Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

Let $A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & 1 \end{pmatrix}$. Oppgave 1

a) Find a singular value decomposition of A.

b) Find the pseudoinverse A^+ of A and use it to find the best approximation to a solution of the system of linear equations:

$$x_1 + x_2 + x_3 = 1$$

$$x_1 + x_2 - x_3 = 1.$$

Solution:

a) We provide examples of matrices U, Σ, V such that $A = U\Sigma V^*$.

$$A^*A = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \quad \text{and} \quad AA^* = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}.$$

singular values: $\sigma_1 = 2, \sigma_2 = \sqrt{2}$ and $\sigma_3 = 0$

$$\Sigma = \begin{pmatrix} 2 & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{pmatrix}$$

Eigenvector v_1 of A^*A for eigenvalue 2: $v_1 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$. Eigenvector v_2 of A^*A for eigenvalue 2: $v_2 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$.

Eigenvector v_1 of A^*A for eigenvalue 0: $v_3 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$.

$$V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & -1 \\ 1 & 0 & 1 \\ 0 & \sqrt{2} & 0 \end{pmatrix}.$$
$$u_1 = \frac{1}{\sigma_1} A v_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \text{ and } u_2 = \frac{1}{\sigma_2} A v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.$$

b) Pseudoinverse
$$A^+ = V^* \Sigma^+ U$$
 is $\frac{1}{4} \begin{pmatrix} 1 & -1 \\ 1 & -1 \\ 2 & 2 \end{pmatrix}$ for $\Sigma^+ = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/\sqrt{2} \\ 0 & 0 \end{pmatrix}$ and hence $x^+ = A^+ b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

Oppgave 2 Find real numbers a, b, c such that

$$\int_0^1 |\sin(\pi x) - a - bx - cx^2|^2 dx$$

is minimal.

Solution:

Equivalently, we have to find the best approximation of $f(x) = \sin(\pi x)$ from the closed subspace $M = \text{span}\{1, x, x^2\}$. We use that this is equivalent to finding a $p \in M$ such that $\langle f - p, q \rangle = 0$ for all $q \in M$. Since $\{1, x, x^2\}$ is a basis we have to only check this for the monomials:

$$0 = \int_0^1 (\sin(\pi x) - a - bx - cx^2) \cdot 1 \, dx$$

$$0 = \int_0^1 (\sin(\pi x) - a - bx - cx^2) \cdot x \, dx$$

$$0 = \int_0^1 (\sin(\pi x) - a - bx - cx^2) \cdot x^2 \, dx$$

which gives us a system of equations for the coefficients a, b, c. Let us first compute $\int_0^1 x \sin(\pi x) dx$ and $\int_0^1 x \sin(\pi x) dx$ with partial integration.

$$\int_0^1 x \sin(\pi x) dx = \frac{\sin(\pi x) - \pi x \cos(\pi x)}{\pi^2} \Big|_0^\pi = \frac{1}{\pi}$$
$$\int_0^1 x^2 \sin(\pi x) dx = \frac{2\pi x \sin(\pi x) + (2 - \pi^2 x^2) \cos(\pi x)}{\pi^3} \Big|_0^\pi = \frac{\pi^2 - 4}{\pi^3}$$

The coefficients have to satisfy

$$\frac{2}{\pi} = a + \frac{b}{2} + \frac{c}{3}$$
$$\frac{1}{\pi} = \frac{a}{2} + \frac{b}{3} + \frac{c}{4}$$
$$\frac{\pi^2 - 4}{\pi^3} = \frac{a}{3} + \frac{b}{4} + \frac{c}{5}$$

The solution is given by $a = \frac{12(\pi^2 - 10)}{\pi^3}$, $b = -\frac{60(\pi^2 - 12)}{\pi^3}$ and $c = \frac{60(\pi^2 - 12)}{\pi^3}$.

Oppgave 3 Determine whether the following statements are true or false. If the statement is true, no further explanation is required. In case the statement is false, give a counterexample.

