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Introduction

The goal of this course is to present basic facts about vector spaces and map-
pings between vector spaces in a form suitable for engineers, scientists and mathe-
maticians. The presentation is addressed to students with varying backgrounds.

A special emphasis is put towards general methods and on abstract reasoning.
The material in this course is supposed to prepare you for the advanced courses
in your respective study program. You might encounter for the first time rigorous
reasoning and there will be a particular focus on definitions, statements (=lemmas,
propositions, theorems) and proofs.

In the first chapter we discuss basic notions such as sets, functions and the
cardinality of a set.

These notes are accompanying the course TMA4145 Linear methods and is
based on earlier notes by Sigrid Grespstad and Franz Luef.
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CHAPTER 1

Sets and functions

Basic definitions and theorems about sets and functions are the content of this
chapter and are presented in the setting of Naive Set Theory. These notions set
the stage for tuning our intuition about collections of objects and relations between
these objects.

1.1. Sets

Definition 1.1.1. A set is a collection of distinct objects, its elements. If an
object x is an element of a set X, we denote it by x ∈ X. If x is not an element
of X, then we write x /∈ X.

A set is uniquely determined by its elements. Suppose X and Y are sets. Then they
are identical, X = Y , if they have the same elements. More formalized, X = Y if
and only if for all x ∈ X we have x ∈ Y , and for all y ∈ Y we have y ∈ X.

Definition 1.1.2. Suppose X and Y are sets. Then Y is a subset of X,
denoted by Y ⊆ X, if for all y ∈ Y we have y ∈ X.

If Y ⊆ X, one says that Y is contained in X. If Y ⊆ X and X 6= Y , then Y is a
proper subset of X and we use the notation Y ⊂ X. The most direct way to prove
that two sets X and Y are equal is to show that

x ∈ X ⇐⇒ x ∈ Y

for any element x. (Another way is to prove a double inclusion: if x ∈ X then
x ∈ Y , establishing that X ⊆ Y and if x ∈ Y , then x ∈ X, establishing that
Y ⊆ X.)

The empty set is a set with no elements, denoted by ∅.

Proposition 1.1. There is only one empty set.

Proof. Suppose E1 and E2 are two empty sets. Then for all elements x we
have that x /∈ E1 and x /∈ E2. Hence E1 = E2. �

Some familiar sets are given by the various number systems:

(1) N = {1, 2, 3, ...} the set of natural numbers, N0 = {0, 1, 2, 3, ...};
(2) Z = {...,−2,−1, 0, 1, 2, ...} the set of integers;
(3) Q = {p/q : p ∈ Z, q ∈ N} the set of rational numbers;
(4) R denotes the set of real numbers;
(5) C denotes the set of complex numbers.

3



4 Chapter 1

For real numbers a, b with a < b < ∞ we denote by [a, b] the closed bounded
interval, and by (a, b) the open bounded interval. The length of these bounded
intervals is b− a.
Here are a few constructions related to sets.

Definition 1.1.3. Let X and Y be sets.

• The union of X and Y , denoted by X ∪ Y , is defined by

X ∪ Y = {z| z ∈ X or z ∈ Y }.
• The intersection of X and Y , denoted by X ∩ Y , is defined by

X ∩ Y = {z| z ∈ X and z ∈ Y }.
• The difference set of X from Y , denoted by X\Y , is defined by

X\Y = {z ∈ X : z ∈ X and z /∈ Y }.
If all sets are contained in one set X, then the difference set X\Y is
called the complement of Y and denoted by Y c.

• The Cartesian product of X and Y , denoted by X × Y , is the set

X × Y = {(x, y)|x ∈ X, y ∈ Y },
i.e the set of all ordered pairs (x, y), with x ∈ X and y ∈ Y . An
ordered pair has the property that (x1, y1) = (x2, y2) if and only if
x1 = x2 and y1 = y2.

• P(X) denotes the set of all subsets of X.

If we two sets X and Y have an empty intersection, X ∩Y = ∅, we say that X and
Y are disjoint. Here are some basic properties of sets.

Lemma 1.2. Let X,Y and Z be sets.

(1) X∩(Y ∪Z) = (X∩Y )∪(X∩Z) and X∪(Y ∩Z) = (X∪Y )∩(X∪Z)
(distribution law)

(2) (X ∪ Y )c = Xc ∩ Y c and (X ∩ Y )c = Xc ∪ Y c (de Morgan’s laws)
(3) X\(Y ∪ Z) = (X\Y ) ∩ (X\Z) and X\(Y ∩ Z) = (X\Y ) ∪ (X\Z)
(4) (Xc)c = X.

