Oppgave $1 \quad$ Let $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ -1 & -1 & 1\end{array}\right)$.
a) Find a singular value decomposition of A.
b) Find the pseudoinverse A^{+}of A and use it to find the best approximation to a solution of the system of linear equations:

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=1 \\
& x_{1}+x_{2}-x_{3}=1 .
\end{aligned}
$$

Solution:

a) We provide examples of matrices U, Σ, V such that $A=U \Sigma V^{*}$.

$$
A^{*} A=\left(\begin{array}{lll}
2 & 2 & 0 \\
2 & 2 & 0 \\
0 & 0 & 2
\end{array}\right) \quad \text { and } \quad A A^{*}=\left(\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right)
$$

singular values: $\sigma_{1}=2, \sigma_{2}=\sqrt{2}$ and $\sigma_{3}=0$

$$
\Sigma=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & \sqrt{2} & 0
\end{array}\right)
$$

Eigenvector v_{1} of $A^{*} A$ for eigenvalue 2: $v_{1}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$.
Eigenvector v_{2} of $A^{*} A$ for eigenvalue 2: $v_{2}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.
Eigenvector v_{1} of $A^{*} A$ for eigenvalue $0: v_{3}=\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$.

$$
\begin{array}{r}
V=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 0 & 1 \\
0 & \sqrt{2} & 0
\end{array}\right) . \\
u_{1}=\frac{1}{\sigma_{1}} A v_{1}=\frac{1}{\sqrt{2}}\binom{1}{-1} \text { and } u_{2}=\frac{1}{\sigma_{2}} A v_{2}=\frac{1}{\sqrt{2}}\binom{1}{1} \\
U=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) .
\end{array}
$$

b) Pseudoinverse $A^{+}=V^{*} \Sigma^{+} U$ is $\frac{1}{4}\left(\begin{array}{cc}1 & -1 \\ 1 & -1 \\ 2 & 2\end{array}\right)$ for $\Sigma^{+}=\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / \sqrt{2} \\ 0 & 0\end{array}\right)$ and hence $x^{+}=$

$$
A^{+} b=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Oppgave 2 Find real numbers a, b, c such that

$$
\int_{0}^{1}\left|\sin (\pi x)-a-b x-c x^{2}\right|^{2} d x
$$

is minimal.

Solution:

Equivalently, we have to find the best approximation of $f(x)=\sin (\pi x)$ from the closed subspace $M=\operatorname{span}\left\{1, x, x^{2}\right\}$. We use that this is equivalent to finding a $p \in M$ such that $\langle f-p, q\rangle=0$ for all $q \in M$. Since $\left\{1, x, x^{2}\right\}$ is a basis we have to only check this for the monomials:

$$
\begin{aligned}
& 0=\int_{0}^{1}\left(\sin (\pi x)-a-b x-c x^{2}\right) \cdot 1 d x \\
& 0=\int_{0}^{1}\left(\sin (\pi x)-a-b x-c x^{2}\right) \cdot x d x \\
& 0=\int_{0}^{1}\left(\sin (\pi x)-a-b x-c x^{2}\right) \cdot x^{2} d x
\end{aligned}
$$

which gives us a system of equations for the coefficients a, b, c. Let us first compute $\int_{0}^{1} x \sin (\pi x) d x$ and $\int_{0}^{1} x \sin (\pi x) d x$ with partial integration.

$$
\begin{gathered}
\int_{0}^{1} x \sin (\pi x) d x=\left.\frac{\sin (\pi x)-\pi x \cos (\pi x)}{\pi^{2}}\right|_{0} ^{\pi}=\frac{1}{\pi} \\
\int_{0}^{1} x^{2} \sin (\pi x) d x=\left.\frac{2 \pi x \sin (\pi x)+\left(2-\pi^{2} x^{2}\right) \cos (\pi x)}{\pi^{3}}\right|_{0} ^{\pi}=\frac{\pi^{2}-4}{\pi^{3}}
\end{gathered}
$$

The coefficients have to satisfy

$$
\begin{aligned}
\frac{2}{\pi} & =a+\frac{b}{2}+\frac{c}{3} \\
\frac{1}{\pi} & =\frac{a}{2}+\frac{b}{3}+\frac{c}{4} \\
\frac{\pi^{2}-4}{\pi^{3}} & =\frac{a}{3}+\frac{b}{4}+\frac{c}{5}
\end{aligned}
$$

The solution is given by $a=\frac{12\left(\pi^{2}-10\right)}{\pi^{3}}, b=-\frac{60\left(\pi^{2}-12\right)}{\pi^{3}}$ and $c=\frac{60\left(\pi^{2}-12\right)}{\pi^{3}}$.
Oppgave 3 Determine whether the following statements are true or false. If the statement is true, no further explanation is required. In case the statement is false, give a counterexample.

