Norwegian University of Science
Exercise set 6 and Technology
Department of Mathematical
Sciences

Please justify your answers! The most important part is how you arrive at an answer, not the answer itself.

1 The space of continuous functions that vanish at infinity is

$$
C_{0}(\mathbb{R})=\left\{f \in C(\mathbb{R}): \lim _{t \rightarrow \pm \infty} f(t)=0\right\}
$$

Prove that $C_{0}(\mathbb{R})$ is a closed subspace of $C_{b}(\mathbb{R})$ with respect to the uniform norm $\|\cdot\|_{u}$, and therefore $\left(C_{0}(\mathbb{R}),\|\cdot\|_{u}\right)$ is a Banach space.

2 Let $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ be equivalent norms on a vector space X, and let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in X. Show that $\left(x_{n}\right)$ is a Cauchy sequence in $\left(X,\|\cdot\|_{a}\right)$ if and only if $\left(x_{n}\right)$ is a Cauchy sequence in $\left(X,\|\cdot\|_{b}\right)$.

3 Show that the norm $\|\cdot\|_{p}$ on ℓ^{p} does not satisfy the parallelogram law

$$
\|x-y\|_{p}^{2}+\|x+y\|_{p}^{2}=2\left(\|x\|_{p}^{2}+\|y\|_{p}^{2}\right) \quad \text { for all } x, y \in X
$$

for any $p \neq 2$. Thus, $\|\cdot\|_{p}$ is not induced by an inner product for any $p \neq 2$.

4 Let $(X,\langle\cdot, \cdot\rangle)$ be an inner product space.
a) Show that if $\langle x, z\rangle=\langle y, z\rangle$ for all $z \in X$, then $x=y$.
b) Given $x_{n}, y_{n}, x, y \in X$, show that if $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$, then

$$
\left\langle x_{n}, y_{n}\right\rangle \rightarrow\langle x, y\rangle
$$

5 Suppose $(X,\langle\cdot, \cdot\rangle)$ is an inner product space, and let $\|x\|=\langle x, x\rangle^{1 / 2}$.
a) Show that $\|\cdot\|$ satisfies the parallelogram law.
b) Let ω be a $n^{t h}$ root of unity, meaning $\omega^{n}=1$ and $\omega^{k} \neq 1$ for $k<n$. Show that for $n \geq 3$, we have

$$
\langle x, y\rangle=\frac{1}{n} \sum_{k=1}^{n} \omega^{k}\left\|x+\omega^{k} y\right\|^{2}
$$

c) Show that

$$
\langle x, y\rangle=\int_{0}^{1} e^{2 \pi i \varphi}\left\|x+e^{2 \pi i \varphi} y\right\|^{2} d \varphi
$$

66 A $d \times d$ matrix A with real entries is positive definite if it is symmetric $\left(A=A^{T}\right)$ and $A x \cdot x>0$ for all nonzero vectors $x \in \mathbb{R}^{d}$, where $x \cdot y$ denotes dot product for vectors in \mathbb{R}^{d}.
a) Show that if A is a positive definite $d \times d$ matrix, then

$$
\langle x, y\rangle_{A}=A x \cdot y, \quad x, y \in \mathbb{R}^{d}
$$

defines an inner product on \mathbb{R}^{d}.
b) Show that if $\langle\cdot, \cdot\rangle$ is an inner product on \mathbb{R}^{d}, then necessarily there exists some positive definite $d \times d$ matrix A such that

$$
\langle\cdot, \cdot\rangle=\langle\cdot, \cdot\rangle_{A} .
$$

