
BANACH’S FIXED POINT THEOREM AND APPLICATIONS

Banach’s Fixed Point Theorem, also known as The Contraction Theorem, con-
cerns certain mappings (so-called contractions) of a complete metric space into
itself. It states conditions sufficient for the existence and uniqueness of a fixed
point, which we will see is a point that is mapped to itself. The theorem also gives
an iterative process by which we can obtain approximations to the fixed point along
with error bounds.

Definition 1. A fixed point of a mapping T : X → X of a set X into itself
is an x ∈ X which is mapped onto itself, that is

Tx = x.

Example 1.

i) A translation x→ x+ a in R has no fixed points.
ii) A rotation of the plane has a single fixed point, namely the center of rota-

tion.
iii) The mapping x→ x2 on R has two fixed points; 0 and 1.
iv) The projection (x1, x2) → (x1, 0) on R2 has infinitely many fixed points;

all points of the form (x, 0).

Banach’s Fixed Point Theorem is an existence and uniqueness theorem for fixed
points of certain mappings. As we will see from the proof, it also provides us with
a constructive procedure for getting better and better approximations of the fixed
point. This procedure is called iteration; we start by choosing an arbitrary x0 in a
given set, and calculate recursively a sequence x1, x2, x3, . . . by letting

xn+1 = Txn, n = 0, 1, 2 . . .

Such iteration procedures appear in nearly every branch of applied mathematics,
and Banach’s Fixed Point Theorem is often what guarantees convergence of the
scheme and uniqueness of the solution.

Definition 2. Let (X, d) be a metric space. A mapping T : X → X is called
a contraction on X if there exists a positive constant K < 1 such that

(1) d (T (x), T (y)) ≤ Kd(x, y) for all x, y ∈ X.

Geometrically, this means that the images T (x) and T (y) are closer together than
the points x and y.

Theorem 2 (Banach’s Fixed Point Theorem). Let (X, d) be a complete
metric space and let T : X → X be a contraction on X. Then T has a unique
fixed point x ∈ X (such that T (x) = x).
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Proof. Let us choose any x0 ∈ X, and define the sequence (xn), where

(2) xn+1 = T (xn), n = 1, 2, . . .

Our proof strategy will be to show that 1) this sequence is Cauchy; 2) its limit is a
fixed point of X; and 3) the fixed point is unique.

Step 1: By (1) and (2), we have that

d(xm+1, xm) = d(T (xm), T (xm−1))

≤ Kd(xm, xm−1)

= Kd(T (xm−1), T (xm−2))

≤ K2d(xm−1, xm−2)

...

≤ Kmd(x1, x0).

Hence by the triangle inequality we get (for n ≥ m) that

d(xm, xn) ≤ d(xm, xm+1) + d(xm+1, xm+2) + · · ·+ d(xn−1, xn)

≤ (Km +Km+1 + · · ·+Kn−1)d(x1, x0) = Km 1−Kn−m

1−K
d(x0, x1),

where in the last equality we have used the summation formula for a geometric
series. Since 0 < K < 1, we have 1−Kn−m < 1, and consequently

(3) d(xm, xn) ≤ Km

1−K
d(x1, x0).

Since 0 < K < 1 and d(x0, x1) are fixed, it is clear that we can make d(xm, xn) as
small as we please by choosing m sufficiently large (and n > m). This proves that
(xn) is Cauchy. Finally, since (X, d) is complete, there exists an x ∈ X such that
xn → x.