1. Let $(X,\|\|$.$) be an infinite-dimensional normed space. Any linear operator T: X \rightarrow X$ is continuous.
No. For example, $T: \ell^{2} \rightarrow \ell^{2}$ defined by $T\left(x_{n}\right)=\left(n x_{n}\right)$ is not continuous, since it is not a bounded operator.
2. Let (X, d) be a metric space. Then any contraction $T: X \rightarrow X$ has a fixed point.

No. Let $\mathrm{T}(\mathrm{x})=\mathrm{ax}+\mathrm{b}$ for $0<a<1$ and $b \in \mathbb{R}$. We consider T as a mapping of \mathbb{R} without the point $\left\{\frac{b}{1-a}\right\}$, i.e. $X=\mathbb{R} \backslash\left\{\frac{b}{1-a}\right\}$ and with $d(x, y)=|x-y|$. Note that $(X,|\cdot|)$ is not complete. Then $T: X \rightarrow X$ is a contraction, but there is no $x \in X$ such that $T(x)=x$. it does not have a fixed point.
3. Any $n \times n$-matrix with real entries can be diagonalized.

No. For example $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ is not diagonalizable.
4. Let $C[0,1]$ denote the space of real-valued continuous functions on the interval $[0,1]$. Then $\left(C[0,1],\|\cdot\|_{\infty}\right)$ is a separable Banach space, where $\|f\|_{\infty}=\max _{x \in[0,1]}|f(x)|$ for $f \in C[0,1]$.
Yes.

Oppgave 4 Let $\left(\ell^{2},\langle.,\rangle.\right)$ be the Hilbert space of complex-valued sequences equipped with the inner product $\left\langle\left(x_{k}\right)_{k},\left(y_{k}\right)_{k}\right\rangle=\sum_{k=0}^{\infty} x_{k} \overline{y_{k}}$. We define the operator $T_{a}: \ell^{2} \rightarrow \ell^{2}$ by

$$
T_{a} x=\left(a_{k} x_{k}\right)_{k \in \mathbb{N}},
$$

where a is a complex-valued bounded sequence, $a=\left(a_{k}\right)_{k} \in \ell^{\infty}$.

1. Show that T_{a} is a bounded linear operator on ℓ^{2}, and determine the operator norm of T_{a}.
2. Determine for which $a \in \ell^{\infty}$ the operator T_{a} is (i) unitary, (ii) self-adjoint.
3. Find a non-zero sequence $a \in \ell^{\infty}$ such that T_{a} is not surjective.

Solution:

a) We have for all $x ß \ell^{2}$

$$
\left\|T_{a} x\right\|_{2}=\left\|\left(a_{1} x_{1}, a_{2} x_{2}, \ldots\right)\right\|_{2} \leq\|a\|_{\infty}\|x\|_{2}
$$

and thus T_{a} is bounded and $\left\|T_{a}\right\| \leq\|a\|_{\infty}$.
The elements of the standard basis $e_{n}=(0,0, . ., 1,0, \ldots)$ are eigenvectors of T_{a} for the eigenvalue $a_{n}: T_{a}\left(e_{1}\right)=a_{1}=\left(a_{1} 1, a_{2} 0, \ldots\right)=a_{1} e_{1}$, etc. Consequently,

$$
\left\|T_{a}\right\|=\sup _{\|x\|_{2}=1}\left\|T_{a}\right\|_{2} \geq \sup _{n \in \mathbb{N}}\left\|T_{a}\left(e_{n}\right)\right\|_{2}=\sup _{n \in \mathbb{N}}\left|a_{n}\right|=\|a\|_{\infty}
$$

b) First we determine the adjoint of T_{a} :

$$
\begin{aligned}
\left\langle T_{a} x, y\right\rangle & =\sum_{i=1}^{\infty} a_{i} x_{i} \overline{y_{i}} \\
& =\sum_{i=1}^{\infty} x_{i} \overline{\overline{a_{i}} y_{i}} \\
& =\left\langle x, T_{\bar{a}} y\right\rangle=\left\langle x, T_{a}^{*} y\right\rangle
\end{aligned}
$$

and therefore $T_{a}^{*}=T_{\bar{a}}$. T_{a} is selfadjoint if and only if $T_{a}^{*}=T_{a}$ which is the case when $a=\bar{a}$, i.e. $a=\left(a_{i}\right)$ with $a_{i} \in \mathbb{R}$ for all $i \in \mathbb{N}$.
T_{a} is selfadjoint if and only if $T_{a}^{*} T_{a}=T_{a} T_{a}^{*}=I:$

$$
T_{a}^{*} T_{a}\left(x_{i}\right)=\left(\overline{a_{i}} a_{i} x_{i}\right)=\left(a_{i} \overline{a_{i}} x_{i}\right)=T_{a} T_{a}^{*}\left(x_{i}\right)=\left(x_{i}\right)
$$

if and only if $a_{i} \overline{a_{i}}=1$ for all $i \in \mathbb{N}$.
c) For example, $a=(0,1,1,1, \ldots)$ or more generally any $a=\left(a_{i}\right)$ with $\inf _{i} a_{i}=0$ would be valid choices.

