

Below follows *one* possible solution to the exercise set.

1 Define the linear transformation T by

$$T\left(\sum_{k=1}^{n} c_k v_k\right) = (c_1 + c_2)v_1 + \ldots + (c_{n-1} + c_n)v_{n-1} + c_n v_n.$$

T is a linear transformation. More generally, for any $u_j \in V$, there is a unique linear transformation T such that $T(v_j) = u_j$.

The columns of the matrix representation of T in the basis $\{v_1, \ldots, v_n\}$ are the coefficients of $T(v_1), \ldots, T(v_n)$ in this basis. Let A denote this matrix representation. Then A is on the form

$$A = \begin{bmatrix} 1 & 1 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 1 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}.$$

2 We will consider \mathbb{R}^3 with the usual inner product

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3.$$

Moreover, we let $\|\cdot\|$ be the norm induced by the inner product, and d denote the metric induced by the norm.

Consider the linear map $T: \mathbb{R}^3 \to \mathbb{R}^3$ given by the matrix.

$$A = \begin{bmatrix} \frac{1}{4} & 0 & \frac{1}{4} \\ 0 & \frac{1}{2} & 0 \\ \frac{1}{4} & 0 & \frac{1}{4} \end{bmatrix}.$$

Determine if the following statements are true.

1. This is true; T is a self-adjoint operator. Since A is a symmetric, real matrix, we have that

$$A^* = A^\top = A,$$

so the corresponding operator is self-adjoint.

2. This is true; T is a normal operator. Recall that T is normal if $TT^* = T^*T$. This corresponds to showing that $A^*A = AA^*$. We have already seen that $A^* = A$ in 1., and it follows that

$$A^*A = AA = AA^*,$$

so A is a normal matrix, and thus T is a normal operator.

3. This is false; T is not a unitary operator. For an operator T to be unitary, we need that $TT^* = T^*T = I$. However, a simple calculation shows that

$$A^*A = \begin{bmatrix} \frac{1}{4} & 0 & \frac{1}{4} \\ 0 & \frac{1}{2} & 0 \\ \frac{1}{4} & 0 & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & 0 & \frac{1}{4} \\ 0 & \frac{1}{2} & 0 \\ \frac{1}{4} & 0 & \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{1}{8} & 0 & \frac{1}{8} \\ 0 & \frac{1}{4} & 0 \\ \frac{1}{8} & 0 & \frac{1}{8} \end{bmatrix} \neq \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

This shows that A is not unitary, hence neither is T.

4. This is true; T is a contraction on the metric space (\mathbb{R}^3, d) . For $x \in \mathbb{R}^3$, we have

$$Tx = Ax = \begin{pmatrix} \frac{1}{4}x_1 + \frac{1}{4}x_3\\ \frac{1}{2}x_2\\ \frac{1}{4}x_1 + \frac{1}{4}x_3 \end{pmatrix} = x_1 \begin{pmatrix} \frac{1}{4}\\ 0\\ \frac{1}{4} \end{pmatrix} + x_2 \begin{pmatrix} 0\\ \frac{1}{2}\\ 0 \end{pmatrix} + x_3 \begin{pmatrix} \frac{1}{4}\\ 0\\ \frac{1}{4} \end{pmatrix}.$$

Thus, we can see that for $x, y \in \mathbb{R}^3$,

$$||Tx - Ty||^{2} = \left(\frac{1}{4}(x_{1} - y_{1}) + \frac{1}{4}(x_{3} - y_{3})\right)^{2} + \frac{1}{4}(x_{2} - y_{2})^{2} \\ + \left(\frac{1}{4}(x_{1} - y_{1}) + \frac{1}{4}(x_{3} - y_{3})\right)^{2} \\ = \frac{1}{8}\left((x_{1} - y_{1}) + (x_{3} - y_{3})\right)^{2} + \frac{1}{4}(x_{2} - y_{2})^{2} \\ \le \frac{3}{8}(x_{1} - y_{1})^{2} + \frac{1}{4}(x_{2} - y_{2})^{2} + \frac{3}{8}(x_{3} - y_{3})^{2} \\ \le \frac{3}{8}||x - y||^{2}.$$

Here we used the hint that $(a + b)^2 \leq 3(a^2 + b^2)$ for all $a, b \in \mathbb{R}$. Taking the square root, we see that

$$||Tx - Ty|| \le \sqrt{\frac{3}{8}} ||x - y||, \quad \forall x, y \in \mathbb{R}^3.$$
 (1)

