ADJOINT OPERATORS

Consider a Hilbert space X over a field $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$. In this note we introduce adjoint operators, which provide us with an alternative description of bounded linear operators on X. We will see that the existence of so-called adjoints is guaranteed by Riesz' representation theorem.

Theorem 1 (Adjoint operator). Let $T \in \mathcal{B}(X)$ be a bounded linear operator on a Hilbert space X. There exists a unique operator $T^{*} \in \mathcal{B}(X)$ such that

$$
\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle \quad \text { for all } x, y \in X
$$

The operator T^{*} is called the adjoint of T.

Proof. Existence: Fix $y \in X$, and define the map

$$
\varphi(x)=\langle T x, y\rangle, \quad x \in X
$$

This is a bounded linear functional on X, as it is easily seen to be linear and

$$
|\varphi(x)|=|\langle T x, y\rangle| \leq\|T x\|\|y\| \leq\|T\|\|y\|\|x\|
$$

By Riesz' representation theorem it follows that there exists a unique element $y^{*} \in$ X such that

$$
\varphi(x)=\langle T x, y\rangle=\left\langle x, y^{*}\right\rangle \quad \text { for all } x \in X
$$

We thus define $T^{*} y:=y^{*}$, so by definition T^{*} satisfies $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$. It remains to show that T^{*} is linear, bounded and unique.

Linearity of T^{*} : We have

$$
\begin{aligned}
\left\langle x, T^{*}\left(\alpha y_{1}+\beta y_{2}\right)\right\rangle & =\left\langle T x, \alpha y_{1}+\beta y_{2}\right\rangle \\
& =\bar{\alpha}\left\langle T x, y_{1}\right\rangle+\bar{\beta}\left\langle T x, y_{2}\right\rangle \\
& =\bar{\alpha}\left\langle x, T^{*} y_{1}\right\rangle+\bar{\beta}\left\langle x, T^{*} y_{2}\right\rangle \\
& =\left\langle x, \alpha T^{*} y_{1}+\beta T^{*} y_{2}\right\rangle \quad \text { for all } x \in X
\end{aligned}
$$

and it follows that

$$
T^{*}\left(\alpha y_{1}+\beta y_{2}\right)=\alpha T^{*} y_{1}+\beta T^{*} y_{2}
$$

Boundedness of T^{*} : By the Cauchy-Schwarz inequality, we get

$$
\begin{aligned}
\left\|T^{*} y\right\|^{2}=\left\langle T^{*} y, T^{*} y\right\rangle & =\left\langle T T^{*} y, y\right\rangle \\
& \leq\left\|T T^{*} y\right\|\|y\| \\
& \leq\|T\|\left\|T^{*} y\right\|\|y\| .
\end{aligned}
$$

If $\left\|T^{*} y\right\|>0$, we divide by $\left\|T^{*} y\right\|$ on both sides in the inequality and obtain

$$
\left\|T^{*} y\right\| \leq\|T\|\|y\| .
$$

This inequality is clearly also satisfied when $\left\|T^{*} y\right\|=0$, so T^{*} is a bounded operator. Moreover, we have attained the additional information

$$
\left\|T^{*}\right\| \leq\|T\|
$$

Uniqueness: Suppose there exists another operator $S \in \mathcal{B}(X)$ such that

$$
\langle x, S y\rangle=\left\langle x, T^{*} y\right\rangle \quad \text { for all } x, y \in X
$$

Then necessarily, for each $y \in X$, we have

$$
\left\langle x, S y-T^{*} y\right\rangle=0 \quad \text { for all } x \in X
$$

It follows that $S y=T^{*} y$ for every $y \in X$, meaning $S=T^{*}$.
We list and prove some useful properties of adjoints.
Proposition 2. Let X be a Hilbert space, $S: X \rightarrow X$ and $T: X \rightarrow X$ be bounded linear operators and $\alpha, \beta \in \mathbb{F}$ any two scalars. We then have:
i) $(\alpha S+\beta T)^{*}=\bar{\alpha} S^{*}+\bar{\beta} T^{*}$
ii) $(S T)^{*}=T^{*} S^{*}$
iii) $\left(T^{*}\right)^{*}=T$
iv) $\left\|T^{*}\right\|=\|T\|$
v) $\left\|T T^{*}\right\|=\left\|T^{*} T\right\|=\|T\|^{2}$

