains to show that T^{*} is bounded. Recall (from problem 1, exercise 7) that for a Hilbert space X, and any $x \in X$

$$
\|x\|_{X}=\sup _{\|y\|=1}\left|\langle x, y\rangle_{X}\right|
$$

Whence it follows that for any $y \in X_{2}$, we have
$\left\|T^{*} y\right\|_{X_{1}}=\sup _{\|x\|=1}\left|\left\langle x, T^{*} y\right\rangle_{X_{1}}\right|=\sup _{\|x\|=1}\left|\langle T x, y\rangle_{X_{2}}\right| \leq \sup _{\|x\|=1}\|T x\|_{X_{2}}\|y\|_{X_{2}}=\|T\|\|y\|_{X_{2}}$,
where we first used Cauchy-Schwarz' inequality, and then the definition of the operator norm of T. This confirms that T^{*} is bounded, and thus $T^{*} \in$ $\mathcal{B}\left(X_{2}, X_{1}\right)$.
b) Show that $\operatorname{ker} T=\operatorname{ker} T^{*} T$.

One inclusion follows quite easily. Namely, if $x \in \operatorname{ker} T$, then $T x=0$, and so

$$
T^{*} T x=T^{*}(0)=0
$$

as T^{*} is a linear transformation. This shows that $\operatorname{ker} T \subseteq \operatorname{ker} T^{*} T$.
For the other inclusion, we let $x \in \operatorname{ker} T^{*} T$. We then have

$$
\|T x\|^{2}=\langle T x, T x\rangle=\left\langle x, T^{*} T x\right\rangle=0
$$

By the uniqueness of the norm, it follows that $T x=0$, and hence $x \in \operatorname{ker} T$. Since x was any element in $\operatorname{ker} T^{*} T$, this shows that $\operatorname{ker} T \subseteq \operatorname{ker} T^{*} T$. Hence, we have shown that $\operatorname{ker} T=\operatorname{ker} T^{*} T$.

5 a) Let M be a closed subspace of a Hilbert space H. For each $x \in H$, denote by $P_{M}(x)$ the orthogonal projection of x onto M. Prove that $P_{M}^{2}=P_{M}$, and $P_{M}^{*}=P_{M}$.
As M is a closed subspace of H, we can decompose $H=M \bigoplus M^{\perp}$, in the sense that we have a unique representation of each $x \in H$ given by

$$
x=p_{x}+e_{x}, \quad p_{x} \in M, e_{y} \in M^{\perp}
$$

and $P_{M}(x)=p_{x}$. Note that this necessarily means that for any $x \in H$,

$$
P_{M}^{2}(x)=P_{M}\left(p_{x}\right)=p_{x}=P_{M}(x) .
$$

So, $P_{M}^{2}=P_{M}$. Moreover, for any $x, y \in H$, we have

$$
\left\langle x, P_{M}^{*}(y)\right\rangle=\left\langle P_{M}(x), y\right\rangle=\left\langle p_{x}, p_{y}+e_{y}\right\rangle=\left\langle p_{x}, p_{y}\right\rangle=\left\langle p_{x}+e_{x}, p_{y}\right\rangle=\left\langle x, P_{M}(y)\right\rangle,
$$

where we have used the linearity of the inner product, and the fact that $e_{x}, e_{y} \in$ M^{\perp}. This shows that $P_{M}^{*}=P_{M}$, and thus concludes the proof.
b) Consider the bounded operator $T_{a}: \ell^{2} \rightarrow \ell^{2}$ given by

$$
T_{a}(x)=\left(a_{1} x_{1}, a_{2} x_{2}, \ldots\right),
$$

for a fixed $a=\left(a_{i}\right)_{i \in \mathbb{N}} \in \ell^{\infty}$. Show that the condition $a_{i} \in\{0,1\}$ is necessary for T_{a} to be an orthogonal projection on a closed subspace of ℓ^{2}. Verify that this is also sufficient by showing that $\operatorname{ker}\left(T_{a}\right)^{\perp}=\operatorname{range}\left(T_{a}\right)$ under this condition.
We have seen in a) that for T_{a} to be an orthogonal projection, we must have $T_{a}^{*}=T_{a}$ and $T_{a}^{2}=T_{a}$. The latter condition means that for any $x \in \ell^{2}$, we must have

$$
0=T_{a}^{2} x-T_{a} x=\left(a_{1}^{2} x_{1}-a_{1} x_{1}, a_{2}^{2} x_{2}-a_{2} x_{2}, \ldots\right)=\left(a_{i}\left(a_{1}-1\right) x_{i}\right)_{i \in \mathbb{N}} .
$$

Since this should hold for any $x \in \ell^{2}$, we must have

$$
a_{i}\left(a_{i}-1\right)=0, \quad \Longrightarrow \quad a_{i}=0 \text { or } a_{i}=1,
$$

for every $i \in \mathbb{N}$. Under this condition, we also have that $T_{a}^{*}=T_{\bar{a}}=T_{a}$.
Let us now verify that $\operatorname{ker}\left(T_{a}\right)^{\perp}=\operatorname{range}\left(T_{a}\right)$ when $a_{i} \in\{0,1\}$ for all i. Let $y \in \operatorname{ker}\left(T_{a}\right)$. Then for any $x \in \ell^{2}$,

$$
\left\langle T_{a} x, y\right\rangle=\sum_{i=1}^{\infty} a_{i} x_{i} \overline{y_{i}}=\sum_{i=1}^{\infty} x_{i} \overline{a_{i} y_{i}}=\left\langle x, T_{a} y\right\rangle=0,
$$