Step 2: To show that x is a fixed point, we consider the distance d(x, T (x)).
From the triangle inequality and (1), we get

d(x, T (x)) ≤ d(x, xm) + d(xm, T (x))

= d(x, xm) + d(T (xm−1), T (x))

≤ d(x, xm) +Kd(xm−1, x),

and since xn → x it is clear that we can make this distance as small as we please
by choosing m sufficiently large. We conclude that

d(x, T (x)) = 0 ⇒ T (x) = x,

so x ∈ X is a fixed point of T .
Step 3: Suppose there are two fixed points x = T (x) and x̃ = T (x̃). Then from

(1) it follows that

d(x, x̃) = d(T (x), T (x̃)) ≤ Kd(x, x̃),

which implies d(x, x̃) = 0 since 0 < K < 1. Hence x = x̃, and the fixed point x of
T is unique. �

Note that for Banach’s Fixed Point Theorem to hold, it is crucial that T is a
contraction; it is not sufficient that (1) holds for K = 1, i.e. that

d(T (x), T (y)) ≤ d(x, y) for all x, y ∈ X.
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To see this, observe that the maps T1, T2 : R → R given by T1(x) = x + 1 and
T2(x) = x both satisfy (1) with K = 1. The map T1 has no fixed points, whereas
T2 has infinitely many.

Corollary 3 (Iterations and error bounds). The iterative sequence (2) with
arbitrary x0 ∈ X converges (under the assumptions in Banach’s Fixed Point
Theorem) to the unique fixed point x of T . Error estimates are the prior
estimate

(4) d(xm, x) ≤ Km

1−K
d(x0, x1),

and the posterior estimate

(5) d(xm, x) ≤ K

1−K
d(xm−1, xm).

The prior error bound (4) can be used at the beginning of a calculation for esti-
mating the number of steps necessary for obtaining a given accuracy. The posterior
bound (5) can be used at intermediate stages to check whether we are possibly
converging faster than suggested by (4). We see that if two successive iterations
xm and xm+1 = T (xm) are nearly equal, then this guarantees that we are very close
to the true fixed point x.

Proof of Corollary 3. The first statement is obvious from the proof of Banach’s
Fixed Point Theorem. The prior bound (4) follows from (3) by letting n → ∞.
Finally let us establish (5). Since x is a fixed point and T is a contraction, we have

d(xm, x) = d(T (xm−1), T (x))

≤ Kd(xm−1, x)

≤ K (d(xm−1, xm) + d(xm, x)) ,

where in the last step we have used the triangle inequality. Rearranging terms, we
arrive at (5). �

A classical application of Banach’s Fixed Point Theorem is Newton’s method for
finding roots of equations. Starting with a differentiable function f and an initial
guess x0 for a root of f , Newton’s method suggests

(6) xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, 2, . . .

as a sequence of successively better approximations to the true root of f . We look
at a specific example.
Example 4. Consider the equation f(x) = x2 − 3, which we know has two roots,
and let us apply Banach’s Fixed Point Theorem to determine when we can expect
the scheme (6) to converge to x =

√
3. Setting

T (x) := x− f(x)

f ′(x)
= x− x2 − 3

2x
=

1

2
(x+

3

x
),
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we see that T is a map from the closed set [
√

3,∞) into itself. Moreover, a point

x ∈ [
√

3,∞) is a fixed point of T if and only if f(x) = 0. Finally, we observe that

d(T (x), T (y)) = |T (x)− T (y)|

=
1

2

∣∣∣∣(x+
3

x

)
−
(
y +

3

y

)∣∣∣∣
=

1

2
|x− y| ·

∣∣∣∣1− 3

xy

∣∣∣∣
≤ 1

2
|x− y| = 1

2
d(x, y),

for all x, y ∈ [
√

3,∞). Hence, T is a contraction on the complete space
(
[
√

3,∞), | · |
)
,

and by Banach’s Fixed Point Theorem we conclude that the scheme (6) converges

to the root x =
√

3 for any starting point x0 ∈ [
√

3,∞).

In fact, the scheme will converge to x =
√

3 for any starting point x0 ∈ (0,∞);

one can check that for any x0 ∈ (0,
√

3), we have

x1 = T (x0) =
1

2
(x+

3

x
) >
√

3,

and we may therefore use Banach’s Fixed Point Theorem with the “new” starting
point x1.