Proof. i) and ii): Exercise.
iii) Fix any $y \in X$. We have

$$
\begin{aligned}
\left\langle x, T^{* *} y\right\rangle & =\left\langle T^{*} x, y\right\rangle=\overline{\left\langle y, T^{*} x\right\rangle} \\
& =\overline{\langle T y, x\rangle}=\langle x, T y\rangle
\end{aligned}
$$

for all $x \in X$. It thus follows that $T^{* *}=T$.
$i v)$ In the proof of the existence of the adjoint, we established that $\left\|T^{*}\right\| \leq\|T\|$. For the opposite inequality, simply observe that by $i i i$), we have

$$
\|T\|=\left\|T^{* *}\right\| \leq\left\|T^{*}\right\|
$$

and thus $\left\|T^{*}\right\|=\|T\|$.
v): Exercise on Problem set 11.

Example 3. i) Left and right shift operators: Consider the right shift operator R on ℓ^{2}, given by

$$
R x=\left(0, x_{1}, x_{2}, x_{3}, \ldots\right), \quad x=\left(x_{j}\right)_{j \in \mathbb{N}} \in \ell^{2} .
$$

Its adjoint is the left shift operator L, given by

$$
L x=\left(x_{2}, x_{3}, x_{4}, \ldots\right)
$$

To see this, observe that

$$
\begin{aligned}
\langle R x, y\rangle & =\left\langle\left(0, x_{1}, x_{2}, x_{3}, \ldots\right),\left(y_{1}, y_{2}, y_{3}, \ldots\right)\right\rangle \\
& =x_{1} \overline{y_{2}}+x_{2} \overline{y_{3}}+x_{3} \overline{y_{4}}+\ldots \\
& =\left\langle\left(x_{1}, x_{2}, x_{3}, \ldots\right),\left(y_{2}, y_{3}, y_{4}, \ldots\right)\right\rangle=\langle x, L y\rangle
\end{aligned}
$$

for any $x, y \in \ell^{2}$. Thus, the operator R^{*} satisfying $\langle R x, y\rangle=\left\langle x, R^{*} y\right\rangle$ for all $x, y \in \ell^{2}$ is $R^{*}=L$.
ii) Multiplication operator on ℓ^{2} : Consider the multiplication operator T_{a} : $\ell^{2} \rightarrow \ell^{2}$ given by

$$
T_{a} x=\left(a_{j} x_{j}\right)_{j \in \mathbb{N}}, \quad x=\left(x_{j}\right)_{j \in \mathbb{N}} \in \ell^{2}
$$

for some fixed $a \in \ell^{\infty}$. The adjoint of T_{a} is the multiplication operator for the conjugate sequence \bar{a}, that is

$$
T_{a}^{*}=T_{\bar{a}}
$$

Exercise: Confirm this.
iii) Multiplication operator on $L^{2}[0,1]$: Consider the multiplication operator $T_{a}: L^{2}[0,1] \rightarrow L^{2}[0,1]$ given by

$$
T_{a} f=a f, \quad f \in L^{2}[0,1]
$$

for some fixed function $a \in C[0,1]$. Its adjoint is the multiplication operator given by the conjugate function \bar{a}, that is $T_{a}^{*}=T_{\bar{a}}$. To see this, observe that
$\left\langle T_{a} f, g\right\rangle=\int_{0}^{1} a(t) f(t) \overline{g(t)} d t=\int_{0}^{1} f(t) \overline{\overline{a(t)} g(t)} d t=\langle f, \bar{a} g\rangle=\left\langle f, T_{\bar{a}} g\right\rangle$.
iv) Matrices: Consider \mathbb{C}^{n} with the standard inner product