This shows that T is a contraction in (\mathbb{R}^3, d) , with contraction constant

$$c = \sqrt{\frac{3}{8}} < 1.$$

5. This is false; The operator norm of T is $||T|| = \sup_{||x||=1} ||Ax|| \neq 1$. This follows from the previous result. Inserting y = 0 in (1), we get

$$||Tx|| = ||Tx - 0|| \le \sqrt{\frac{3}{8}} ||x - 0|| = \sqrt{\frac{3}{8}} ||x||,$$

and taking the supremum over all x with ||x|| = 1, it follows that

$$||T|| = \sup_{||x||=1} ||Tx|| \le \sqrt{\frac{3}{8}} < 1.$$

3 Let $T: X \to X$ be a bounded linear operator on a Hilbert space X. Show that

$$||TT^*|| = ||T^*T|| = ||T||^2.$$

Let us start by showing that $||T^*T|| = ||T||^2$. By the definition of the operator norm, it follows that, for each $x \in X$

$$||T^*Tx|| = ||T^*(Tx)|| \le ||T^*|| ||Tx|| \le ||T^*|| ||T|| ||x|| = ||T||^2 ||x||,$$

where we have used the fact that $||T|| = ||T^*||$. Taking the supremum of all $x \in X$, with ||x|| = 1, yields

$$||T^*T|| \le ||T||^2.$$

For the reverse inequality, we note that for any $x \in X$

$$0 \le ||Tx||^2 = \langle Tx, Tx \rangle = \langle x, T^*Tx \rangle = |\langle x, T^*Tx \rangle| \le ||T^*Tx|| ||x|| \le ||T^*T|| ||x||^2,$$

where we have used Cauchy-Schwarz' inequality. In particular, this means that

$$\frac{\|Tx\|}{\|x\|} \le \|T^*T\|^{\frac{1}{2}}.$$

Taking the supremum over all non-zero elements of X yields $||T|| \leq \sqrt{||T^*T||}$, or equivalently

$$||T||^2 \le ||T^*T||.$$

Thus, we must have $||T^*T|| = ||T||^2$.

Finally, we show that $||T^*T|| = ||TT^*||$. Let $A = T^*$, and note that by the argument above, and using that $T^{**} = T$, we get

$$||TT^*|| = ||A^*A|| = ||A||^2 = ||T^*||^2 = ||T||^2 = ||T^*T||,$$

which concludes the proof.

4 Let X_1 , and X_2 be two Hilbert spaces and $T \in \mathcal{B}(X_1, X_2)$.

a) Show that there exists $T^* \in \mathcal{B}(X_2, X_1)$ such that

$$\langle Tx, y \rangle_{X_2} = \langle x, T^*y \rangle_{X_1}.$$

For each fixed $y \in X_2$, we can define the linear functional, $l_y : X_1 \to \mathbb{C}$, by

$$l_y(x) := \langle Tx, y \rangle_{X_2}.$$

By Cauchy-Schwarz' inequality and the fact that $T \in \mathcal{B}(X_1, X_2)$, we have

$$|l_y(x)| = |\langle Tx, y \rangle_{X_2}| \le ||Tx||_{X_2} ||y||_{X_2} \le ||T|| ||y||_{X_2} ||x||_{X_1},$$

and since T and y are fixed, it follows that l_y is a bounded linear functional. Thus, by Riesz' representation theorem, there exists a unique $z_y \in X_1$ such that

$$\langle Tx, y \rangle_{X_2} = l_y(x) = \langle x, z_y \rangle_{X_1}.$$

Note that this holds for any $y \in X_2$, so we define the map $T^* : X_2 \to X_1$ by $y \mapsto z_y$. By definition, we then have

$$\langle x, T^*y \rangle_{X_1} = \langle x, z_y \rangle_{X_1} = l_y(x) = \langle Tx, y \rangle_{X_2}.$$

We need to show that T^* is linear and bounded. To show linearity, let $y, \eta \in X_2$, and $a, b \in \mathbb{C}$. Then for each $x \in X_1$, we have

$$\langle x, T^*(ay+b\eta) \rangle_{X_1} = \langle Tx, ay+b\eta \rangle_{X_2} = \overline{a} \langle Tx, y \rangle_{X_2} + \overline{b} \langle Tx, \eta \rangle_{X_2} = \overline{a} \langle x, T^*y \rangle_{X_1} + \overline{b} \langle x, T^*\eta \rangle_{X_1} = \langle x, aT^*y + bT^*\eta \rangle_{X_1}.$$

Since this holds for all $x \in X_1$, we conclude that $T^*(ay + b\eta) = aT^*y + bT^*\eta$, which shows that T^* is linear.