Oppgave 5 Let $(X,\|\|$.$) be a normed space and let T: X \rightarrow X$ be a linear operator.
a) Show that if T is continuous on X, then T is a bounded operator.
b) Show that if T is a bounded operator on $(X,\|\cdot\|)$, then T is continuous on X.

Solution:

a) Assume that T is continuous, and consider an arbitrary point $x_{0} \in X$. Then given any $\varepsilon>0$ we can find $\delta>0$ such that

$$
\left\|T x-T x_{0}\right\| \leq \varepsilon \quad \text { whenever } \quad\left\|x-x_{0}\right\| \leq \delta
$$

Now take any $y \in X \backslash\{0\}$, and set

$$
x=x_{0}+\frac{\delta}{\|y\|} y . \quad \text { Then } \quad x-x_{0}=\frac{\delta}{\|y\|} y
$$

and we have $\left\|x-x_{0}\right\|=\delta$. By the linearity of T we get

$$
\left\|T x-T x_{0}\right\|=\left\|T\left(x-x_{0}\right)\right\|=\left\|T\left(\frac{\delta}{\|y\|} y\right)\right\|=\frac{\delta}{\|y\|}\|T y\|,
$$

and from the continuity of T it thus follows that

$$
\frac{\delta}{\|y\|}\|T y\| \leq \varepsilon \quad \Rightarrow \quad\|T y\| \leq \frac{\varepsilon}{\delta}\|y\| .
$$

Thus, T is bounded and $\|T\| \leq \varepsilon / \delta$.
b) For $T=0$ the statement is trivial, so let $T \neq 0$ and thus $\|T\| \neq 0$. Assume first that T is bounded. Consider any $x_{0} \in X$ and any fixed $\varepsilon>0$. Then, since T is linear, for every $x \in X$ with

$$
\left\|x-x_{0}\right\|<\delta=\frac{\varepsilon}{\|T\|},
$$

we have

$$
\left\|T x-T x_{0}\right\|=\left\|T\left(x-x_{0}\right)\right\| \leq\|T\|\left\|x-x_{0}\right\|<\|T\| \delta=\varepsilon
$$

This shows that T is continuous at x_{0}, which was chosen arbitrarily, so T is continuous.

Oppgave 6 Let $(X,\|\|$.$) be a normed space and T$ a bounded, invertible linear operator on X such that the inverse of T is also bounded on X. We set $\|x\|_{T}:=\|T x\|$.
a) Show that $\|\cdot\|_{T}$ defines a norm on X.
b) Show that the two norms $\|$.$\| and \|.\|_{T}$ are equivalent on X.

Solution:

a) Positivity: $\|x\|_{T}=\|T x\| \geq 0$ since $\|$.$\| is a norm on X$.

Homogenity: $\|\alpha x\|_{T}=\|T(\alpha x)\|=\|\alpha T(x)\|=|\alpha|\|T x\|=|\alpha|\|x\|_{T}$ for $\alpha \in \mathbb{F}$, where we used the homogenity of $\|\cdot\|$ and that T is a linear map on X.
Triangle inequality: By the linearity of T and the triangle inequality for $\|$.$\| :$

$$
\begin{aligned}
\|x+y\|_{T} & =\|T(x+y)\|=\|T x+T y\| \\
& \leq\|T x\|+\|T y\|=\|x\|_{T}+\|y\|_{T} .
\end{aligned}
$$

b) Claim: There exist two finite positive constants C_{1}, C_{2} such that

$$
C_{1}\|x\| \leq\|x\|_{T} \leq C_{2}\|x\| \quad \text { for all } x \in X
$$

Since T is bounded we have that $\|T x\| \leq\|T\|\|x\|$. Hence we have that

$$
\|T x\| \leq C_{2}\|x\|
$$

holds for any $C_{2} \geq\|T\|$.
The existence of C_{2} relies on the invertibility of T and that $\left\|T^{-1}\right\|$ is finite:

$$
\|x\|=\left\|T^{-1}(T x)\right\| \leq\left\|T^{-1}\right\|\|T x\|
$$

and thus we have for any C_{1} with $C_{1} \leq\left\|T^{-1}\right\|^{-1}$ that

$$
C_{1}\|x\| \leq\|x\|_{T} \quad \text { for all } x \in X
$$

In summary, we have the optimal constants:

$$
\left\|T^{-1}\right\|^{-1}\|x\| \leq\|x\|_{T} \leq\|T\|\|x\| \quad \text { for all } x \in X
$$