1. Applications

The most interesting applications of Banach’s Fixed Point Theorem arise in
connection with function spaces. The theorem then yields existence and uniqueness
results for differential and integral equations, as we will now see.

1.1. Application to integral equations. In this section we consider integral
equations of the form

(7) f(x) = λ

∫ b

a

k(x, y)f(y) dy + g(x),

where f : [a, b] → R is an unknown function, k : [a, b] × [a, b] → R is a given
function (called the kernel) and λ is a parameter. Such integral equations can
be considered in various function spaces. In this section we consider (7) only in
(C[a, b], d∞). We assume that g ∈ C[a, b], and that the kernel k is continuous on
the square [a, b]× [a, b].

Theorem 5. The metric space of continuous functions C[a, b] with the uni-
form metric d∞ is complete.

Recall that the uniform metric d∞ is given by

d∞(f, g) = ‖f − g‖∞ = sup
1≤x≤b

|f(x)− g(x)|, f, g ∈ C[a, b].

We will provide a proof of Theorem 5 later in the course.
Equation (7) can be restated as T (f) = f , where

(8) T (f)(x) = g(x) + λ

∫ b

a

k(x, y)f(y) dy.
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Since g and k are both continuous, this defines an operator T : C[a, b] → C[a, b].
Let us now determine for which values of λ the map T is a contraction. Note first
that since k is continuous, it must also be bounded

(9) |k(x, y)| ≤ c for all (x, y) ∈ [a, b]× [a, b].

We have

d∞(T (f1), T (f2)) = max
a≤x≤b

|T (f1)(x)− T (f2)(x)|

= |λ| max
a≤x≤b

∣∣∣∣∣
∫ b

a

k(x, y) (f1(y)− f2(y)) dy

∣∣∣∣∣
≤ |λ| max

a≤x≤b

∫ b

a

|k(x, y)||f1(y)− f2(y)| dy

≤ c|λ| max
a≤x≤b

|f1(x)− f2(x)|
∫ b

a

dy

= c|λ|(b− a)d(f1, f2).

Recall that T is a contraction if

d(T (f1), T (f2)) ≤ Kd(f1, f2) for all f1, f2 ∈ C[a, b]

for some constant 0 < K < 1, and we see that this is indeed the case if

(10) |λ| < 1

c(b− a)
.

In light of Theorem 5, Banach’s Fixed Point Theorem now gives:

Theorem 6. Suppose k and g in (7) are continuous on [a, b]× [a, b] and [a, b],
respectively, and assume that the parameter λ satisfies (10), with c defined in
(9). Then the integral equation (7) has a unique solution f ∈ C[a, b]. This
solution is the limit of the iterative sequence (f0, f1, f2, . . .), where f0 is any
continuous function on [a, b], and

fn+1(x) = g(x) + λ

∫ b

a

k(x, y)fn(y) dy, n = 1, 2, . . .

1.2. Application to differential equations. Let us consider the initial value
problem

(11) x′(t) =
dx

dt
= f(t, x), x(t0) = x0,

where f : A ⊂ R2 → R is a given function and x(t) is an unknown function which
we wish to determine. In this subsection we will use Banach’s Fixed Point Theorem
to prove the famous Picard-Lindelöf Theorem, which guarantees the uniqueness and
existence of a solution to (11).

Theorem 7 (Picard-Lindelöf). Let f be continuous on a rectangle

R = {(t, x) : |t− t0| ≤ a, |x− x0| ≤ b} ,
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and thus bounded on R, say |f(x, t)| ≤ c. Suppose that f satisfies a Lipschitz
condition on R with respect to its second argument, meaning there exists a
constant k such that

|f(t, x)− f(t, y)| ≤ k|x− y| for all (t, x), (t, y) ∈ R.
Then the initial value problem (11) has a unique solution which exists on an
interval [t0 − β, t0 + β], where

(12) β < min

{
a,
b

c
,

1

k

}
.

