ADJOINT OPERATORS

Consider a Hilbert space X over a field $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. In this note we introduce *adjoint operators*, which provide us with an alternative description of bounded linear operators on X. We will see that the existence of so-called adjoints is guaranteed by Riesz' representation theorem.

Theorem 1 (Adjoint operator). Let $T \in \mathcal{B}(X)$ be a bounded linear operator on a Hilbert space X. There exists a unique operator $T^* \in \mathcal{B}(X)$ such that

 $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x, y \in X$.

The operator T^* is called the *adjoint* of T.

Proof. Existence: Fix $y \in X$, and define the map

$$\varphi(x) = \langle Tx, y \rangle, \quad x \in X$$

This is a bounded linear functional on X, as it is easily seen to be linear and

 $|\varphi(x)| = |\langle Tx, y \rangle| \le ||Tx|| ||y|| \le ||T|| ||y|| ||x||.$

By Riesz' representation theorem it follows that there exists a unique element $y^* \in X$ such that

$$\varphi(x) = \langle Tx, y \rangle = \langle x, y^* \rangle$$
 for all $x \in X$.

We thus define $T^*y := y^*$, so by definition T^* satisfies $\langle Tx, y \rangle = \langle x, T^*y \rangle$. It remains to show that T^* is linear, bounded and unique.

Linearity of T^* : We have

$$\begin{split} \langle x, T^*(\alpha y_1 + \beta y_2) \rangle &= \langle Tx, \alpha y_1 + \beta y_2 \rangle \\ &= \overline{\alpha} \langle Tx, y_1 \rangle + \overline{\beta} \langle Tx, y_2 \rangle \\ &= \overline{\alpha} \langle x, T^* y_1 \rangle + \overline{\beta} \langle x, T^* y_2 \rangle \\ &= \langle x, \alpha T^* y_1 + \beta T^* y_2 \rangle \quad \text{for all } x \in X, \end{split}$$

and it follows that

$$T^*(\alpha y_1 + \beta y_2) = \alpha T^* y_1 + \beta T^* y_2.$$

Boundedness of T^* : By the Cauchy-Schwarz inequality, we get

$$\begin{aligned} \|T^*y\|^2 &= \langle T^*y, T^*y \rangle = \langle TT^*y, y \rangle \\ &\leq \|TT^*y\| \|y\| \\ &\leq \|T\| \|T^*y\| \|y\|. \end{aligned}$$

If $||T^*y|| > 0$, we divide by $||T^*y||$ on both sides in the inequality and obtain

$$|T^*y|| \le ||T|| ||y||.$$

This inequality is clearly also satisfied when $||T^*y|| = 0$, so T^* is a bounded operator. Moreover, we have attained the additional information

$$||T^*|| \le ||T||.$$

Uniqueness: Suppose there exists another operator $S \in \mathcal{B}(X)$ such that

 $\langle x, Sy \rangle = \langle x, T^*y \rangle$ for all $x, y \in X$.

Then necessarily, for each $y \in X$, we have

$$\langle x, Sy - T^*y \rangle = 0$$
 for all $x \in X$.

It follows that $Sy = T^*y$ for every $y \in X$, meaning $S = T^*$.

We list and prove some useful properties of adjoints.

Proposition 2. Let X be a Hilbert space, $S : X \to X$ and $T : X \to X$ be bounded linear operators and $\alpha, \beta \in \mathbb{F}$ any two scalars. We then have: i) $(\alpha S + \beta T)^* = \overline{\alpha}S^* + \overline{\beta}T^*$ ii) $(ST)^* = T^*S^*$ iii) $(T^*)^* = T$ iv) $||T^*|| = ||T||$ v) $||TT^*|| = ||T^*T|| = ||T||^2$

Proof. i) and *ii*): *Exercise*.

iii) Fix any $y \in X$. We have

$$\begin{aligned} \langle x, T^{**}y \rangle &= \langle T^*x, y \rangle = \overline{\langle y, T^*x \rangle} \\ &= \overline{\langle Ty, x \rangle} = \langle x, Ty \rangle \end{aligned}$$

for all $x \in X$. It thus follows that $T^{**} = T$.

iv) In the proof of the existence of the adjoint, we established that $||T^*|| \le ||T||$. For the opposite inequality, simply observe that by iii), we have

$$||T|| = ||T^{**}|| \le ||T^*||,$$

and thus $||T^*|| = ||T||$.

v): Exercise on Problem set 11.

