ADJOINT OPERATORS

Consider a Hilbert space X over a field F € {R,C}. In this note we introduce
adjoint operators, which provide us with an alternative description of bounded linear
operators on X. We will see that the existence of so-called adjoints is guaranteed
by Riesz’ representation theorem.

Theorem 1 (Adjoint operator). Let T € B(X) be a bounded linear operator
on a Hilbert space X. There exists a unique operator T* € B(X) such that

(Tz,y) = (z,T"y) forallz,yeX.
The operator T* is called the adjoint of T'.

Proof. Ezxistence: Fix y € X, and define the map
p(z) = (Tz,y), ze€X.
This is a bounded linear functional on X, as it is easily seen to be linear and

[o(@)] = [(Ta,y) [ < [T(llyll < | T[[lylll|]

By Riesz’ representation theorem it follows that there exists a unique element y* €
X such that

o(x) = (Tz,y) = (z,y*) foralzecX.

We thus define T*y := y*, so by definition T* satisfies (Tz,y) = (x,T*y). It
remains to show that T™ is linear, bounded and unique.

Linearity of T*: We have
(z,T" (o1 + By2)) = (Tw, ays + By2)
= a(Tz,y1) + B({Tz,yo)
= a<$, T*y1> + E<$, T*y2>
= (z,aT*y1 + BT*y2) forallz € X,

and it follows that
T*(ay1 + Bya) = T y1 + BT ys.

Boundedness of T*: By the Cauchy-Schwarz inequality, we get
IT*y||* = (T"y, T"y) = (TT"y,y)
< T ylyl
< TITyllllyll-
If | T*y|| > 0, we divide by ||T*y|| on both sides in the inequality and obtain

1Tyl < TNyl
1
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This inequality is clearly also satisfied when | T*y|| = 0, so T* is a bounded operator.
Moreover, we have attained the additional information

17 < |77

Uniqueness: Suppose there exists another operator S € B(X) such that
(x,Sy) = (x,T*y) forall z,y € X.
Then necessarily, for each y € X, we have
(x,Sy —T*y) =0 forall z € X.

It follows that Sy = T™*y for every y € X, meaning S = T™. (]

We list and prove some useful properties of adjoints.

Proposition 2. Let X be a Hilbert space, S : X - X and T : X — X be
bounded linear operators and «, 8 € F any two scalars. We then have:

i) (S + BT)* =aS* + BT*

i) (ST)" =Tr5"
i) (T7)" =
) [T = [Tl
v) 17T = |T*T|| = |T|*

Proof. i) and ii): Ezercise.
i7i) Fix any y € X. We have
(@, T""y) = (T"x,y) = (y, T*x)
= (Ty,z) = (z, Ty)
for all x € X. It thus follows that 7" =T

iv) In the proof of the existence of the adjoint, we established that ||77*] < ||T||.
For the opposite inequality, simply observe that by #ii), we have

1T = 11T < 1T,

and thus ||T*|| = |||

v): Exercise on Problem set 11. ]

Example 3. i) Left and right shift operators: Consider the right shift oper-
ator R on ¢2, given by

Rx = (0,z1,29,23,...), «=(xj)jen € 2.
Its adjoint is the left shift operator L, given by

Lz = (z9,x3,24,...).
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To see this, observe that
(Rx,y) = (0,21, 22,23, ...), (Y1,Y2,Y3,...))
= 21Y2 + T2Y3 + T3Ys + ...
= (a1, 22,23, ...), (Y2,Y3, Y4, ...)) = {x, Ly)
for any x,y € ¢2. Thus, the operator R* satisfying (Rx,y) = (x, R*y) for
all z,y € /2 is R* = L.
ii) Multiplication operator on £?: Consider the multiplication operator T, :
02 — ¢? given by
Tox = (ajoj)jen, @ = (2;)jen € £,
for some fixed a € £*°. The adjoint of T} is the multiplication operator for

the conjugate sequence @, that is
Tp|< - TE.

a

Exercise: Confirm this.

iii) Multiplication operator on L?*[0,1]: Consider the multiplication operator
T, : L*[0,1] — L?[0, 1] given by

T.f =af, fe€L?0,1],

for some fixed function a € C[0, 1]. Its adjoint is the multiplication operator
given by the conjugate function @, that is 7 = 7. To see this, observe
that

1 L 1T
(Tufog) = / a(t) f(£)g (D) dt = / F(OyaDg(t) dt = (f.ag) = (f. Txg) .

iv) Matrices: Consider C™ with the standard inner product
(@y) =z g+ +agn =27,
and let T : C™ — C" be the linear map given by matrix multiplication
Tx = Az, xe€C"
for some fixed, n x n matrix A. Then the adjoint T* of T is given by
T x = ZTx, xeC™.
To see this, observe that
(Ta,y) = (Az,y) = (Az)T

<

=zTATg= xTﬂ = <x,ZTy> )

Certain classes of bounded linear operators of great practical importance can be
defined by the use of adjoint operators as follows.

