
ADJOINT OPERATORS

Consider a Hilbert space X over a field F ∈ {R,C}. In this note we introduce
adjoint operators, which provide us with an alternative description of bounded linear
operators on X. We will see that the existence of so-called adjoints is guaranteed
by Riesz’ representation theorem.

Theorem 1 (Adjoint operator). Let T ∈ B(X) be a bounded linear operator
on a Hilbert space X. There exists a unique operator T ∗ ∈ B(X) such that

〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ X.
The operator T ∗ is called the adjoint of T .

Proof. Existence: Fix y ∈ X, and define the map

ϕ(x) = 〈Tx, y〉 , x ∈ X.

This is a bounded linear functional on X, as it is easily seen to be linear and

|ϕ(x)| = | 〈Tx, y〉 | ≤ ‖Tx‖‖y‖ ≤ ‖T‖‖y‖‖x‖.

By Riesz’ representation theorem it follows that there exists a unique element y∗ ∈
X such that

ϕ(x) = 〈Tx, y〉 = 〈x, y∗〉 for all x ∈ X.
We thus define T ∗y := y∗, so by definition T ∗ satisfies 〈Tx, y〉 = 〈x, T ∗y〉. It
remains to show that T ∗ is linear, bounded and unique.

Linearity of T ∗: We have

〈x, T ∗(αy1 + βy2)〉 = 〈Tx, αy1 + βy2〉
= α〈Tx, y1〉+ β〈Tx, y2〉
= α〈x, T ∗y1〉+ β〈x, T ∗y2〉
= 〈x, αT ∗y1 + βT ∗y2〉 for all x ∈ X,

and it follows that

T ∗(αy1 + βy2) = αT ∗y1 + βT ∗y2.

Boundedness of T ∗: By the Cauchy-Schwarz inequality, we get

‖T ∗y‖2 = 〈T ∗y, T ∗y〉 = 〈TT ∗y, y〉
≤ ‖TT ∗y‖‖y‖
≤ ‖T‖‖T ∗y‖‖y‖.

If ‖T ∗y‖ > 0, we divide by ‖T ∗y‖ on both sides in the inequality and obtain

‖T ∗y‖ ≤ ‖T‖‖y‖.
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This inequality is clearly also satisfied when ‖T ∗y‖ = 0, so T ∗ is a bounded operator.
Moreover, we have attained the additional information

‖T ∗‖ ≤ ‖T‖.

Uniqueness: Suppose there exists another operator S ∈ B(X) such that

〈x, Sy〉 = 〈x, T ∗y〉 for all x, y ∈ X.

Then necessarily, for each y ∈ X, we have

〈x, Sy − T ∗y〉 = 0 for all x ∈ X.

It follows that Sy = T ∗y for every y ∈ X, meaning S = T ∗. �

We list and prove some useful properties of adjoints.

Proposition 2. Let X be a Hilbert space, S : X → X and T : X → X be
bounded linear operators and α, β ∈ F any two scalars. We then have:

i) (αS + βT )∗ = αS∗ + βT ∗

ii) (ST )∗ = T ∗S∗

iii) (T ∗)∗ = T

iv) ‖T ∗‖ = ‖T‖

v) ‖TT ∗‖ = ‖T ∗T‖ = ‖T‖2

Proof. i) and ii): Exercise.

iii) Fix any y ∈ X. We have

〈x, T ∗∗y〉 = 〈T ∗x, y〉 = 〈y, T ∗x〉

= 〈Ty, x〉 = 〈x, Ty〉

for all x ∈ X. It thus follows that T ∗∗ = T .

iv) In the proof of the existence of the adjoint, we established that ‖T ∗‖ ≤ ‖T‖.
For the opposite inequality, simply observe that by iii), we have

‖T‖ = ‖T ∗∗‖ ≤ ‖T ∗‖,

and thus ‖T ∗‖ = ‖T‖.

v): Exercise on Problem set 11. �

Example 3. i) Left and right shift operators: Consider the right shift oper-
ator R on `2, given by

Rx = (0, x1, x2, x3, . . .), x = (xj)j∈N ∈ `2.

Its adjoint is the left shift operator L, given by

Lx = (x2, x3, x4, . . .).
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To see this, observe that

〈Rx, y〉 = 〈(0, x1, x2, x3, . . .), (y1, y2, y3, . . .)〉
= x1y2 + x2y3 + x3y4 + . . .

= 〈(x1, x2, x3, . . .), (y2, y3, y4, . . .)〉 = 〈x, Ly〉

for any x, y ∈ `2. Thus, the operator R∗ satisfying 〈Rx, y〉 = 〈x,R∗y〉 for
all x, y ∈ `2 is R∗ = L.

ii) Multiplication operator on `2: Consider the multiplication operator Ta :
`2 → `2 given by

Tax = (ajxj)j∈N, x = (xj)j∈N ∈ `2,
for some fixed a ∈ `∞. The adjoint of Ta is the multiplication operator for
the conjugate sequence a, that is

T ∗a = Ta.

Exercise: Confirm this.

iii) Multiplication operator on L2[0, 1]: Consider the multiplication operator
Ta : L2[0, 1]→ L2[0, 1] given by

Taf = af, f ∈ L2[0, 1],

for some fixed function a ∈ C[0, 1]. Its adjoint is the multiplication operator
given by the conjugate function a, that is T ∗a = Ta. To see this, observe
that

〈Taf, g〉 =

∫ 1

0

a(t)f(t)g(t) dt =

∫ 1

0

f(t)a(t)g(t) dt = 〈f, ag〉 = 〈f, Tag〉 .

iv) Matrices: Consider Cn with the standard inner product

〈x, y〉 = x1y1 + . . .+ xnyn = x>y,

and let T : Cn → Cn be the linear map given by matrix multiplication

Tx = Ax, x ∈ Cn,

for some fixed, n× n matrix A. Then the adjoint T ∗ of T is given by

T ∗x = A
>
x, x ∈ Cn.

