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Below follows one possible solution to the exercise set.

Define the linear transformation 7" by

n
T (Z ckvk> =(c1+c2)vr+ ...+ (ene1 + cn)vp—1 + Crun.
k=1

T is a linear transformation. More generally, for any u; € V, there is a unique linear
transformation 7" such that T'(v;) = u;.

The columns of the matrix representation of 7' in the basis {v1,...,v,} are the
coefficients of T'(v1), ..., T (v, ) in this basis. Let A denote this matrix representation.
Then A is on the form ) }

11 00

01 0 0

A= L
00 - 11
10 0 0 1}

We will consider R? with the usual inner product

(x,y) = x1y1 + T2Y2 + T3Y3-

Moreover, we let || - || be the norm induced by the inner product, and d denote the
metric induced by the norm.

Consider the linear map 7 : R? — R3 given by the matrix.

1 1
10 %
A=10 3 0O
1 1
10 %

Determine if the following statements are true.

1. This is true; T is a self-adjoint operator. Since A is a symmetric, real matrix,

we have that
A= AT = A,

so the corresponding operator is self-adjoint.
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2. This is true; T is a normal operator. Recall that T is normal if T7T* = T*T.
This corresponds to showing that A*A = AA*. We have already seen that
A* = A in 1., and it follows that

A*A = AA = AA",

so A is a normal matrix, and thus 7" is a normal operator.

3. This is false; T is not a unitary operator. For an operator T" to be unitary, we
need that TT* = T*T = I. However, a simple calculation shows that

100
A*A = £10 1 0| =1
00 1

= O =
N~ O
= O =
= O =
o~ O
= O k=
Il
0ol—= O 0ol
O RIR O
ool—= O ool

This shows that A is not unitary, hence neither is T'.

4. This is true; T is a contraction on the metric space (R3 d). For x € R3, we
have

im + iﬂf?, % 0 %
Ty = Az = %xg =x1 (0| + 22 % +2x3|0
im + il‘s % 0 %
Thus, we can see that for z,y € R3,
, (1 1 2 9 )
T2 =Tyl = ~(v1 —y1) + S (z3 —y3) | + (22 —y2)
4 4 4
(Yoo + L))
4 1 — Y1 1 T3 — Y3
1 9 1 9
=3 ((z1 —y1) + (w3 —y3))" + 1(952 —y2)
3 1 3
Sg(fvl — )’ + 1(952 — )+ g(fﬂza — y3)?
3 2
<z —y|?
<l

Here we used the hint that (a + b)? < 3(a? + b?) for all a,b € R. Taking the
square root, we see that

3
e =Tyl < [2le =l Vo R 0
This shows that T is a contraction in (R3,d), with contraction constant

3
=4/ <L
=

5. This is false; The operator norm of T'is ||T'[| = sup);=1 [|Az|| # 1. This follows
from the previous result. Inserting y =0 in (1), we get

3 3
el = e ol < e -0 = 1ei,

and taking the supremum over all x with [|z| = 1, it follows that

3
I = sup 7l <2 <1
flz[l=1
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Let T': X — X be a bounded linear operator on a Hilbert space X. Show that

17T = |T* 7| = |7

Let us start by showing that || T*T|| = ||T||?>. By the definition of the operator norm,
it follows that, for each z € X

|T*Tal| = |T*(T)l| < |T* N T < IT Tl = 1712l

where we have used the fact that ||T'|| = ||77||. Taking the supremum of all z € X,
with [|z] = 1, yields
17| < ||T*.

For the reverse inequality, we note that for any x € X
0 < | Tz|? = (Tw,Ta) = (&, T*Tx) = [(x, T*Tx)| < |T*Tx||||z]| < |TT||=]?,
where we have used Cauchy-Schwarz’ inequality. In particular, this means that

7]

1
< |||
]

Taking the supremum over all non-zero elements of X yields || T|| < /||T*T||, or
equivalently
IT|* < | 7°T].

Thus, we must have ||T*T|| = ||T|?.

Finally, we show that || T*T|| = ||T'T*||. Let A =T™, and note that by the argument
above, and using that T** =T, we get

ITT*|| = A A|l = |A|* = |T*|]* = | TI|* = |T*T],

which concludes the proof.

Let X, and X9 be two Hilbert spaces and T € B(X1, X5).
a) Show that there exists T* € B(X2, X1) such that

(T, y)x, = (2, T7y) x,-
For each fixed y € X3, we can define the linear functional, I, : X; — C, by
1) = (T2, y)x,.
By Cauchy-Schwarz’ inequality and the fact that T' € B(X1, X32), we have

ly(2)] = [Tz, y) x| < 1Tl 1yl xe < ITYl1x 2] x4

and since T" and y are fixed, it follows that [, is a bounded linear functional.
Thus, by Riesz’ representation theorem, there exists a unique z, € X; such that

(Tx,y)x, = ly(x) = (z, Zy>X1'
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b)

Note that this holds for any y € Xs, so we define the map T* : Xo — X by
Yy = zy. By definition, we then have

<‘TaT*y>X1 = <1:’Zy>X1 = ly(l') = <T$7y>X2'

We need to show that T* is linear and bounded. To show linearity, let y,n € Xo,
and a,b € C. Then for each z € X7, we have

(, T*(ay +bn))x, =(Tx,ay + bn)x,
=a(Tx,y)x, + b(Tx,n)x,
=a(z, T*y)x, + blz, T™n)x,
=(z,aT™y + bT"n)x, .

Since this holds for all z € X3, we conclude that T*(ay + bn) = aT*y + bT™*n,
which shows that T™ is linear.