- Let (X, ||.||) be an infinite-dimensional normed space. Any linear operator T : X → X is continuous.
 No. For example, T : l² → l² defined by T(x_n) = (nx_n) is not continuous, since it is not a bounded operator.
- 2. Let (X, d) be a metric space. Then any contraction $T : X \to X$ has a fixed point. **No.** Let T(x)=ax+b for 0 < a < 1 and $b \in \mathbb{R}$. We consider T as a mapping of \mathbb{R} without the point $\{\frac{b}{1-a}\}$, i.e. $X = \mathbb{R} \setminus \{\frac{b}{1-a}\}$ and with d(x, y) = |x - y|. Note that (X, |.|) is not complete. Then $T : X \to X$ is a contraction, but there is no $x \in X$ such that T(x) = x. it does not have a fixed point.
- 3. Any $n \times n$ -matrix with real entries can be diagonalized. **No.** For example $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ is not diagonalizable.
- 4. Let C[0,1] denote the space of real-valued continuous functions on the interval [0,1]. Then $(C[0,1], \|.\|_{\infty})$ is a separable Banach space, where $\|f\|_{\infty} = \max_{x \in [0,1]} |f(x)|$ for $f \in C[0,1]$. Yes.

Oppgave 4 Let $(\ell^2, \langle ., . \rangle)$ be the Hilbert space of complex-valued sequences equipped with the inner product $\langle (x_k)_k, (y_k)_k \rangle = \sum_{k=0}^{\infty} x_k \overline{y_k}$. We define the operator $T_a : \ell^2 \to \ell^2$ by

$$T_a x = (a_k x_k)_{k \in \mathbb{N}},$$

where a is a complex-valued bounded sequence, $a = (a_k)_k \in \ell^{\infty}$.

- 1. Show that T_a is a bounded linear operator on ℓ^2 , and determine the operator norm of T_a .
- 2. Determine for which $a \in \ell^{\infty}$ the operator T_a is (i) unitary, (ii) self-adjoint.
- 3. Find a non-zero sequence $a \in \ell^{\infty}$ such that T_a is not surjective.

Solution:

a) We have for all $x\beta\ell^2$

$$||T_a x||_2 = ||(a_1 x_1, a_2 x_2, ...)||_2 \le ||a||_{\infty} ||x||_2$$

and thus T_a is bounded and $||T_a|| \leq ||a||_{\infty}$. The elements of the standard basis $e_n = (0, 0, ..., 1, 0, ...)$ are eigenvectors of T_a for the eigenvalue a_n : $T_a(e_1) = a_1 = (a_1 1, a_2 0, ...) = a_1 e_1$, etc. Consequently,

$$||T_a|| = \sup_{\|x\|_2 = 1} ||T_a||_2 \ge \sup_{n \in \mathbb{N}} ||T_a(e_n)||_2 = \sup_{n \in \mathbb{N}} |a_n| = ||a||_{\infty}.$$

b) First we determine the adjoint of T_a :

$$\langle T_a x, y \rangle = \sum_{i=1}^{\infty} a_i x_i \overline{y_i}$$

=
$$\sum_{i=1}^{\infty} x_i \overline{\overline{a_i} y_i}$$

=
$$\langle x, T_{\overline{a}} y \rangle = \langle x, T_a^* y \rangle$$

and therefore $T_a^* = T_{\overline{a}}$. T_a is selfadjoint if and only if $T_a^* = T_a$ which is the case when $a = \overline{a}$, i.e. $a = (a_i)$ with $a_i \in \mathbb{R}$ for all $i \in \mathbb{N}$. T_a is selfadjoint if and only if $T_a^*T_a = T_aT_a^* = I$:

$$T_a^*T_a(x_i) = (\overline{a_i}a_ix_i) = (a_i\overline{a_i}x_i) = T_aT_a^*(x_i) = (x_i)$$

if and only if $a_i \overline{a_i} = 1$ for all $i \in \mathbb{N}$.

c) For example, a = (0, 1, 1, 1, ...) or more generally any $a = (a_i)$ with $\inf_i a_i = 0$ would be valid choices.

