Please justify your answers! The most important part is how you arrive at an answer, not the answer itself.

1 Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for a finite-dimensional vector space V. Show that there exists a linear transformation $T: V \rightarrow V$ such that $T\left(v_{1}\right)=v_{1}, T\left(v_{j}\right)=v_{j-1}+v_{j}$, $j=2, \ldots, n$. Find the matrix of this transformation in the basis $\left\{v_{1}, \ldots, v_{d}\right\}$.

2 (Continuation exam, August 2021, Problem 2 modified) Consider \mathbb{R}^{n} with the standard inner product

$$
\langle x, y\rangle=x_{1} y_{1}+\cdots+x_{n} y_{n}
$$

and let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear map given by matrix multiplication $T x=A x$, where

$$
A=\left[\begin{array}{ccc}
1 / 4 & 0 & 1 / 4 \\
0 & 1 / 2 & 0 \\
1 / 4 & 0 & 1 / 4
\end{array}\right]
$$

Let $\|\cdot\|$ denote the norm induced by the standard inner product, and let d denote the metric induced by this norm. Determine whether the following statements are true or false (and explain why).

1. T is a self-adjoint operator.
2. T is a normal operator.
3. T is a unitary operator.
4. T is a contraction on the metric space $\left(\mathbb{R}^{3}, d\right)$.

Hint: Since $a b \leq a^{2}+b^{2}$ for any $a, b \in \mathbb{R}$, we have that $(a+b)^{2} \leq 3\left(a^{2}+b^{2}\right)$.
5. The operator norm of T is $\|T\|=\sup _{\|x\|=1}\|A x\|=1$.

3 Let $T: X \rightarrow X$ be a bounded linear operator on a Hilbert space X. Show that

$$
\left\|T T^{*}\right\|=\left\|T^{*} T\right\|=\|T\|^{2}
$$

54 Let X_{1} and X_{2} be two Hilbert spaces and $T \in B\left(X_{1}, X_{2}\right)$.
a) Show that there exists $T^{*} \in B\left(X_{2}, X_{1}\right)$ such that $\langle T x, y\rangle_{X_{2}}=\left\langle x, T^{*} y\right\rangle_{X_{1}}$ for any $x \in X_{1}, y \in X_{2}$.
(Note: We treated the case $X_{1}=X_{2}$ in class.)
b) Prove that $\operatorname{ker} T=\operatorname{ker} T^{*} T$.

5 (Continuation exam 2018, problem 5)
a) Let M be a closed subspace of a Hilbert space H. For each $x \in H$ denote by $P_{M}(x)$ the orthogonal projection of x onto M. Prove that $P_{M}^{2}=P_{M}$ and $P_{M}^{*}=P_{M}$.
b) Now consider the bounded linear operator $T_{a}: \ell^{2} \rightarrow \ell^{2}$ given by

$$
T_{a}(x)=\left(a_{1} x_{1}, a_{2} x_{2}, a_{3} x_{3}, \ldots\right)
$$

where $a=\left(a_{1}, a_{2}, \ldots\right)$ is a fixed element of ℓ^{∞}. Show that the condition $a_{i} \in\{0,1\}$ is necessary for T_{a} to be an orthogonal projection on a closed subspace of ℓ^{2}. Verify that this is also sufficient by showing that $\operatorname{ker}\left(T_{a}\right)^{\perp}=\operatorname{range}\left(T_{a}\right)$ under this condition.
c) Determine the operator norm $\left\|T_{a}\right\|$ (no longer assuming the condition on a given in b)).

6 Challenge: (Exam 2002, Problem 2) Let V be a Banach space, and let $A \in \mathcal{B}(V)$ (i.e. a bounded linear operator on V) with operator norm $\|A\|<1$. In this problem, we will show that $I-A \in \mathcal{B}(V)$ is invertible by using Banach's fixed point theorem. Here I is the identity operator $(I v=v$ for all $v \in V)$.
Let $T: \mathcal{B}(V) \rightarrow \mathcal{B}(V)$ be given by $T(X)=I+A X$ for $X \in \mathcal{B}(V)$.
a) Explain how one can use Banach's fixed point theorem to show that there is one and only one $X \in \mathcal{B}(V)$ such that

$$
(I-A) X=I
$$

b) Show by induction that

$$
T^{n+1}(0)=I+A+A^{2}+\cdots+A^{n}
$$

for $n \geq 0$, and conclude that

$$
X=\sum_{k=0}^{\infty} A^{k}
$$

is the fixed point of T. Why do we have that X is the inverse of $I-A$, i.e. that $X(I-A)=(I-A) X=I ?$

