Please justify your answers! Note that how you arrive at an answer is more important than the answer itself.

1 Suppose that v_{1}, \ldots, v_{k} are non-zero eigenvectors of an operator T corresponding to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$. Show that $\left\{v_{1}, \ldots v_{k}\right\}$ is a linearly independent set.

2 Let T be the shift operator on ℓ^{2} defined by $T\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right)$.

1. Show that T has no eigenvalues.
2. Does T^{*} have any eigenvalues?

3 Let U be a $n \times n$ matrix with columns u_{1}, \ldots, u_{n}. Show that the following statements are equivalent:

1. U is unitary.
2. $\left\{u_{1}, \ldots, u_{n}\right\}$ is an orthonormal basis of \mathbb{C}^{n}.

4 Suppose that A and B are unitarily equivalent, meaning that there exists a unitary matrix U such that

$$
B=U^{*} A U .
$$

Prove that A is positive definite (semi-definite) if and only if B is positive definite (semi-definite).

5 Given the matrix

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 2 \\
2 & 1
\end{array}\right)
$$

a) Compute the singular value decomposition of A.
b) Use the result of a) to find:

1. The pseudo-inverse of A.
2. The minimal norm solution of $A x=b$ for $b=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$.