This shows that $T_{a} x \in \operatorname{ker}\left(T_{a}\right)^{\perp}$, so range $\left(T_{a}\right) \subseteq \operatorname{ker}\left(T_{a}\right)^{\perp}$. For the reversed inclusion, let $J=\left\{j \in \mathbb{N}: a_{j}=0\right\}$, and note that

$$
\operatorname{ker} T_{a}=\left\{y \in \ell^{2}: y_{j}=0 \text { for all } j \notin J\right\},
$$

and

$$
\text { range } T_{a}=\left\{y \in \ell^{2}: y_{j}=0 \text { for all } j \in J\right\} .
$$

In particular, any standard unit vector $\delta_{j_{0}}$ with $j_{0} \in J$ lies in $\operatorname{ker} T_{a}$. Now let $x \in \operatorname{ker}\left(T_{a}\right)^{\perp}$. We then have

$$
\left\langle x, \delta_{j_{0}}\right\rangle=x_{j_{0}}=0, \quad \text { for all } j_{0} \in J .
$$

This shows that $x \in \operatorname{range} T_{a}$, so $\operatorname{ker}\left(T_{a}\right)^{\perp} \subseteq$ range T_{a}, and we conclude that $\operatorname{ker}\left(T_{a}\right)^{\perp}=$ range T_{a}.
An alternative approach is to use that for a bounded operator T on a Hilbert space H, we have

$$
\operatorname{ker}\left(T^{*}\right)^{\perp}=\operatorname{range}(T),
$$

and since $T_{a}=T_{a}^{*}$, we get

$$
\operatorname{ker}\left(T_{a}\right)^{\perp}=\operatorname{ker}\left(T_{a}^{*}\right)^{\perp}=\operatorname{range}\left(T_{a}\right)
$$

c) Determine the operator norm $\left\|T_{a}\right\|$ for a general fixed $a \in \ell^{\infty}$.

We claim that $\left\|T_{a}\right\|=\|a\|_{\infty}$. Note that for any $x \in \ell^{2}$, we have

$$
\left\|T_{a} x\right\|_{2}^{2}=\sum_{i=1}^{\infty}\left|a_{i} x_{i}\right|^{2} \leq\|a\|_{\infty}^{2} \sum_{i=1}^{\infty}\left|x_{i}\right|^{2}=\|a\|_{\infty}^{2}\|x\|_{2}^{2}
$$

Taking the square root, and then the supremum of all $x \in \ell^{2}$ with $\|x\|=1$, we have

$$
\left\|T_{a}\right\| \leq\|a\|_{\infty}
$$

On the other hand, if we denote the standard basis of ℓ^{2} by $\left\{\delta_{k}\right\}_{k \in \mathbb{N}}$, we see that

$$
\left\|T_{a} \delta_{k}\right\|_{2}=\left|a_{k}\right|, \quad \forall k \in \mathbb{N}
$$

Since $\left\|\delta_{k}\right\|_{2}=1$ for all $k \in \mathbb{N}$, it follows that

$$
\left|a_{k}\right| \leq\left\|T_{a}\right\| \quad \text { for any } k \in \mathbb{N}
$$

Taking the supremum over all k, and using the fact that the supremum is the least upper bound, it follows that

$$
\|a\|_{\infty}=\sup _{k \in \mathbb{N}}\left|a_{k}\right| \leq\left\|T_{a}\right\|,
$$

and hence $\|a\|_{\infty}=\left\|T_{a}\right\|$.

6 a) Let $T: B(V) \rightarrow B(V)$ be defined by $T(X)=I+A X$. Then

$$
\|T(X)-T(Y)\|=\|A(X-Y)\| \leq\|A\|\|X-Y\| .
$$

Since $\|A\|<1$, this shows that T is a contraction. Since V is a Banach space, it follows that $B(V)$ is a Banach space. This means that $B(V)$ is complete, and thus by Banach's fixed point theorem there exists a unique operator $X \in B(V)$ such that $X=T(X)=I+A X$, which means that

$$
(I-A) X=I
$$

b) The fixed point can be found by iteration. Let $X_{0}=0$. Then $X_{1}=T\left(X_{0}\right)=I$ and $X_{2}=T\left(X_{1}\right)=I+A$. Suppose that $X_{n}=I+A+A^{2}+\ldots+A^{n-1}$. Then

$$
X_{n+1}=T\left(X_{n}\right)=I+A X_{n}=I+A+A^{2}+\ldots+A^{n}=\sum_{k=0}^{n} A^{k}
$$

By Banach's fixed point theorem, we know that the sequence $\left\{X_{n}\right\}$ converges to the fixed point X, so $X=\sum_{k=0}^{\infty} A^{k}$.

We know that $(I-A) X=I$, but we also need to show that $X(I-A)=I$. Note that $A X_{n}=X_{n} A$ for each $n \in \mathbb{N}$. Thus,

$$
A X=A X_{n}+A\left(X-X_{n}\right)=X A+\left(X_{n}-X\right) A+A\left(X-X_{n}\right)
$$

and letting $X_{n} \xrightarrow{n \rightarrow \infty} X$ we see that $A X=X A$. This implies that

$$
X(I-A)=X-X A=X-A X=(I-A) X
$$

and so X is the inverse of $I-A$.