Proof. (2) Let us prove one of de Morgan’s relations. Let us use the
most direct approach. Keep in mind that x ∈ Ec ⇐⇒ x /∈ E. We then
have:

x ∈ (X ∪ Y )c ⇐⇒ x /∈ X ∪ Y ⇐⇒ x /∈ X and x /∈ Y
⇐⇒ x ∈ Xc and x ∈ Y c ⇐⇒ x ∈ Xc ∩ Y c.

This proves the identity.
(4)

x ∈ (Xc)c ⇐⇒ x /∈ Xc ⇐⇒ x ∈ X.
�

Note that if you have a statement involving ∪ and ∩. Then you get another true
statement if you interchange ∪ with ∩ and ∩ with ∪, as one can see in the lemma.
This is part of the field of Boolean algebra.
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1.2. Functions

Let X and Y be sets. A function f from X to Y , written f : X → Y , is a
relation between the elements of X and Y , i.e. f ⊂ X × Y , satisfying the following
property: for all x ∈ X, there is a unique y ∈ Y such that (x, y) ∈ f . We denote
(x, y) ∈ f by f(x) = y.
X is the domain of f , and Y is codomain of f . By definition, for each x ∈ X there
is exactly one y ∈ Y such that f(x) = y. We say that y is the image of x under f .
The graph G(f) of a function f is the subset of X × Y defined by

G(f) = {(x, f(x))|x ∈ X}.
The range of a function f : X → Y , denoted by range(f), or f(X), is the set of all
y ∈ Y that are the image of some x ∈ X:

range(f) = {y ∈ Y | there existsx ∈ X such that f(x) = y}.
The pre-image of y ∈ Y is the subset of all x ∈ X that have y as their image. This
subset is often denoted by f−1(y):

f−1(y) = {x ∈ X| f(x) = y}.
Note that f−1(y) = ∅ if and only if y ∈ Y \ran(f).

Lemma 1.3. Let f : X → Y be a function and let C,D ⊂ Y . Then

f−1(C ∪D) = f−1(C) ∪ f−1(D).

Proof.

x ∈ f−1(C ∪D) ⇐⇒ f(x) ∈ C ∪D ⇐⇒ f(x) ∈ C or f(x) ∈ D
⇐⇒ x ∈ f−1(C) or x ∈ f−1(D) ⇐⇒ x ∈ f−1(C) ∪ f−1(D).

�

Here are some simple examples of functions.

|x| =


x if x > 0,

0 if x = 0,

−x if x < 0.

Note that |x| = max{x,−x}. We define the positive, x+ and negative part, x− of
x ∈ R:

x+ = max{x, 0}, and x− = max{−x, 0},
so we have x = x+ − x− and |x| = x+ + x−.

The following notions are central for the theory of functions.

Definition 1.2.1. Let f : X → Y be a function.

(1) We call f injective or one-to-one if f(x1) = f(x2) implies x1 = x2, i.e.
no two elements of the domain have the same image. Equivalently, if
x1 6= x2, then f(x1) 6= f(x2).
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(2) We call f surjective or onto if ran(f) = Y , i.e. each y ∈ Y is the
image of at least one x ∈ X.

(3) We call f bijective if f is both injective and surjective.

Note that a bijective function matches up the elements of X with those of Y so
that in some sense these two sets have the same number of elements.

Let f : X → Y and g : Y → Z be two functions so that the range of f coincides
with the domain of g. Then we define the composition, denoted by g ◦ f , as the
function g ◦ f : X → Z, defined by x 7→ g(f(x)).

For every set X, we define the identity map, denoted by idX or id where id(x) = x
for all x ∈ X.

If one has a function f that maps elements in X to Y , then it is often desirable
to reverse this assignment. Let us introduce some notions to address this basic
problem.

Definition 1.2.2. Let f be a function from X to Y .

• The mapping f is said to be left invertible if there exists a function
g : Y → X such that g ◦ f = idX . We call g a left inverse of f and
denote it by f−1l .

• The mapping f is said to be right invertible if there exists a function
h : Y → X such that f ◦ h = idY . We call h a right inverse of f and
denote it by f−1r .

• The mapping f is said to be invertible if there exists a function g :
Y → X such that g ◦ f = idX and f ◦ g = idY , the so-called inverse
of f denoted f−1.

