ADJOINT OPERATORS

Consider a Hilbert space X over a field $F \in \{ \mathbb{R}, \mathbb{C} \}$. In this note we introduce *adjoint operators*, which provide us with an alternative description of bounded linear operators on X. We will see that the existence of so-called adjoints is guaranteed by Riesz’ representation theorem.

Theorem 1 (Adjoint operator). Let $T \in \mathcal{B}(X)$ be a bounded linear operator on a Hilbert space X. There exists a unique operator $T^* \in \mathcal{B}(X)$ such that
\[
\langle Tx, y \rangle = \langle x, T^*y \rangle \quad \text{for all } x, y \in X.
\]

The operator T^* is called the *adjoint* of T.

Proof. Existence: Fix $y \in X$, and define the map
\[
\varphi(x) = \langle Tx, y \rangle, \quad x \in X.
\]
This is a bounded linear functional on X, as it is easily seen to be linear and
\[
|\varphi(x)| = |\langle Tx, y \rangle| \leq \|Tx\|\|y\| \leq \|T\|\|y\||x|.
\]
By Riesz’ representation theorem it follows that there exists a unique element $y^* \in X$ such that
\[
\varphi(x) = \langle Tx, y \rangle = \langle x, y^* \rangle \quad \text{for all } x \in X.
\]
We thus define $T^*y := y^*$, so by definition T^* satisfies $\langle Tx, y \rangle = \langle x, T^*y \rangle$. It remains to show that T^* is linear, bounded and unique.

Linearity of T^*: We have
\[
\langle x, T^* (\alpha y_1 + \beta y_2) \rangle = \langle Tx, \alpha y_1 + \beta y_2 \rangle \\
= \alpha \langle Tx, y_1 \rangle + \beta \langle Tx, y_2 \rangle \\
= \alpha \langle x, T^*y_1 \rangle + \beta \langle x, T^*y_2 \rangle \\
= \langle x, \alpha T^*y_1 + \beta T^*y_2 \rangle \quad \text{for all } x \in X,
\]
and it follows that
\[
T^* (\alpha y_1 + \beta y_2) = \alpha T^*y_1 + \beta T^*y_2.
\]

Boundedness of T^*: By the Cauchy-Schwarz inequality, we get
\[
\|T^*y\|^2 = \langle T^*y, T^*y \rangle = \langle TT^*y, y \rangle \\
\leq \|TT^*y\|\|y\| \\
\leq \|T\|\|T^*y\|\|y\|.
\]
If $\|T^*y\| > 0$, we divide by $\|T^*y\|$ on both sides in the inequality and obtain
\[
\|T^*y\| \leq \|T\|\|y\|.
\]
This inequality is clearly also satisfied when \(\|T^*y\| = 0 \), so \(T^* \) is a bounded operator. Moreover, we have attained the additional information
\[
\|T^*\| \leq \|T\|.
\]

Uniqueness: Suppose there exists another operator \(S \in \mathcal{B}(X) \) such that
\[
\langle x, Sy \rangle = \langle x, T^*y \rangle \quad \text{for all } x, y \in X.
\]
Then necessarily, for each \(y \in X \), we have
\[
\langle x, Sy - T^*y \rangle = 0 \quad \text{for all } x \in X.
\]
It follows that \(Sy = T^*y \) for every \(y \in X \), meaning \(S = T^* \). \(\square \)

We list and prove some useful properties of adjoints.

Proposition 2. Let \(X \) be a Hilbert space, \(S : X \to X \) and \(T : X \to X \) be bounded linear operators and \(\alpha, \beta \in \mathbb{F} \) any two scalars. We then have:

i) \((\alpha S + \beta T)^* = \alpha S^* + \beta T^* \)

ii) \((ST)^* = T^* S^* \)

iii) \((T^*)^* = T \)

iv) \(\|T^*\| = \|T\| \)

v) \(\|TT^*\| = \|T^*T\| = \|T\|^2 \)

Proof. i) and ii): Exercise.

iii) Fix any \(y \in X \). We have
\[
\langle x, T^{**}y \rangle = \langle T^*x, y \rangle = \langle y, T^*x \rangle = \langle \overline{y}, x \rangle = \langle x, Ty \rangle
\]
for all \(x \in X \). It thus follows that \(T^{**} = T \).

iv) In the proof of the existence of the adjoint, we established that \(\|T^*\| \leq \|T\| \).
For the opposite inequality, simply observe that by iii), we have
\[
\|T\| = \|T^{**}\| \leq \|T^*\|
\]
and thus \(\|T^*\| = \|T\| \).

v): Exercise on Problem set 11. \(\square \)

Example 3.

