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Exercise set 13

Please justify your answers! The most important part is how you arrive at an answer, not
the answer itself.

1 (Continuation exam, August 2021)
a) Show that

d(x, y) = |x− y|
1 + |x− y|

defines a metric on R. Describe the unit ball B1(0) in (R, d).
Hint: Show that the function f(t) = t/(1 + t) is increasing for all t ≥ 0.

b) Is (R, d) a complete metric space? Either prove this, or provide a counterexample
disproving it. You may use (without proof) that R is complete when equipped
with the usual Euclidean distance metric.

2 (Continuation exam, August 2021) Consider the real vector space of continuous
functions C[−1, 1]. Show that

‖f‖ =
∫ 1

−1
|tf(t)| dt, f ∈ C[−1, 1],

defines a norm on C[−1, 1]. Show that this norm is not equivalent to the L1-norm

‖f‖1 =
∫ 1

−1
|f(t)| dt.

3 (Continuation exam, August 2021) Find a, b ∈ C such that∫ 2

0
|f(t)− a− bt|2 dt

is minimal when f is given by

f(t) =
{

sin πt, 0 ≤ t ≤ 1.
0, 1 < t ≤ 2

.

4 (Exam 2020, Problem 6) Let

A =
[
1 1
2 −2

]
.
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a) Determine if A is normal. Find the singular values of A, and determine ‖A‖
(the norm of the operator C2 → C2 represented by A).

b) Find a singular value decomposition of A.

c) Find the polar decomposition of A.

5 Given the matrix

A =

1 2
2 2
2 1

 .
a) Compute the singular value decomposition of A.

b) Use the result of a) to find the pseudoinverse of A, and the best approximation
to a solution of Ax = b having minimal norm when b =

(
1 2 3

)T
.
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