Norwegian University of Science
Exercise set 1
and Technology
Department of Mathematical
Sciences

Please justify your answers! The most important part is how you arrive at an answer, not the answer itself.

1 Give an example of an infinite sequence of sets $A_{0}, A_{1}, A_{2}, \ldots$ such that $A_{0}=\mathbb{Z}$ and

$$
A_{0} \supsetneq A_{1} \supsetneq A_{2} \ldots
$$

Remark: This one, as many problems in the course, admits many different solutions. Try to find your own.

2 Let X, Y and Z be sets. Show that $X \cap(Y \cup Z)=(X \cap Y) \cup(X \cap Z)$.

3 Let $f: X \rightarrow Y$ be a function, let A be a subset of X, and let B be a subset of Y.
a) Prove that $A \subseteq f^{-1}(f(A)$), and if f is injective then equality holds. Show by example that equality need not hold if f is not injective.
b) Prove that $f\left(f^{-1}(B)\right) \subseteq B$, and if f is surjective then equality holds. Show by example that equality need not hold if f is not surjective.

4 Show that the set \mathbb{Q} of rational numbers is countable.

5 Let $C(\mathbb{R}, \mathbb{R})$ denote the set of real-valued continuous functions on \mathbb{R}. Moreover, let $C^{1}(\mathbb{R}, \mathbb{R}) \subset C(\mathbb{R}, \mathbb{R})$ be the subset of functions with continuous first derivatives. Define a function from the set $\left\{f \in C^{1}(\mathbb{R}, \mathbb{R}): f(0)=0\right\}$ to the set $C(\mathbb{R}, \mathbb{R})$ by

$$
f \longmapsto f^{\prime} .
$$

Show that this function is a bijection.

6 Find a domain A such that the following functions are bijections between A and $f(A)$. Try to choose A as large as possible. What is $f(A)$ and f^{-1} ?
a) $A \subset \mathbb{R}, x \longmapsto x^{2}-x$
b) $A \subset \mathbb{R}, x \longmapsto \cos x$
c) $A \subset \mathbb{R}^{2},\binom{x}{y} \longmapsto\binom{x+y}{x-y}$
d) $A \subset \mathbb{C}, z \longmapsto e^{z}$

7 (Challenge) Prove that the closed interval $[0,1]$ and the open interval $(0,1)$ have the same cardinality by finding a bijection $f:[0,1] \rightarrow(0,1)$. Hint: Do not try to create a continuous function f.

