Please justify your answers! The most important part is how you arrive at an answer, not the answer itself.

1 (Continuation exam, August 2021)
a) Show that

$$
d(x, y)=\frac{|x-y|}{1+|x-y|}
$$

defines a metric on \mathbb{R}. Describe the unit ball $B_{1}(0)$ in (\mathbb{R}, d).
Hint: Show that the function $f(t)=t /(1+t)$ is increasing for all $t \geq 0$.
b) Is (\mathbb{R}, d) a complete metric space? Either prove this, or provide a counterexample disproving it. You may use (without proof) that \mathbb{R} is complete when equipped with the usual Euclidean distance metric.

2 (Continuation exam, August 2021) Consider the real vector space of continuous functions $C[-1,1]$. Show that

$$
\|f\|=\int_{-1}^{1}|t f(t)| d t, \quad f \in C[-1,1]
$$

defines a norm on $C[-1,1]$. Show that this norm is not equivalent to the L^{1}-norm

$$
\|f\|_{1}=\int_{-1}^{1}|f(t)| d t
$$

3 (Continuation exam, August 2021) Find $a, b \in \mathbb{C}$ such that

$$
\int_{0}^{2}|f(t)-a-b t|^{2} d t
$$

is minimal when f is given by

$$
f(t)= \begin{cases}\sin \pi t, & 0 \leq t \leq 1 \\ 0, & 1<t \leq 2\end{cases}
$$

4 (Exam 2020, Problem 6) Let

$$
A=\left[\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right]
$$

a) Determine if A is normal. Find the singular values of A, and determine $\|A\|$ (the norm of the operator $\mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ represented by A).
b) Find a singular value decomposition of A.
c) Find the polar decomposition of A.

5 Given the matrix

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 2 \\
2 & 1
\end{array}\right)
$$

a) Compute the singular value decomposition of A.
b) Use the result of a) to find the pseudoinverse of A, and the best approximation to a solution of $A x=b$ having minimal norm when $b=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)^{T}$.