i) **Left and right shift operators:** Consider the right shift operator \(R \) on \(\ell^2 \), given by
\[
Rx = (0, x_1, x_2, x_3, \ldots), \quad x = (x_j)_{j \in \mathbb{N}} \in \ell^2.
\]

Its adjoint is the left shift operator \(L \), given by
\[
Lx = (x_2, x_3, x_4, \ldots).
\]
To see this, observe that
\[\langle Rx, y \rangle = \langle (0, x_1, x_2, x_3, \ldots), (y_1, y_2, y_3, \ldots) \rangle = x_1 y_2 + x_2 y_3 + x_3 y_4 + \ldots = \langle (x_1, x_2, x_3, \ldots), (y_2, y_3, y_4, \ldots) \rangle = \langle x, Ly \rangle \]
for any \(x, y \in \ell^2 \). Thus, the operator \(R^* \) satisfying \(\langle Rx, y \rangle = \langle x, R^* y \rangle \) for all \(x, y \in \ell^2 \) is \(R^* = L \).

ii) Multiplication operator on \(\ell^2 \): Consider the multiplication operator \(T_a : \ell^2 \to \ell^2 \) given by
\[T_a x = (a_j x_j)_{j \in \mathbb{N}}, \quad x = (x_j)_{j \in \mathbb{N}} \in \ell^2, \]
for some fixed \(a \in \ell^\infty \). The adjoint of \(T_a \) is the multiplication operator for the conjugate sequence \(\overline{a} \), that is \(T_a^* = T_{\overline{a}} \). Exercise: Confirm this.

iii) Multiplication operator on \(L^2[0,1] \): Consider the multiplication operator \(T_a : L^2[0,1] \to L^2[0,1] \) given by
\[T_a f = a f, \quad f \in L^2[0,1], \]
for some fixed function \(a \in C[0,1] \). Its adjoint is the multiplication operator given by the conjugate function \(\overline{a} \), that is \(T_a^* = T_{\overline{a}} \). To see this, observe that
\[\langle T_a f, g \rangle = \int_0^1 a(t) f(t) \overline{g(t)} \, dt = \int_0^1 \overline{f(t) a(t) g(t)} \, dt = \langle f, \overline{a}g \rangle = \langle f, T_{\overline{a}} g \rangle. \]

iv) Matrices: Consider \(\mathbb{C}^n \) with the standard inner product
\[\langle x, y \rangle = x_1 \overline{y_1} + \ldots + x_n \overline{y_n} = x^\top \overline{y}, \]
and let \(T : \mathbb{C}^n \to \mathbb{C}^n \) be the linear map given by matrix multiplication
\[Tx = Ax, \quad x \in \mathbb{C}^n, \]
for some fixed, \(n \times n \) matrix \(A \). Then the adjoint \(T^* \) of \(T \) is given by
\[T^* x = \overline{A}^\top x, \quad x \in \mathbb{C}^n. \]
To see this, observe that
\[\langle Tx, y \rangle = \langle Ax, y \rangle = (Ax)^\top \overline{y} = x^\top A^\top \overline{y} = \langle x, \overline{A}^\top y \rangle. \]

Certain classes of bounded linear operators of great practical importance can be defined by the use of adjoint operators as follows.

Definition 1. A bounded linear operator \(T : X \to X \) on a Hilbert space \(X \) is said to be
i) **normal** if \(T^* T = TT^* \).
ii) unitary if T is bijective and $T^* = T^{-1}$. We then have
\[T^*T = TT^* = I. \]

iii) self-adjoint or Hermitian if $T = T^*$.

Example 4.

i) Multiplication operator on ℓ^2: Recall the multiplication operator T_a on ℓ^2, defined for some fixed $a \in \ell^\infty$ by
\[T_ax = (a_jx_j)_{j \in \mathbb{N}}, \quad x \in \ell^2. \]
This is a normal operator, since it follows from $T_a^* = T_a$ that
\[T_a^*T_a = T_aT_a^* = T_{|a|^2}. \]
We see that it is a unitary operator if and only if
\[|a| = (|a_1|, |a_2|, |a_3|, \ldots) = (1, 1, 1, \ldots). \]
For instance, T_a is unitary if
\[a = (1, i, -1, -i, \ldots) = (i^k)_{k=0}^\infty. \]
Moreover, we see that T_a is self-adjoint if and only if a is real-valued, since
\[T_a^* = T_a = T_{|a|^2}. \]

ii) Shift operator on ℓ^2: The right shift operator R on ℓ^2 is not normal. To see this, observe that
\[R^*Rx = L(0, x_1, x_2, x_3, \ldots) = (x_1, x_2, x_3, \ldots) =Ix, \]
but
\[RR^*x = RLx = R(x_2, x_3, x_4, \ldots) = (0, x_2, x_3, x_4, \ldots) \neq Ix. \]