It only remains to show that T^* is bounded. Recall (from problem 1, exercise 7) that for a Hilbert space X, and any $x \in X$

$$||x||_X = \sup_{||y||=1} |\langle x, y \rangle_X|$$

Whence it follows that for any $y \in X_2$, we have

$$||T^*y||_{X_1} = \sup_{||x||=1} |\langle x, T^*y \rangle_{X_1}| = \sup_{||x||=1} |\langle Tx, y \rangle_{X_2}| \le \sup_{||x||=1} ||Tx||_{X_2} ||y||_{X_2} = ||T|| ||y||_{X_2},$$

where we first used Cauchy-Schwarz' inequality, and then the definition of the operator norm of T. This confirms that T^* is bounded, and thus $T^* \in \mathcal{B}(X_2, X_1)$.

b) Show that ker $T = \ker T^*T$. One inclusion follows quite easily. Namely, if $x \in \ker T$, then Tx = 0, and so

$$T^*Tx = T^*(0) = 0,$$

as T^* is a linear transformation. This shows that ker $T \subseteq \ker T^*T$. For the other inclusion, we let $x \in \ker T^*T$. We then have

$$||Tx||^{2} = \langle Tx, Tx \rangle = \langle x, T^{*}Tx \rangle = 0.$$

By the uniqueness of the norm, it follows that Tx = 0, and hence $x \in \ker T$. Since x was any element in $\ker T^*T$, this shows that $\ker T \subseteq \ker T^*T$. Hence, we have shown that $\ker T = \ker T^*T$.

(5) a) Let M be a closed subspace of a Hilbert space H. For each $x \in H$, denote by $P_M(x)$ the orthogonal projection of x onto M. Prove that $P_M^2 = P_M$, and $P_M^* = P_M$.

As M is a closed subspace of H, we can decompose $H = M \bigoplus M^{\perp}$, in the sense that we have a unique representation of each $x \in H$ given by

$$x = p_x + e_x, \quad p_x \in M, e_y \in M^\perp,$$

and $P_M(x) = p_x$. Note that this necessarily means that for any $x \in H$,

$$P_M^2(x) = P_M(p_x) = p_x = P_M(x).$$

So, $P_M^2 = P_M$. Moreover, for any $x, y \in H$, we have

$$\langle x, P_M^*(y) \rangle = \langle P_M(x), y \rangle = \langle p_x, p_y + e_y \rangle = \langle p_x, p_y \rangle = \langle p_x + e_x, p_y \rangle = \langle x, P_M(y) \rangle,$$

where we have used the linearity of the inner product, and the fact that $e_x, e_y \in M^{\perp}$. This shows that $P_M^* = P_M$, and thus concludes the proof.

b) Consider the bounded operator $T_a: \ell^2 \to \ell^2$ given by

$$T_a(x) = (a_1 x_1, a_2 x_2, \ldots),$$

for a fixed $a = (a_i)_{i \in \mathbb{N}} \in \ell^{\infty}$. Show that the condition $a_i \in \{0, 1\}$ is necessary for T_a to be an orthogonal projection on a closed subspace of ℓ^2 . Verify that this is also sufficient by showing that $\ker(T_a)^{\perp} = \operatorname{range}(T_a)$ under this condition. We have seen in **a**) that for T_a to be an orthogonal projection, we must have $T_a^* = T_a$ and $T_a^2 = T_a$. The latter condition means that for any $x \in \ell^2$, we must have

$$0 = T_a^2 x - T_a x = (a_1^2 x_1 - a_1 x_1, a_2^2 x_2 - a_2 x_2, \ldots) = (a_i (a_1 - 1) x_i)_{i \in \mathbb{N}}.$$

Since this should hold for any $x \in \ell^2$, we must have

$$a_i(a_i - 1) = 0, \implies a_i = 0 \text{ or } a_i = 1,$$

for every $i \in \mathbb{N}$. Under this condition, we also have that $T_a^* = T_{\overline{a}} = T_a$. Let us now verify that $\ker(T_a)^{\perp} = \operatorname{range}(T_a)$ when $a_i \in \{0, 1\}$ for all i. Let $y \in \ker(T_a)$. Then for any $x \in \ell^2$,

$$\langle T_a x, y \rangle = \sum_{i=1}^{\infty} a_i x_i \overline{y_i} = \sum_{i=1}^{\infty} x_i \overline{a_i y_i} = \langle x, T_a y \rangle = 0,$$