$$
\langle x, y\rangle=x_{1} \overline{y_{1}}+\ldots+x_{n} \overline{y_{n}}=x^{\top} \bar{y}
$$

and let $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be the linear map given by matrix multiplication

$$
T x=A x, \quad x \in \mathbb{C}^{n}
$$

for some fixed, $n \times n$ matrix A. Then the adjoint T^{*} of T is given by

$$
T^{*} x=\bar{A}^{\top} x, \quad x \in \mathbb{C}^{n}
$$

To see this, observe that

$$
\begin{aligned}
\langle T x, y\rangle & =\langle A x, y\rangle=(A x)^{\top} \bar{y} \\
& =x^{\top} A^{\top} \bar{y}=x^{\top}{\overline{\bar{A}^{\top}} y}^{\top}=\left\langle x, \bar{A}^{\top} y\right\rangle .
\end{aligned}
$$

Certain classes of bounded linear operators of great practical importance can be defined by the use of adjoint operators as follows.

Definition 1. A bounded linear operator $T: X \rightarrow X$ on a Hilbert space X is said to be
i) normal if $T^{*} T=T T^{*}$.
ii) unitary if T is bijective and $T^{*}=T^{-1}$. We then have

$$
T^{*} T=T T^{*}=I
$$

iii) self-adjoint or Hermitian if $T=T^{*}$.

Example 4. i) Multiplication operator on ℓ^{2} : Recall the multiplication operator T_{a} on ℓ^{2}, defined for some fixed $a \in \ell^{\infty}$ by

$$
T_{a} x=\left(a_{j} x_{j}\right)_{j \in \mathbb{N}}, \quad x \in \ell^{2} .
$$

This is a normal operator, since it follows from $T_{a}^{*}=T_{\bar{a}}$ that

$$
T_{a}^{*} T_{a}=T_{a} T_{a}^{*}=T_{|a|^{2}}
$$

We see that it is a unitary operator if and only if

$$
|a|=\left(\left|a_{1}\right|,\left|a_{2}\right|,\left|a_{3}\right|, \ldots\right)=(1,1,1, \ldots) .
$$

For instance, T_{a} is unitary if

$$
a=(1, i,-1,-i, \ldots)=\left(i^{k}\right)_{k=0}^{\infty} .
$$

Moreover, we see that T_{a} is self-adjoint if and only if a is real-valued, since

$$
T_{a}^{*}=T_{\bar{a}}=T_{a}
$$

only in this case.
ii) Shift operator on ℓ^{2} : The right shift operator R on ℓ^{2} is not normal. To see this, observe that

$$
R^{*} R x=L R x=L\left(0, x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1}, x_{2}, x_{3}, \ldots\right)=I x
$$

but

$$
R R^{*} x=R L x=R\left(x_{2}, x_{3}, x_{4}, \ldots\right)=\left(0, x_{2}, x_{3}, x_{4}, \ldots\right) \neq I x
$$

Example 5. Consider \mathbb{R}^{n} with the standard inner product

$$
\langle x, y\rangle=x_{1} y_{1}+\ldots+x_{n} y_{n}=x^{\top} y
$$

and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the linear map given by matrix multiplication

$$
T x=A x, \quad x \in \mathbb{R}^{n},
$$

for some real-valued fixed, $n \times n$ matrix A. Then following Example 3iv), the adjoint T^{*} of T is given by

$$
T^{*} x=A^{\top} x, \quad x \in \mathbb{R}^{n}
$$

Consequently, we see that the matrix A is

- T is self-adjoint if the matrix A is symmetric, meaning $A^{T}=A$.
- T is unitary if the matrix A is invertible and orthogonal, meaning $A^{T}=$ A^{-1}.

We list certain properties of unitary operators.
Lemma 6. Let S and T be two unitary operators on a Hilbert space X. We then have:
i) S is isometric; $\|S x\|=\|x\|$ for all $x \in X$. Thus $\|S\|=1$ for $X \neq\{0\}$.
ii) The composition operators $S T$ and $T S$ are unitary.
iii) The identity operator I is unitary.

