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Exercise set 10

Please justify your answers! The most important part is how you arrive at an answer, not
the answer itself.

1 Let {v1, . . . , vn} be a basis for a finite-dimensional vector space V . Show that there
exists a linear transformation T : V æ V such that T (v1) = v1, T (vj) = vj≠1 + vj ,
j = 2, . . . , n. Find the matrix of this transformation in the basis {v1, . . . , vd}.

2 (Continuation exam, August 2021, Problem 2 modified) Consider Rn with the standard
inner product

Èx, yÍ = x1y1 + · · · + xnyn,

and let T : R3 æ R3 be the linear map given by matrix multiplication Tx = Ax,
where

A =

S

WU
1/4 0 1/4
0 1/2 0

1/4 0 1/4

T

XV .

Let Î · Î denote the norm induced by the standard inner product, and let d denote
the metric induced by this norm. Determine whether the following statements are
true or false (and explain why).

1. T is a self-adjoint operator.
2. T is a normal operator.
3. T is a unitary operator.
4. T is a contraction on the metric space (R3

, d).
Hint: Since ab Æ a

2 + b
2

for any a, b œ R, we have that (a + b)2 Æ 3(a2 + b
2).

5. The operator norm of T is ÎTÎ = supÎxÎ=1 ÎAxÎ = 1.

3 Let T : X æ X be a bounded linear operator on a Hilbert space X. Show that

ÎTT
úÎ = ÎT

ú
TÎ = ÎTÎ2

.

4 Let X1 and X2 be two Hilbert spaces and T œ B(X1, X2).
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Exercise set 10

a) Show that there exists T
ú œ B(X2, X1) such that ÈTx, yÍX2 = Èx, T

ú
yÍX1 for

any x œ X1, y œ X2.
(Note: We treated the case X1 = X2 in class.)

b) Prove that ker T = ker T
ú
T .

5 (Continuation exam 2018, problem 5 )
a) Let M be a closed subspace of a Hilbert space H. For each x œ H denote

by PM (x) the orthogonal projection of x onto M . Prove that P
2
M = PM and

P
ú
M = PM .

b) Now consider the bounded linear operator Ta : ¸
2 æ ¸

2 given by

Ta(x) = (a1x1, a2x2, a3x3, . . .),

where a = (a1, a2, . . .) is a fixed element of ¸
Œ. Show that the condition

ai œ {0, 1} is necessary for Ta to be an orthogonal projection on a closed subspace
of ¸

2. Verify that this is also su�cient by showing that ker(Ta)‹ = range(Ta)
under this condition.

c) Determine the operator norm ÎTaÎ (no longer assuming the condition on a given
in b)).

6 Challenge: (Exam 2002, Problem 2 ) Let V be a Banach space, and let A œ B(V )
(i.e. a bounded linear operator on V ) with operator norm ÎAÎ < 1. In this problem,
we will show that I ≠ A œ B(V ) is invertible by using Banach’s fixed point theorem.
Here I is the identity operator (Iv = v for all v œ V ).
Let T : B(V ) æ B(V ) be given by T (X) = I + AX for X œ B(V ).

a) Explain how one can use Banach’s fixed point theorem to show that there is
one and only one X œ B(V ) such that

(I ≠ A)X = I.

b) Show by induction that

T
n+1(0) = I + A + A

2 + · · · + A
n

for n Ø 0, and conclude that

X =
Œÿ

k=0
A

k

is the fixed point of T . Why do we have that X is the inverse of I ≠ A, i.e. that
X(I ≠ A) = (I ≠ A)X = I?
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