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Exercise set 12

Please justify your answers! Note that how you arrive at an answer is more important
than the answer itself.

1 Suppose that v1, . . . , vk are non-zero eigenvectors of an operator T corre-
sponding to distinct eigenvalues λ1, . . . , λk. Show that {v1, . . . vk} is a linearly
independent set.

2 Let T be the shift operator on `2 defined by T (x1, x2, ...) = (0, x1, x2, ...).

1. Show that T has no eigenvalues.
2. Does T ∗ have any eigenvalues?

3 Let U be a n × n matrix with columns u1, ..., un. Show that the following
statements are equivalent:

1. U is unitary.
2. {u1, ..., un} is an orthonormal basis of Cn.

4 Suppose that A and B are unitarily equivalent, meaning that there exists a
unitary matrix U such that

B = U∗AU.

Prove that A is positive definite (semi-definite) if and only if B is positive
definite (semi-definite).

5 Given the matrix

A =

1 2
2 2
2 1

 .

a) Compute the singular value decomposition of A.

b) Use the result of a) to find:
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1. The pseudo-inverse of A.

2. The minimal norm solution of Ax = b for b =

1
2
3

.
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