It only remains to show that 7™ is bounded. Recall (from problem 1, exercise
7) that for a Hilbert space X, and any = € X

|zl x = sup [{z,y)x]|
lyll=1

Whence it follows that for any y € Xa, we have

IT7yllx = sup [(@, Ty)x| = sup (T2, y)x| < sup [Tzllxlyllx =Tyl

llzfl=1 llzfl=1 llzll=

where we first used Cauchy-Schwarz’ inequality, and then the definition of
the operator norm of 7. This confirms that 7™ is bounded, and thus T* €
B(X2, X1).

Show that ker T = ker T*T.

One inclusion follows quite easily. Namely, if € ker T, then Tz = 0, and so

T*Tx = T*(0) = 0,

as T™ is a linear transformation. This shows that ker T" C ker T*T'.
For the other inclusion, we let € ker T*T". We then have

|Tx|? = (Tx, Tx) = (x, T*Tz) = 0.

By the uniqueness of the norm, it follows that Tz = 0, and hence = € kerT.
Since x was any element in ker 7*T', this shows that ker 7' C ker T*T. Hence,
we have shown that ker 7" = ker 77T

Let M be a closed subspace of a Hilbert space H. For each x € H, denote
by Pys(x) the orthogonal projection of x onto M. Prove that P]%4 = Pys, and
Py = Py

As M is a closed subspace of H, we can decompose H = M @ M L in the sense
that we have a unique representation of each x € H given by

T = Dz + €g, prM,eyEML,
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b)

and Pys(z) = py. Note that this necessarily means that for any = € H,
Pi(x) = Pr(ps) = pe = Pu().
So, PJQV[ = Pys. Moreover, for any z,y € H, we have

(@, Pyr(y)) = (Par(2),y) = (s Py +€y) = (P Py) = (Po + €25 py) = (2, Pu(y)),

where we have used the linearity of the inner product, and the fact that e,, e, €
M. This shows that Py, = Py, and thus concludes the proof.

Consider the bounded operator T, : £2 — ¢? given by

To(z) = (a121, a2z, . . .),

for a fixed a = (a;);eny € £°°. Show that the condition a; € {0,1} is necessary
for T, to be an orthogonal projection on a closed subspace of £2. Verify that this
is also sufficient by showing that ker(T,)* = range(T,) under this condition.
We have seen in a) that for T}, to be an orthogonal projection, we must have
T* =T, and T? = T,. The latter condition means that for any = € £?, we must
have

0= TaQ:L' —Tyx = (a%xl — alxl,agacg —agw,...) = (ai(ar — 1)z)c -
Since this should hold for any z € 2, we must have
aj(a;—1)=0, = a;=0o0ra; =1,

for every ¢ € N. Under this condition, we also have that T, = T = Tj.

Let us now verify that ker(7,)* = range(7T,) when a; € {0,1} for all i. Let
y € ker(T,). Then for any x € £2,

(o] o0
<Ta$, y> = Z all‘lE = Z TiQY; = <‘/E) Tay> = 07
i=1 i=1

This shows that T,z € ker(T,)*, so range(T,) C ker(7,)*. For the reversed
inclusion, let J = {j € N : a; = 0}, and note that

kerT, = {y€?:y; =0forall j¢ J},
and
range T, = {y € > 1 y; = 0 for all j € J}.
In particular, any standard unit vector d;, with jo € J lies in kerT,,. Now let
x € ker(T,)*. We then have
<£L‘,(Sj0> =Tj, = 0, for all jg € J.
This shows that = € range Ty, so ker(T,)* C range T,, and we conclude that
ker(T,)* = range Tj,.
An alternative approach is to use that for a bounded operator 1" on a Hilbert

space H, we have
ker(T*)* = range(T),

and since Ty, =T}, we get

ker(T,)" = ker(T)* = range(T},).
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c)

b)

Determine the operator norm ||| for a general fixed a € £*°.
We claim that ||T,|| = [|lal/sc. Note that for any = € ¢2, we have

(0.9] oo
ITazll3 = Y lasil® < llal3 Y lail® = [lallZllz]3.
=1 =1

Taking the square root, and then the supremum of all x € ¢ with [|z| = 1, we
have
1Tall < llaf|oo-

On the other hand, if we denote the standard basis of ¢ by {0k }ken, We see
that
| Todkll2 = lak|, Vk e€N.

Since ||0k||2 = 1 for all k € N, it follows that
lag| < ||Tu|| for any k € N.

Taking the supremum over all k£, and using the fact that the supremum is the
least upper bound, it follows that

lalloc = sup |ax| < [[Ta],
keN

and hence ||al|oo = ||T4]|-

Let T : B(V) — B(V) be defined by T(X) = I + AX. Then
IT(X) = T(Y)|| = [AX = Y)[| < [JA[J[|X =Y.

Since ||A|| < 1, this shows that T is a contraction. Since V' is a Banach space,
it follows that B(V) is a Banach space. This means that B(V') is complete, and
thus by Banach’s fixed point theorem there exists a unique operator X € B(V)
such that X = T(X) = I+ AX, which means that

(I—-A)X =1.

The fixed point can be found by iteration. Let Xo = 0. Then X3 =T(Xo) =1
and Xo = T(X;) = I + A. Suppose that X,, =T + A+ A% +... 4+ A"~ 1. Then
Xn1 =T(Xp) =T+ AX, =T+ A+ A%+ ... + A" => A~

k=0

By Banach’s fixed point theorem, we know that the sequence {X,} converges
to the fixed point X, so X = > 32, A~

We know that (I — A)X = I, but we also need to show that X (I — A) = I. Note
that AX,, = X,,A for each n € N. Thus,

AX = AX, + A(X — X)) = XA+ (X — X)A+ A(X — X,.),

and letting X,, =% X we see that AX = X A. This implies that

XIT-A)=X-XA=X-AX = (- A)X,

and so X is the inverse of I — A.
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