Example 3. i) Left and right shift operators: Consider the right shift operator R on ℓ^2 , given by

$$Rx = (0, x_1, x_2, x_3, \ldots), \quad x = (x_j)_{j \in \mathbb{N}} \in \ell^2.$$

Its adjoint is the left shift operator L, given by

$$Lx = (x_2, x_3, x_4, \ldots)$$

To see this, observe that

$$\langle Rx, y \rangle = \langle (0, x_1, x_2, x_3, \ldots), (y_1, y_2, y_3, \ldots) \rangle$$

= $x_1 \overline{y_2} + x_2 \overline{y_3} + x_3 \overline{y_4} + \ldots$
= $\langle (x_1, x_2, x_3, \ldots), (y_2, y_3, y_4, \ldots) \rangle = \langle x, Ly \rangle$

for any $x, y \in \ell^2$. Thus, the operator R^* satisfying $\langle Rx, y \rangle = \langle x, R^*y \rangle$ for all $x, y \in \ell^2$ is $R^* = L$.

ii) Multiplication operator on $\ell^2\colon$ Consider the multiplication operator $T_a:\ell^2\to\ell^2$ given by

$$T_a x = (a_j x_j)_{j \in \mathbb{N}}, \quad x = (x_j)_{j \in \mathbb{N}} \in \ell^2,$$

for some fixed $a \in \ell^{\infty}$. The adjoint of T_a is the multiplication operator for the conjugate sequence \overline{a} , that is

$$T_a^* = T_{\overline{a}}.$$

Exercise: Confirm this.

iii) Multiplication operator on $L^2[0,1]$: Consider the multiplication operator $T_a: L^2[0,1] \to L^2[0,1]$ given by

$$T_a f = af, \quad f \in L^2[0,1],$$

for some fixed function $a \in C[0, 1]$. Its adjoint is the multiplication operator given by the conjugate function \overline{a} , that is $T_a^* = T_{\overline{a}}$. To see this, observe that

$$\langle T_a f, g \rangle = \int_0^1 a(t) f(t) \overline{g(t)} \, dt = \int_0^1 f(t) \overline{\overline{a(t)}g(t)} \, dt = \langle f, \overline{a}g \rangle = \langle f, T_{\overline{a}}g \rangle.$$

iv) Matrices: Consider \mathbb{C}^n with the standard inner product

$$\langle x, y \rangle = x_1 \overline{y_1} + \ldots + x_n \overline{y_n} = x^\top \overline{y},$$

and let $T : \mathbb{C}^n \to \mathbb{C}^n$ be the linear map given by matrix multiplication

$$Tx = Ax, \quad x \in \mathbb{C}^n$$

for some fixed, $n \times n$ matrix A. Then the adjoint T^* of T is given by

$$T^*x = \overline{A}^\top x, \quad x \in \mathbb{C}^n$$

To see this, observe that

Certain classes of bounded linear operators of great practical importance can be defined by the use of adjoint operators as follows.

Definition 1. A bounded linear operator $T : X \to X$ on a Hilbert space X is said to be

i) normal if $T^*T = TT^*$.

ADJOINT OPERATORS

ii) unitary if T is bijective and $T^* = T^{-1}$. We then have

 $T^*T = TT^* = I.$

iii) self-adjoint or Hermitian if $T = T^*$.

Example 4. i) Multiplication operator on ℓ^2 : Recall the multiplication operator T_a on ℓ^2 , defined for some fixed $a \in \ell^{\infty}$ by

 $T_a x = (a_j x_j)_{j \in \mathbb{N}}, \quad x \in \ell^2.$

This is a normal operator, since it follows from $T_a^* = T_{\overline{a}}$ that

$$T_a^* T_a = T_a T_a^* = T_{|a|^2}.$$

We see that it is a unitary operator if and only if

$$|a| = (|a_1|, |a_2|, |a_3|, \ldots) = (1, 1, 1, \ldots).$$

For instance, T_a is unitary if

$$a = (1, i, -1, -i, \ldots) = (i^k)_{k=0}^{\infty}.$$

Moreover, we see that T_a is self-adjoint if and only if a is real-valued, since

$$T_a^* = T_{\overline{a}} = T_a$$

only in this case.