Example 5. Consider \mathbb{R}^n with the standard inner product
\[\langle x, y \rangle = x_1y_1 + \ldots + x_ny_n = x^\top y, \]
and let $T : \mathbb{R}^n \to \mathbb{R}^n$ be the linear map given by matrix multiplication
\[Tx = Ax, \quad x \in \mathbb{R}^n, \]
for some real-valued fixed, $n \times n$ matrix A. Then following Example 3iv), the adjoint T^* of T is given by
\[T^*x = A^\top x, \quad x \in \mathbb{R}^n. \]
Consequently, we see that the matrix A is
- T is self-adjoint if the matrix A is symmetric, meaning $A^T = A$.
- T is unitary if the matrix A is invertible and orthogonal, meaning $A^T = A^{-1}$.

We list certain properties of unitary operators.

Lemma 6. Let S and T be two unitary operators on a Hilbert space X. We then have:

i) S is isometric; $\|Sx\| = \|x\|$ for all $x \in X$. Thus $\|S\| = 1$ for $X \neq \{0\}$.

ii) The composition operators \(ST \) and \(TS \) are unitary.

iii) The identity operator \(I \) is unitary.

Proof.

i) We observe that
\[
\|Sx\|^2 = \langle Sx, Sx \rangle = \langle x, S^*Sx \rangle = \langle x, Ix \rangle = \|x\|^2.
\]

ii) We have
\[
(ST)^*(ST) = T^*S^*ST = T^*IT = T^*T = I,
\]
and by an equivalent calculation one can verify that \((ST)(ST)^* = I\).

iii) It is clear that \(I^* = I \) (i.e. the identity operator is also self-adjoint), since
\[
\langle Ix, y \rangle = \langle x, y \rangle = \langle x, Iy \rangle,
\]
for all \(x, y \in X \).

It immediately follows that \(I^*I = II^* = I \).

\[\square\]

We close our discussion of adjoint operators with certain useful relations between the kernel and range of an operator and its adjoint.

Proposition 7. Let \(T \) be a bounded linear operator on a Hilbert space \(X \). We then have

i) \(\overline{\text{ran}}(T) = \text{ker}(T^*)^\perp \);

ii) \(\text{ker}(T) = \overline{\text{ran}}(T^*)^\perp \).

Equivalently, we have
\[
\overline{\text{ran}}(T^*) = \text{ker}(T)^\perp \quad \text{and} \quad \text{ker}(T^*) = \overline{\text{ran}}(T)^\perp,
\]
and consequently
\[
X = \text{ker} T \oplus \overline{\text{ran}}(T^*).
\]

Proof.

i) **Showing** \(\overline{\text{ran}}(T) \subseteq \text{ker}(T^*)^\perp \):

Let \(y \in \text{ran}(T) \). Then \(y = Tx \) for some \(x \in X \), and for any \(z \in \text{ker}(T^*) \), we get
\[
\langle y, z \rangle = \langle Tx, z \rangle = \langle x, T^*z \rangle = \langle x, 0 \rangle = 0.
\]
This shows that \(y \in \text{ker}(T^*)^\perp \), and thus \(\text{ran}(T) \subseteq \text{ker}(T^*)^\perp \). Finally, since \(\text{ker}(T^*)^\perp \) is closed, we must have \(\overline{\text{ran}}(T) \subseteq \text{ker}(T^*)^\perp \).

Showing \(\text{ker}(T^*)^\perp \subseteq \overline{\text{ran}}(T) \):

Let \(x \in \overline{\text{ran}}(T)^\perp \). Then necessarily \(x \in \text{ran}(T)^\perp \), meaning
\[
0 = \langle Ty, x \rangle = \langle y, T^*x \rangle,
\]
for all \(y \in X \).

It follows that \(T^*x = 0 \), so \(x \in \text{ker}(T^*) \). This shows \(\overline{\text{ran}}(T)^\perp \subseteq \text{ker}(T^*) \).

Taking orthogonal complements, we get
\[
\text{ker}(T^*)^\perp \subseteq \overline{\text{ran}}(T)^\perp^\perp = \overline{\text{ran}}(T).
\]

ii) **Exercise.**

\[\square\]
Corollary 8. Let T be a bounded linear operator on a Hilbert space X. Then $\ker(T^*) = \{0\}$ if and only if $\text{ran}(T)$ is dense in X.

Proof. This is immediate from Proposition 7, as we have $X = \ker(T^*) \oplus \text{ran}(T)$.

This corollary allows one to check if the range of an operator is dense in the space X by determining the adjoint operator and its kernel. This can be a very useful strategy in practice, as it is often more difficult to determine the range of an operator than its kernel.