Proof. We split the proof into five steps.

Step 1: Equivalent formulation as an integral equation: We observe first that if
a function x ∈ C1[t0 − a, t0 + a] solves (11), then necessarily

(13) x(t) = x0 +

∫ t

t0

f(s, x(s)) ds

by integration. On the other hand, if x ∈ C[t0 − a, t0 + a] fulfils (13), then x is
a continuously differentiable solution to (11) (this follows from the Fundamental
Theorem of Calculus). Thus, the initial value problem (11) for x ∈ C1[t0−a, t0 +a]
is equivalent to (13) for x ∈ C[t0 − a, t0 + a].

Step 2: Constructing an operator T on a complete space to which we can apply
Banach’s Fixed Point Theorem: For J = [t0 − β, t0 + β] and y ∈ C(J), define the
operator

T (y)(t) := x0 +

∫ t

t0

f(s, y(s)) ds, t ∈ J.

Consider the set

X :=

{
y ∈ C(J) : y(t0) = x0, sup

t∈J
|x0 − y(t)| ≤ cβ

}
.

This is a closed subspace of C(J) (endowed with the metric d∞), so (X, d∞) is
complete.

Step 3: Observe that T : X → X: For y ∈ X, we need to show that T (y) ∈ X.
Observe that T (y)(t0) = x0. Moreover, we have

|x0 − T (y)(t)| =
∣∣∣∣∫ t

t0

f(s, y(s)) ds

∣∣∣∣ ≤ |t− t0| ·max
t∈J
|f(t, y(t))| ≤ cβ,

so T (y) ∈ X.

Step 4: Showing T is a contraction: Fix y1, y2 ∈ X. We have

|T (y1)(t)− T (y2)(t)| =
∣∣∣∣∫ t

t0

f(s, y1(s))− f(s, y2(s)) ds

∣∣∣∣
≤ |t− t0| ·max

s∈J
k|y1(s)− y2(s)|

≤ kβd(y1, y2).
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The right hand side above is independent of t, so taking the maximum over t ∈ J
on both sides, we get

d(T (y1), T (y2)) ≤ kβd(y1, y2).

Recalling (12), we see that kβ < 1, so T is a contraction on X.

Step 5: Conclusion: Banach’s Fixed Point Theorem implies that T has a unique
fixed point x ∈ X such that

x(t) = T (x)(t) = x0 +

∫ t0

t

f(s, x(s)) ds.

It thus follows from Step 1 that (11) has a unique, continuous solution x(t) on the
interval [t0 − β, t0 + β]. �

In addition to existence and uniqueness of a solution, Banach’s Fixed Point Theorem
provides us with an iterative procedure for finding the solution.

Corollary 8 (Picard iteration). Under the assumptions of the Picard-Lindelöf
Theorem, the sequence given by

x0(t) = x0, xn+1(t) = T (xn)(t) = x0 +

∫ t

t0

f(s, xn(s)) ds, n = 1, 2, . . . ,

converges uniformly to the unique solution x(t) on J = [t0 − β, t0 + β].

Note, however, that the practical usefulness of Picard iteration is rather limited,
due to the integrations involved. This is illustrated by the following example.

Example 9. The first Picard iteration for the initial value problem

x′(t) =
√
x+ x3, x(1) = 2,

is given by

x1(t) = 2 +

∫ t

1

(√
2 + 23

)
ds = 2 +

(√
2 + 8

)
(t− 1).

The second is

x2(t) = 2 +

∫ t

1

(√
x1(s) + (x1(s))

3
)
ds

= 2 +

∫ t

1

(√
2 +

(√
2 + 8

)
(s− 1) +

(
2 +

(√
2 + 8

)
(s− 1)

)3)
ds.

We see that the second integral obtained with Picard iteration looks quite uninvit-
ing. The next iterations x3, x4, . . . will involve even worse integrals, illustrating
that Picard iteration is of limited value in this case.