This shows that $T_a x \in \ker(T_a)^{\perp}$, so $\operatorname{range}(T_a) \subseteq \ker(T_a)^{\perp}$. For the reversed inclusion, let $J = \{j \in \mathbb{N} : a_j = 0\}$, and note that

$$\ker T_a = \{ y \in \ell^2 : y_j = 0 \text{ for all } j \notin J \},\$$

and

range
$$T_a = \{ y \in \ell^2 : y_j = 0 \text{ for all } j \in J \}.$$

In particular, any standard unit vector δ_{j_0} with $j_0 \in J$ lies in ker T_a . Now let $x \in \ker(T_a)^{\perp}$. We then have

$$\langle x, \delta_{j_0} \rangle = x_{j_0} = 0, \quad \text{for all } j_0 \in J.$$

This shows that $x \in \text{range } T_a$, so $\ker(T_a)^{\perp} \subseteq \text{range } T_a$, and we conclude that $\ker(T_a)^{\perp} = \text{range } T_a$.

An alternative approach is to use that for a bounded operator T on a Hilbert space H, we have

$$\ker(T^*)^{\perp} = \operatorname{range}(T),$$

and since $T_a = T_a^*$, we get

$$\ker(T_a)^{\perp} = \ker(T_a^*)^{\perp} = \operatorname{range}(T_a).$$

c) Determine the operator norm $||T_a||$ for a general fixed $a \in \ell^{\infty}$. We claim that $||T_a|| = ||a||_{\infty}$. Note that for any $x \in \ell^2$, we have

$$||T_a x||_2^2 = \sum_{i=1}^{\infty} |a_i x_i|^2 \le ||a||_{\infty}^2 \sum_{i=1}^{\infty} |x_i|^2 = ||a||_{\infty}^2 ||x||_2^2$$

Taking the square root, and then the supremum of all $x \in \ell^2$ with ||x|| = 1, we have

$$||T_a|| \le ||a||_{\infty}.$$

On the other hand, if we denote the standard basis of ℓ^2 by $\{\delta_k\}_{k\in\mathbb{N}}$, we see that

$$||T_a\delta_k||_2 = |a_k|, \quad \forall k \in \mathbb{N}.$$

Since $\|\delta_k\|_2 = 1$ for all $k \in \mathbb{N}$, it follows that

$$|a_k| \le ||T_a||$$
 for any $k \in \mathbb{N}$.

Taking the supremum over all k, and using the fact that the supremum is the least upper bound, it follows that

$$||a||_{\infty} = \sup_{k \in \mathbb{N}} |a_k| \le ||T_a||,$$

and hence $||a||_{\infty} = ||T_a||$.

6 a) Let $T : B(V) \to B(V)$ be defined by T(X) = I + AX. Then $||T(X) - T(Y)|| = ||A(X - Y)|| \le ||A|| ||X - Y||.$

Since ||A|| < 1, this shows that T is a contraction. Since V is a Banach space, it follows that B(V) is a Banach space. This means that B(V) is complete, and thus by Banach's fixed point theorem there exists a unique operator $X \in B(V)$ such that X = T(X) = I + AX, which means that

$$(I-A)X = I.$$

b) The fixed point can be found by iteration. Let $X_0 = 0$. Then $X_1 = T(X_0) = I$ and $X_2 = T(X_1) = I + A$. Suppose that $X_n = I + A + A^2 + \ldots + A^{n-1}$. Then

$$X_{n+1} = T(X_n) = I + AX_n = I + A + A^2 + \dots + A^n = \sum_{k=0}^n A^k.$$

By Banach's fixed point theorem, we know that the sequence $\{X_n\}$ converges to the fixed point X, so $X = \sum_{k=0}^{\infty} A^k$.

We know that (I - A)X = I, but we also need to show that X(I - A) = I. Note that $AX_n = X_n A$ for each $n \in \mathbb{N}$. Thus,

$$AX = AX_n + A(X - X_n) = XA + (X_n - X)A + A(X - X_n),$$

and letting $X_n \xrightarrow{n \to \infty} X$ we see that AX = XA. This implies that

$$X(I - A) = X - XA = X - AX = (I - A)X,$$

and so X is the inverse of I - A.