Definition 1. A bounded linear operator T' : X — X on a Hilbert space X
is said to be

i) normal if T*T = TT™*.
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ii) wunitary if T is bijective and T* = T—1. We then have
™T=TT"=1.

iil) self-adjoint or Hermitian if T = T*.

Example 4. i) Multiplication operator on *: Recall the multiplication op-
erator T, on £2, defined for some fixed a € £>° by

T.x = (ajz))jen, € L2
This is a normal operator, since it follows from 7' = T that
TyT, =TT, =Tqp-
We see that it is a unitary operator if and only if
la| = (|a1], |az], |as],...) = (1,1,1,...).

For instance, T, is unitary if

a=(1,i,—1,—i,...) = (i*),.
Moreover, we see that Ty, is self-adjoint if and only if a is real-valued, since

Tr=Tz=1T,

only in this case.

ii) Shift operator on ¢?: The right shift operator R on ¢2 is not normal. To
see this, observe that

R*Rx = LRx = L(0, 21, 22,23, ...) = (x1,x2,23,...) = Iz,
but

RR*x = RLx = R(x2,23,%4,...) = (0,29, 3,24, ...) # I

Example 5. Consider R™ with the standard inner product
(T,y) =z1y1 + ... + Ty = 2y,
and let T' : R™ — R”™ be the linear map given by matrix multiplication
Tx = Az, zeR"
for some real-valued fixed, n x n matrix A. Then following Example 3iv), the
adjoint T™ of T is given by
T'x=A"z, zeR"

Consequently, we see that the matrix A is

o T is self-adjoint if the matrix A is symmetric, meaning AT = A.
e T is unitary if the matrix A is invertible and orthogonal, meaning A7 =
AL

We list certain properties of unitary operators.

Lemma 6. Let S and T be two unitary operators on a Hilbert space X. We
then have:

i) S is isometric; ||Sz|| = ||z| for all z € X. Thus ||S|| =1 for X # {0}.
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ii) The composition operators ST and T'S are unitary.

iii) The identity operator I is unitary.

Proof. i) We observe that
|Sz||* = (Sx, Sx) = (x, S*Sx) = (x, Iz) = ||z|*.
ii) We have
(ST)*(ST) = T*S*ST = T*IT = T*T = I,
and by an equivalent calculation one can verify that (ST)(ST)* = I.
iii) It is clear that I* = I (i.e. the identity operator is also self-adjoint), since
(Iz,y) = (z,y) = (z,ly), forallz,yeX.

It immediately follows that I*I = I1* = 1.
|

We close our discussion of adjoint operators with certain useful relations between
the kernel and range of an operator and its adjoint.

Proposition 7. Let T be a bounded linear operator on a Hilbert space X.
We then have

i) ran(7T) = ker(T*)* ;
ii) ker(T) = ran(T*)*.
Equivalently, we have
ran(T*) = ker(T)*  and  ker(T*) = ran(T)*,

and consequently

X =ker T @ ran(T™).

Proof. i) Showing ran(T) C ker(T*)*:
Let y € ran(T). Then y = Tx for some z € X, and for any z € ker(T™),
we get

(y,2) = (Tw,2) = (&, T"2) = (,0) = 0.
This shows that y € ker(T*)*, and thus ran(T) C ker(7*)*. Finally, since
ker(T*)* is closed, we must have ran(T") C ker(7*)*.

—_ S
Showing ker(T*)*+ C ran(T): Let x € ran(T) . Then necessarily = €
ran(T)1, meaning

0=(Ty,z) =(y, T"x), forallyeX.

—
It follows that T*z = 0, so « € ker(T™*). This shows ran(T) C ker(T™).
Taking orthogonal complements, we get

ker(T*)* C ran(T) = ran(T).

ii) Ezercise.
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Corollary 8. Let T be a bounded linear operator on a Hilbert space X. Then
ker(T*) = {0} if and only if ran(T") is dense in X.

Proof. This is immediate from Proposition 7, as we have
X =ker(T*) @ ran(T).
O
This corollary allows one to check if the range of an operator is dense in the space
X by determining the adjoint operator and its kernel. This can be a very useful

strategy in practice, as it is often more difficult to determine the range of an operator
than its kernel.