ii) Shift operator on ℓ^2 : The right shift operator R on ℓ^2 is not normal. To see this, observe that

$$R^*Rx = LRx = L(0, x_1, x_2, x_3, \ldots) = (x_1, x_2, x_3, \ldots) = Ix,$$

but

$$RR^*x = RLx = R(x_2, x_3, x_4, \ldots) = (0, x_2, x_3, x_4, \ldots) \neq Ix.$$

Example 5. Consider \mathbb{R}^n with the standard inner product

$$\langle x, y \rangle = x_1 y_1 + \ldots + x_n y_n = x^{\top} y,$$

and let $T : \mathbb{R}^n \to \mathbb{R}^n$ be the linear map given by matrix multiplication

$$Tx = Ax, \quad x \in \mathbb{R}^n$$

for some real-valued fixed, $n \times n$ matrix A. Then following Example 3iv), the adjoint T^* of T is given by

$$T^*x = A^\top x, \quad x \in \mathbb{R}^n.$$

Consequently, we see that the matrix A is

- T is self-adjoint if the matrix A is symmetric, meaning $A^T = A$.
- T is unitary if the matrix A is invertible and orthogonal, meaning $A^T = A^{-1}$.

We list certain properties of unitary operators.

Lemma 6. Let S and T be two unitary operators on a Hilbert space X. We then have:

i) S is isometric; ||Sx|| = ||x|| for all $x \in X$. Thus ||S|| = 1 for $X \neq \{0\}$.

4

- ii) The composition operators ST and TS are unitary.
- iii) The identity operator I is unitary.
- *Proof.* i) We observe that

$$||Sx||^2 = \langle Sx, Sx \rangle = \langle x, S^*Sx \rangle = \langle x, Ix \rangle = ||x||^2.$$

ii) We have

$$(ST)^*(ST) = T^*S^*ST = T^*IT = T^*T = I,$$

- and by an equivalent calculation one can verify that $(ST)(ST)^* = I$.
- iii) It is clear that $I^* = I$ (i.e. the identity operator is also self-adjoint), since

$$\langle Ix, y \rangle = \langle x, y \rangle = \langle x, Iy \rangle$$
, for all $x, y \in X$.

It immediately follows that $I^*I = II^* = I$.

We close our discussion of adjoint operators with certain useful relations between the kernel and range of an operator and its adjoint.

Proposition 7. Let T be a bounded linear operator on a Hilbert space X. We then have i) $\overline{\operatorname{ran}(T)} = \ker(T^*)^{\perp}$; ii) $\ker(T) = \operatorname{ran}(T^*)^{\perp}$. Equivalently, we have $\overline{\operatorname{ran}(T^*)} = \ker(T)^{\perp}$ and $\ker(T^*) = \operatorname{ran}(T)^{\perp}$, and consequently $X = \ker T \oplus \overline{\operatorname{ran}(T^*)}$.

Proof. i) Showing $\overline{\operatorname{ran}(T)} \subseteq \ker(T^*)^{\perp}$:

Let $y \in \operatorname{ran}(T)$. Then y = Tx for some $x \in X$, and for any $z \in \ker(T^*)$, we get

 $\langle y, z \rangle = \langle Tx, z \rangle = \langle x, T^*z \rangle = \langle x, 0 \rangle = 0.$

This shows that $y \in \ker(T^*)^{\perp}$, and thus $\operatorname{ran}(T) \subseteq \ker(T^*)^{\perp}$. Finally, since $\ker(T^*)^{\perp}$ is closed, we must have $\overline{\operatorname{ran}(T)} \subseteq \ker(T^*)^{\perp}$.

Showing $\ker(T^*)^{\perp} \subseteq \overline{\operatorname{ran}(T)}$: Let $x \in \overline{\operatorname{ran}(T)}^{\perp}$. Then necessarily $x \in \operatorname{ran}(T)^{\perp}$, meaning

$$0 = \langle Ty, x \rangle = \langle y, T^*x \rangle, \quad \text{ for all } y \in X.$$

It follows that $T^*x = 0$, so $x \in \ker(T^*)$. This shows $\overline{\operatorname{ran}(T)}^{\perp} \subseteq \ker(T^*)$. Taking orthogonal complements, we get

$$\ker(T^*)^{\perp} \subseteq \overline{\operatorname{ran}(T)}^{\perp\perp} = \overline{\operatorname{ran}(T)}$$

ii) Exercise.

Corollary 8. Let T be a bounded linear operator on a Hilbert space X. Then $ker(T^*) = \{0\}$ if and only if ran(T) is dense in X.

Proof. This is immediate from Proposition 7, as we have

 $X = \ker(T^*) \oplus \overline{\operatorname{ran}(T)}.$

This corollary allows one to check if the range of an operator is dense in the space X by determining the adjoint operator and its kernel. This can be a very useful strategy in practice, as it is often more difficult to determine the range of an operator than its kernel.