Oppgave 5 Let $(X, \|.\|)$ be a normed space and let $T : X \to X$ be a linear operator.

- a) Show that if T is continuous on X, then T is a bounded operator.
- **b)** Show that if T is a bounded operator on $(X, \|.\|)$, then T is continuous on X.

Solution:

a) Assume that T is continuous, and consider an arbitrary point $x_0 \in X$. Then given any $\varepsilon > 0$ we can find $\delta > 0$ such that

$$||Tx - Tx_0|| \le \varepsilon$$
 whenever $||x - x_0|| \le \delta$.

Now take any $y \in X \setminus \{0\}$, and set

$$x = x_0 + \frac{\delta}{\|y\|} y$$
. Then $x - x_0 = \frac{\delta}{\|y\|} y$,

and we have $||x - x_0|| = \delta$. By the linearity of T we get

$$||Tx - Tx_0|| = ||T(x - x_0)|| = \left||T\left(\frac{\delta}{||y||}y\right)|| = \frac{\delta}{||y||}||Ty||$$

and from the continuity of T it thus follows that

$$\frac{\delta}{\|y\|}\|Ty\| \le \varepsilon \quad \Rightarrow \quad \|Ty\| \le \frac{\varepsilon}{\delta}\|y\|.$$

Thus, T is bounded and $||T|| \leq \varepsilon/\delta$.

b) For T = 0 the statement is trivial, so let $T \neq 0$ and thus $||T|| \neq 0$. Assume first that T is bounded. Consider any $x_0 \in X$ and any fixed $\varepsilon > 0$. Then, since T is linear, for every $x \in X$ with

$$\|x - x_0\| < \delta = \frac{\varepsilon}{\|T\|},$$

we have

$$||Tx - Tx_0|| = ||T(x - x_0)|| \le ||T|| ||x - x_0|| < ||T||\delta = \varepsilon.$$

This shows that T is continuous at x_0 , which was chosen arbitrarily, so T is continuous.

Oppgave 6 Let $(X, \|.\|)$ be a normed space and T a bounded, invertible linear operator on X such that the inverse of T is also bounded on X. We set $\|x\|_T := \|Tx\|$.

- a) Show that $\|.\|_T$ defines a norm on X.
- **b)** Show that the two norms $\|.\|$ and $\|.\|_T$ are equivalent on X.

Solution:

a) Positivity: $||x||_T = ||Tx|| \ge 0$ since ||.|| is a norm on X. Homogenity: $||\alpha x||_T = ||T(\alpha x)|| = ||\alpha T(x)|| = |\alpha|||Tx|| = |\alpha|||x||_T$ for $\alpha \in \mathbb{F}$, where we used the homogenity of ||.|| and that T is a linear map on X. Triangle inequality: By the linearity of T and the triangle inequality for ||.||:

$$||x + y||_T = ||T(x + y)|| = ||Tx + Ty||$$

$$\leq ||Tx|| + ||Ty|| = ||x||_T + ||y||_T.$$

b) Claim: There exist two finite positive constants C_1, C_2 such that

$$C_1 ||x|| \le ||x||_T \le C_2 ||x||$$
 for all $x \in X$.

Since T is bounded we have that $||Tx|| \leq ||T|| ||x||$. Hence we have that

$$\|Tx\| \le C_2 \|x\|$$

holds for any $C_2 \ge ||T||$.

The existence of C_2 relies on the invertibility of T and that $||T^{-1}||$ is finite:

$$||x|| = ||T^{-1}(Tx)|| \le ||T^{-1}|| ||Tx||$$

and thus we have for any C_1 with $C_1 \leq \|T^{-1}\|^{-1}$ that

$$C_1 \|x\| \le \|x\|_T \quad \text{for all } x \in X.$$

In summary, we have the optimal constants:

$$||T^{-1}||^{-1}||x|| \le ||x||_T \le ||T|| ||x||$$
 for all $x \in X$.