

TMA4145 Linear Methods Fall 2021

Exercise set 6

Please justify your answers! The most important part is how you arrive at an answer, not the answer itself.

1 The space of continuous functions that *vanish at infinity* is

$$C_0(\mathbb{R}) = \left\{ f \in C(\mathbb{R}) : \lim_{t \to \pm \infty} f(t) = 0 \right\}$$

Prove that $C_0(\mathbb{R})$ is a closed subspace of $C_b(\mathbb{R})$ with respect to the uniform norm $\|\cdot\|_u$, and therefore $(C_0(\mathbb{R}), \|\cdot\|_u)$ is a Banach space.

- **2** Let $\|\cdot\|_a$ and $\|\cdot\|_b$ be equivalent norms on a vector space X, and let $(x_n)_{n\in\mathbb{N}}$ be a sequence in X. Show that (x_n) is a Cauchy sequence in $(X, \|\cdot\|_a)$ if and only if (x_n) is a Cauchy sequence in $(X, \|\cdot\|_b)$.
- 3 Show that the norm $\|\cdot\|_p$ on ℓ^p does not satisfy the parallelogram law

$$||x - y||_p^2 + ||x + y||_p^2 = 2\left(||x||_p^2 + ||y||_p^2\right) \quad \text{for all } x, y \in X,$$

for any $p \neq 2$. Thus, $\|\cdot\|_p$ is not induced by an inner product for any $p \neq 2$.

|4| Let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space.

- **a)** Show that if $\langle x, z \rangle = \langle y, z \rangle$ for all $z \in X$, then x = y.
- **b)** Given $x_n, y_n, x, y \in X$, show that if $x_n \to x$ and $y_n \to y$, then

$$\langle x_n, y_n \rangle \to \langle x, y \rangle.$$

5 Suppose $(X, \langle \cdot, \cdot \rangle)$ is an inner product space, and let $||x|| = \langle x, x \rangle^{1/2}$.

- **a)** Show that $\|\cdot\|$ satisfies the parallelogram law.
- **b)** Let ω be a n^{th} root of unity, meaning $\omega^n = 1$ and $\omega^k \neq 1$ for k < n. Show that for $n \ge 3$, we have

$$\langle x, y \rangle = \frac{1}{n} \sum_{k=1}^{n} \omega^k \|x + \omega^k y\|^2.$$

c) Show that

$$\langle x, y \rangle = \int_0^1 e^{2\pi i\varphi} \|x + e^{2\pi i\varphi}y\|^2 \, d\varphi.$$

- **6** A $d \times d$ matrix A with real entries is *positive definite* if it is symmetric $(A = A^T)$ and $Ax \cdot x > 0$ for all nonzero vectors $x \in \mathbb{R}^d$, where $x \cdot y$ denotes dot product for vectors in \mathbb{R}^d .
 - a) Show that if A is a positive definite $d \times d$ matrix, then

$$\langle x,y\rangle_A=Ax\cdot y,\quad x,y\in\mathbb{R}^d,$$

defines an inner product on \mathbb{R}^d .

b) Show that if $\langle \cdot, \cdot \rangle$ is an inner product on \mathbb{R}^d , then necessarily there exists some positive definite $d \times d$ matrix A such that

$$\langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle_A.$$