One may think of a left and right inverse in layman terms: (i) If you map an element
of the domain via a function to an element in the target space, then the left inverse
tells you how to go back to where you started from;(ii) If one wants to get to a
point in the target, then the right inverse tells you a possible place to start in the
domain. The inverse of a function has some important properties.

Lemma 1.4. Given an invertible function f : X → Y .

(1) The inverse function f−1 : Y → X is unique.
(2) The inverse function is also invertible and we have (f−1)−1 = f .

Proof. (1) Suppose there are two inverse functions gi : Y → X, i = 1, 2.
By assumption we have that f ◦ g1 = idY and g2 ◦ f = idX . Hence we
have

g2(y) = g2((f ◦ g1)(y)) = g2(f(g1(y))) = g1(y) for all y ∈ Y,
i.e. g1 = g2.

(2) Exercise.
�
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Lemma 1.5. Let f : X → Y and g : Y → Z be two invertible function. Then
g ◦ f is also invertible and (g ◦ f)−1 = f−1 ◦ g−1.

Let us give a description of left, right invertibility and invertibility in more
concrete terms.

Proposition 1.6. Given a function f : X → Y between two non-empty sets
X and Y .

(1) f is left invertible if and only if it is injective.
(2) f is right invertible if and only if it is surjective.
(3) f is invertible if and only if it is injective and surjective, i.e. if f is

bijective.

Proof. (1) Let us assume that f is injective. Then f : X → ran(f) is
invertible with f−1 : ran(f) → X. Let g : Y → X be any extension of
this inverse. Then g ◦ f = idX .
Suppose f is left invertible. Assume there are x1, x2 ∈ X such that
f(x1) = f(x2) = y. Then

x1 = f−1l (f(x1)) = f−1l (f(x2)) = x2,

i.e. f is injective.
(2) Let us assume that f is surjective. Pick an arbitrary element z ∈ Y , wich

is by assumption an element of ran(f). Hence z has at least one pre-image
in X and thus f−1(z) 6= ∅.Take y1 6= y2. Then the sets f−1({y1}) and
f−1({y2}) in X are disjoint. Let us pick from each set f−1({y}) an ele-
ment x and define x := h(y). Then h : Y → X and f ◦ h = idY .
Suppose that f is right invertible. Then we have for y ∈ Y that f(f−1r (y)) =
f(x) where we set x to be x = f−1r (y). In other words, y is in the range
of f .

(3) Follows from the other assertions.
�

A consequence of the characterizations of left and right invertibility is the observa-
tion:
Remark 1.2.3. If f : X → Y is left invertible mapping between non-empty sets
such that ran(f) 6= Y , then there are many left inverses. However the restriction
of any left inverse of f to ran(f) is unique.
One the other hand if f : X → Y is right invertible such that f is surjective but
not injective, then f will have many right inverses.

Our study of linear mappings will provide ample examples of the aforemen-
tioned notions. Here we just give one example.
Example 1.2.4. Given the linear mapping T : R2 → R3 given by T = Ax with

A =

−3 −4
4 6
1 1

 .

Then the matrix

A−1l =
1

9

(
−11 −10 16

7 8 −11

)
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induces a left inverse T−1l of T .
This left inverse is not unique, for example

1

2

(
0 −1 6
0 1 −4

)
also gives a left inverse. One can turn this example into one for right inverses as
well, see problem set 1.

1.3. Cardinality of sets

Bijective functions provide us with a tool for comparing the sizes of different
sets. We start with the case of finite sets.

Definition 1.3.1. Two finite sets X and Y have equal cardinality, if there is
a bijective map f : X → Y . If there is an injective map from X to Y , then we
say that the cardinality of X is less than or equal to the cardinality of Y .

A set X has n elements if there is a bijection between X and the set {0, 1, ..., n−
1}.

Proposition 1.7. If there is a bijection between the sets {0, 1, . . . n− 1} and
{0, 1, . . .m− 1}, then n = m (i.e. they have the same number of elements).

Proof. We proceed by induction. For n = 0 the set n = {0, 1, ..., n− 1} is the
empty set, and thus the only set bijective with it is the empty set. Suppose that
n > 0 and that the result is true for n−1. Moreover, suppose that there is a bijection
f : {0, 1, ..., n − 1} → {0, 1, ...,m − 1}. Assume first that f(n − 1) = m − 1. Then
the restriction of f to the set {0, 1, ..., n − 2} gives a bijection to {0, 1, ...,m − 2},
and by the induction hypothesis we have n− 1 = m− 1.