Proof. i) We observe that

$$
\|S x\|^{2}=\langle S x, S x\rangle=\left\langle x, S^{*} S x\right\rangle=\langle x, I x\rangle=\|x\|^{2} .
$$

ii) We have

$$
(S T)^{*}(S T)=T^{*} S^{*} S T=T^{*} I T=T^{*} T=I,
$$

and by an equivalent calculation one can verify that $(S T)(S T)^{*}=I$.
iii) It is clear that $I^{*}=I$ (i.e. the identity operator is also self-adjoint), since

$$
\langle I x, y\rangle=\langle x, y\rangle=\langle x, I y\rangle, \quad \text { for all } x, y \in X
$$

It immediately follows that $I^{*} I=I I^{*}=I$.

We close our discussion of adjoint operators with certain useful relations between the kernel and range of an operator and its adjoint.

Proposition 7. Let T be a bounded linear operator on a Hilbert space X. We then have
i) $\overline{\operatorname{ran}(T)}=\operatorname{ker}\left(T^{*}\right)^{\perp}$;
ii) $\operatorname{ker}(T)=\operatorname{ran}\left(T^{*}\right)^{\perp}$.

Equivalently, we have

$$
\overline{\operatorname{ran}\left(T^{*}\right)}=\operatorname{ker}(T)^{\perp} \quad \text { and } \quad \operatorname{ker}\left(T^{*}\right)=\operatorname{ran}(T)^{\perp}
$$

and consequently

$$
X=\operatorname{ker} T \oplus \overline{\operatorname{ran}\left(T^{*}\right)}
$$

Proof. \quad i) Showing $\overline{\operatorname{ran}(T)} \subseteq \operatorname{ker}\left(T^{*}\right)^{\perp}$:
Let $y \in \operatorname{ran}(T)$. Then $y=T x$ for some $x \in X$, and for any $z \in \operatorname{ker}\left(T^{*}\right)$, we get

$$
\langle y, z\rangle=\langle T x, z\rangle=\left\langle x, T^{*} z\right\rangle=\langle x, 0\rangle=0 .
$$

This shows that $y \in \operatorname{ker}\left(T^{*}\right)^{\perp}$, and thus $\operatorname{ran}(T) \subseteq \operatorname{ker}\left(T^{*}\right)^{\perp}$. Finally, since $\operatorname{ker}\left(T^{*}\right)^{\perp}$ is closed, we must have $\overline{\operatorname{ran}(T)} \subseteq \operatorname{ker}\left(T^{*}\right)^{\perp}$.

Showing $\operatorname{ker}\left(T^{*}\right)^{\perp} \subseteq \overline{\operatorname{ran}(T)}$: Let $x \in \overline{\operatorname{ran}(T)}^{\perp}$. Then necessarily $x \in$ $\operatorname{ran}(T)^{\perp}$, meaning

$$
0=\langle T y, x\rangle=\left\langle y, T^{*} x\right\rangle, \quad \text { for all } y \in X
$$

It follows that $T^{*} x=0$, so $x \in \operatorname{ker}\left(T^{*}\right)$. This shows $\overline{\operatorname{ran}(T)}^{\perp} \subseteq \operatorname{ker}\left(T^{*}\right)$. Taking orthogonal complements, we get

$$
\operatorname{ker}\left(T^{*}\right)^{\perp} \subseteq \overline{\operatorname{ran}(T)}^{\perp \perp}=\overline{\operatorname{ran}(T)}
$$

ii) Exercise.

Corollary 8. Let T be a bounded linear operator on a Hilbert space X. Then $\operatorname{ker}\left(T^{*}\right)=\{0\}$ if and only if $\operatorname{ran}(T)$ is dense in X.

Proof. This is immediate from Proposition 7, as we have

$$
X=\operatorname{ker}\left(T^{*}\right) \oplus \overline{\operatorname{ran}(T)}
$$

This corollary allows one to check if the range of an operator is dense in the space X by determining the adjoint operator and its kernel. This can be a very useful strategy in practice, as it is often more difficult to determine the range of an operator than its kernel.