To see this, observe that

〈Tx, y〉 = 〈Ax, y〉 = (Ax)>y

= x>A>y = x>A
>
y =

〈
x,A

>
y
〉
.

Certain classes of bounded linear operators of great practical importance can be
defined by the use of adjoint operators as follows.

Definition 1. A bounded linear operator T : X → X on a Hilbert space X
is said to be

i) normal if T ∗T = TT ∗.
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ii) unitary if T is bijective and T ∗ = T−1. We then have

T ∗T = TT ∗ = I.

iii) self-adjoint or Hermitian if T = T ∗.

Example 4. i) Multiplication operator on `2: Recall the multiplication op-
erator Ta on `2, defined for some fixed a ∈ `∞ by

Tax = (ajxj)j∈N, x ∈ `2.
This is a normal operator, since it follows from T ∗a = Ta that

T ∗aTa = TaT
∗
a = T|a|2 .

We see that it is a unitary operator if and only if

|a| = (|a1|, |a2|, |a3|, . . .) = (1, 1, 1, . . .).

For instance, Ta is unitary if

a = (1, i,−1,−i, . . .) = (ik)∞k=0.

Moreover, we see that Ta is self-adjoint if and only if a is real-valued, since

T ∗a = Ta = Ta

only in this case.

ii) Shift operator on `2: The right shift operator R on `2 is not normal. To
see this, observe that

R∗Rx = LRx = L(0, x1, x2, x3, . . .) = (x1, x2, x3, . . .) = Ix,

but

RR∗x = RLx = R(x2, x3, x4, . . .) = (0, x2, x3, x4, . . .) 6= Ix.

Example 5. Consider Rn with the standard inner product

〈x, y〉 = x1y1 + . . .+ xnyn = x>y,

and let T : Rn → Rn be the linear map given by matrix multiplication

Tx = Ax, x ∈ Rn,

for some real-valued fixed, n × n matrix A. Then following Example 3iv), the
adjoint T ∗ of T is given by

T ∗x = A>x, x ∈ Rn.

Consequently, we see that the matrix A is

• T is self-adjoint if the matrix A is symmetric, meaning AT = A.
• T is unitary if the matrix A is invertible and orthogonal, meaning AT =
A−1.

We list certain properties of unitary operators.

Lemma 6. Let S and T be two unitary operators on a Hilbert space X. We
then have:

i) S is isometric; ‖Sx‖ = ‖x‖ for all x ∈ X. Thus ‖S‖ = 1 for X 6= {0}.
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ii) The composition operators ST and TS are unitary.

iii) The identity operator I is unitary.

Proof. i) We observe that

‖Sx‖2 = 〈Sx, Sx〉 = 〈x, S∗Sx〉 = 〈x, Ix〉 = ‖x‖2.

ii) We have

(ST )∗(ST ) = T ∗S∗ST = T ∗IT = T ∗T = I,

and by an equivalent calculation one can verify that (ST )(ST )∗ = I.

iii) It is clear that I∗ = I (i.e. the identity operator is also self-adjoint), since

〈Ix, y〉 = 〈x, y〉 = 〈x, Iy〉 , for all x, y ∈ X.
It immediately follows that I∗I = II∗ = I.

�

We close our discussion of adjoint operators with certain useful relations between
the kernel and range of an operator and its adjoint.

Proposition 7. Let T be a bounded linear operator on a Hilbert space X.
We then have

i) ran(T ) = ker(T ∗)⊥ ;

ii) ker(T ) = ran(T ∗)⊥.

Equivalently, we have

ran(T ∗) = ker(T )⊥ and ker(T ∗) = ran(T )⊥,

and consequently
X = kerT ⊕ ran(T ∗).

Proof. i) Showing ran(T ) ⊆ ker(T ∗)⊥:
Let y ∈ ran(T ). Then y = Tx for some x ∈ X, and for any z ∈ ker(T ∗),

we get

〈y, z〉 = 〈Tx, z〉 = 〈x, T ∗z〉 = 〈x, 0〉 = 0.

This shows that y ∈ ker(T ∗)⊥, and thus ran(T ) ⊆ ker(T ∗)⊥. Finally, since

ker(T ∗)⊥ is closed, we must have ran(T ) ⊆ ker(T ∗)⊥.

Showing ker(T ∗)⊥ ⊆ ran(T ): Let x ∈ ran(T )
⊥

. Then necessarily x ∈
ran(T )⊥, meaning

0 = 〈Ty, x〉 = 〈y, T ∗x〉 , for all y ∈ X.

It follows that T ∗x = 0, so x ∈ ker(T ∗). This shows ran(T )
⊥
⊆ ker(T ∗).

Taking orthogonal complements, we get

ker(T ∗)⊥ ⊆ ran(T )
⊥⊥

= ran(T ).

ii) Exercise.
�
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Corollary 8. Let T be a bounded linear operator on a Hilbert space X. Then
ker(T ∗) = {0} if and only if ran(T ) is dense in X.

Proof. This is immediate from Proposition 7, as we have

X = ker(T ∗)⊕ ran(T ).

�

This corollary allows one to check if the range of an operator is dense in the space
X by determining the adjoint operator and its kernel. This can be a very useful
strategy in practice, as it is often more difficult to determine the range of an operator
than its kernel.