Let us now look at the case when f(n−1) 6= m−1. We have that f(n−1) = a

for some a and f(b) = m− 1 for some b, and we define a function f̃ by f̃(x) = f(x)

if x 6= b, n − 1; f̃(b) = a and f̃(n − 1) = m − 1. Then f̃ is a bijection and we
conclude as above with n = m. �

Let us now define countable sets.

Definition 1.3.2. A set X is countable if there exists an injective map from
X to N. In other words, X is countable if we can arrange its elements in a
(possibly infinite) sequence {x1, x2, x3, ...} where each element occurs exactly
once.

Remarks. (1) Equivalently, X is countable if there exists a surjective map
from N to X.

(2) As illustrated by the examples below, countable sets can be either finite
or infinite.

Examples 1.3.3. (1) Any finite set of elements X = {x1, . . . , xn} is count-
able, as the map f : X → N defined by f(xi) = i is injective.

(2) The infinite set of squares X = {1, 4, 9, ..., n2, ...} is countable, as the map
f : N→ X defined by f(n) = n2 is surjective.
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(3) The infinite set of odd numbers X = {1, 3, 5, ..., 2n − 1, ...} is countable,
since f : N→ X defined by f(n) = 2n− 1 is a surjective map.

Note that in examples (2) and (3) above, the map f is in fact a bijection.

Proposition 1.8. N× N is countable.

Proof. The argument starts out with decomposing N×N into finite sets F2, ...,
where

Fk = {(i, j) ∈ N× N| i+ j = k}
and the cardinality of Fk is k− 1. Now we arrange these sets: first writing the one
element of F2, then the two elements of F2 and so forth. Hence, we have established
the assertion. In other words, we have arranged N× N in a table:

(1, 1) (1, 2) (1, 3) (1, 4) · · ·
(2, 1) (2, 2) (2, 3) (2, 4) · · ·
(3, 1) (3, 2) (3, 3) (3, 4) · · ·
(4, 1) (4, 2) (4, 3) (4, 4) · · ·

...
...

...
...

. . .

and list the elements along sucessive (anti-)diagonals from bottom-left to top-right
as

(1, 1), (2, 1)(1, 2), (3, 1), (2, 2), (1, 3), ....

We define f : N → N × N by f(n) := nth pair in this order. Note that f is a
bijection. �

Proposition 1.9. We have the following assertions:

(1) The Cartesian product of two countable sets is countable.
(2) The union of countably many countable sets is countable.

Proof. (1) Exercise.
(2) Let X1, ... be a countable family of countable sets. We denote the elements

of Xi by {x1i, x2i, ...} for i = 0, 1, ... and define a map by f(i, j) = xij .
Note that f : N × N → ∪∞i=1Xi is surjective and thus the union ∪∞i=1Xi.
is countable. The map f is not injective in general, because the Xi’s need
not to be disjoint. The proposition preceding this statement yields the
desired claim.

�

Proposition 1.10. The sets Z of integers and Q of rational numbers are
countable.

Proof. Exercise. �

Bernstein and Schröder observed an elementary characterization of two sets
having the same cardinality. We state it without proof.
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Theorem 1.11. Let X and Y be two sets. Suppose there are injective maps
f : X → Y and g : Y → X. Then there exists a bijection between X and Y .

If a set X is not countable, then we say that it is uncountable.

Theorem 1.12 (Cantor). The set R of real numbers is uncountable.

Proof. We argue by contradiction and assume that R is countable. Then a
subset of R is also countable. Thus the open interval (0, 1) is a countable set, i.e.

(0, 1) = {x0, x1, ...}.

Any ai ∈ (0, 1) has an infinite decimal expansion (possibly terminating, in which
case we let it continue forever with zeros):

ai = 0.ai0ai1..., aij ∈ {0, 1, ..., 9}.

We set bi to be

bi =

{
3 if aii 6= 3

1 if aii = 3.

By construction we have bi 6= aii and thus the number

a = 0.b1b2...

differs from all ai. Note that a ∈ (0, 1) which is not included in the given enu-
meration of (0, 1). Hence we have deduced a contradiction to the countability of
(0, 1). �

Proposition 1.13. LetX be the set of all binary sequences: X = {(a1, a2, a3, ...) :
ai ∈ {0, 1}}. Then X is not countable.

Proof. We apply the method from the preceding theorem, aka diagonal ar-
gument.
Suppose X = {(x1, x2, x3, ...) : xi ∈ {0, 1}} is countable. Then we have

x1 = 010100....

x2 = 101111....

...

Then we define a sequence x /∈ X by moving down the diagonal and switching the
values from 0 to 1 or from 1 to 0. Hence X is uncountable. �

Proposition 1.14. The power set P(N) of the natural numbers N is uncount-
able.

Proof. Let C = ∪n∈NXn be a countable collection of subsets of N. Define
X ⊂ N by

X = {n ∈ N : n /∈ Xn}.
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Claim: X 6= Xn for every n ∈ N. Since either n ∈ X and n /∈ Xn or n /∈ X and
n ∈ Xn.
Thus X /∈ C and so no countable collection of subsets of N includes all of the
subsets of N. �

1.4. Supremum and infimum

We introduce two crucial notions: the infimum and supremum of a set. First
we provide some preliminaries.

Definition 1.4.1. Let A be a non-empty subset of R
• If there exists m ∈ R such that m ≤ a for all a ∈ A, then m is a

lower bound of A. We call A bounded below.
• If there exists M ∈ R such that a ≤ M for all a ∈ A, then M is an

upper bound of A. We call A bounded above.
• If there exist lower and upper bounds, then we say that A is bounded.

Definition 1.4.2 (Infimum and Supremum). Let A be a subset of R.

• If m is a lower bound of A such that m ≥ m′ for every lower bound
m′, then m is called the infimum of A, denoted by m = inf A. Fur-
thermore, if inf A ∈ A, then we call it the minimum of A, and write
minA.

• IfM is an upper bound of A such thatM ′ ≥M for every upper bound
M ′, then M is called the supremum of A, denoted by M = supA.
Furthermore, if supA ∈ A, then we call it the maximum of A, and
write maxA.

It follows from this definition that the supremum of a set A is its least upper
bound, whereas the infimum is its greatest lower bound. Note that the infimum
and supremum of a set A are both unique. The argument is left as an exercise.

If A ⊂ R is not bounded above, then we define supA = ∞. If A ⊂ R is not
bounded below, then we assign −∞ as its infimum.

We state a different formulation of the notions inf A and supA which is simply
a reformulation of the definition above.

Lemma 1.15. Let A be a subset of R.

• Suppose A is bounded above. Then M ∈ R is the supremum of A if
and only if the following two conditions are satisfied:
(1) For every a ∈ A we have a ≤M .
(2) Given ε > 0, there exists a ∈ A such that M − ε < a.

• Suppose A is bounded below. Then m ∈ R is the infimum of A if
and only if the following two conditions are satisfied:
(1) For every a ∈ A we have m ≤ a.
(2) Given ε > 0, there exists a ∈ A such that a < m+ ε.

Here is another way to phrase the statement for the supremum of a set.
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Lemma 1.16. Let A be a non-empty subset of R that is bounded above. Any
upper bound M of A is the supremum of A if and only if for every m < M ,
there exists an element x ∈ A such that m < x ≤M .

Proof. Suppose M = supA. If m < M , then m is not an upper bound of A.
Thus there exists an element x ∈ A such that x > m. On the other hand, since M
is an upper bound of A we have x ≤M .
Conversely, if M is an upper bound of A satisfying the stated condition, then every
m < M is not an upper bound of A. Thus M = supA. �

Lemma 1.17. Suppose A is a bounded subset of R. Then inf A ≤ supA

Proof. Let a ∈ A (we assume that the set A is non-empty, otherwise there
is nothing interesting here). Then as a lower bound for A, inf A ≤ a. Moreover,
as an upper bound for A, a ≤ supA. Using transitivity, we conclude that inf A ≤
supA. �

For c ∈ R we define the dilate of a set A by cA := {b ∈ R : b = ca for a ∈ A} and
we define the sum A + B of two sets A,B by A + B = {c : c = a + b for some a ∈
A, b ∈ B}.

Lemma 1.18 (Properties). Suppose A, B are bounded subsets of R.

(1) For c > 0 we have sup cA = c supA and inf cA = c inf A.
(2) For c < 0 we have sup cA = c inf A and inf cA = c supA.
(3) Suppose A is contained in B. If supA and supB exist, then supA ≤

supB. In words, making a set larger, increases its supremum.
(4) Suppose A is contained in B. If inf A and inf B exist, then inf A ≥

inf B. In words, making a set smaller increases its infimum.
(5) Suppose x ≤ y for all x ∈ A and y ∈ B. Then supA ≤ inf B.
(6) If A and B are non-empty subsets of R, then sup(A+B) = supA+

supB and inf(A+B) = inf A+ inf B

Proof. (1) We prove that sup cA = c supA for positive c. Suppose
c > 0, and let supA = M . Then cx ≤ cM for all x ∈ A. Accordingly, cM
is an upper bound for cA.

Let us now see that cM is the least upper bound for cA. From the
definition of supA it follows that for every ε > 0 there exists an element
a ∈ A such that a ≥M − ε/c. Thus, we get ca ≥ cM − ε for every ε > 0,
and ca ∈ cA. This shows that

sup cA = cM = c supA.

(2) Without loss of generality we set c = −1. We will show that sup cA =
sup(−A) = c inf A = − inf A.

For any a ∈ A, inf A ≤ a, so − inf A ≥ −a, showing that − inf A is an

upper bound for −A. Therefore, − inf A ≥ sup(−A) .
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For any a ∈ A we have −a ∈ −A, so −a ≤ sup(−A), which implies
a ≥ − sup(−A). Therefore, − sup(−A) is a lower bound for A, meaning

− sup(−A) ≤ inf A and thus sup(−A) ≥ − inf A .

The two boxed inequalities prove the identity sup(−A) = − inf A.
(3) Since supB is an upper bound of B, it is also an upper bound of A, i.e.

supA ≤ supB.
(4) Analogous to (3).
(5) Since x ≤ y for all x ∈ A and y ∈ B, y is an upper bound of A. Hence

supA is a lower bound of B and we have supA ≤ inf B.
(6) By definition A+B is bounded above if and only if A and B are bounded

above. Hence sup(A + B) < ∞ if and only if supA and supB are finite.
Take a ∈ A and b ∈ B, then a + b ≤ supA + supB. Thus supA + supB
is an upper bound of A+B:

sup(A+B) ≤ supA+ supB.

The reverse direction is a little bit more involved. Let ε > 0. Then there
exists a ∈ A and b ∈ B such that

a > supA− ε/2, b > supB − ε/2.
Thus we have a+ b > supA+supB−ε for every ε > 0, i.e. sup(A+B) ≥
supA+ supB.

The remaining statements are assigned as exercises. �

One reason for the relevance of the notions of supremum and infimum is in the
formulation of properties of functions.

Definition 1.4.3. Let f be a function with domain X and range Y ⊆ R.
Then

sup
X
f = sup{f(x) : x ∈ X}, inf

X
f = inf{f(x) : x ∈ X}.

If supX f is finite, then f is bounded from above on X, and if infX f is finite
we call f bounded from below. A function is bounded if both the supremum
and infimum are finite.

Lemma 1.19. Suppose that f, g : X → R and f ≤ g, i.e. f(x) ≤ g(x) for all
x ∈ X. If g is bounded from above, then supX f ≤ supX g. Assume that f is
bounded from below. Then infX f ≤ infX g.

Proof. Follows from the definitions. �

Lemma 1.20. Suppose f, g are bounded functions from X to R and c a pos-
itive constant. Then

sup
X

(f + cg) ≤ sup
X
f + c sup

X
g inf

X
(f + cg) ≥ inf

X
f + c inf

X
g.

The proof is left as an exercise. Try to convince yourself that these inequalities are
often strict, as the functions f and g may take values close to their suprema/infima
at different points in X.
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Finally, recall that a sequence (xn) of real or complex numbers is an ordered list
of numbers xn, indexed by the natural numbers. In other words, such a sequence
(xn) may be thought of as a function f from N to R (or C) with f(n) = xn. Using
this function representation of a sequence, we can define the supremum and
infimum of a sequence (xn) using Definition 1.4.3.



CHAPTER 2

Normed spaces and innerproduct spaces

In order to measure the length of a vector and to define a distance between
vectors we introduce the notion of a norm of a vector. Norms may be a tool to
specify properties of a class of vectors in a convenient form. We review basic aspects
of vector spaces before we define normed vector spaces.

2.1. Vector spaces

Vector spaces formalize the notion of linear combinations of objects that might
be vectors in the plane, polynomials, smooth functions, or sequences. Many prob-
lems in engineering, mathematics and science are naturally formulated and solved
in this setting due to their linear nature. Vector spaces are ubiquitous for several
reasons, e.g. as linear approximation of a non-linear object, or as building blocks
for more complicated notions, such as vector bundles over topological spaces. De-
veloping an understanding of vector spaces is one of the main objectives of this
course. We will restrict our discussion to complex and real vector spaces.

Definition 2.1.1. A vector space over a field F (normally R or C) is a set V
endowed with an operation called addition,

V × V → V, (u, v)→ u+ v,

and an operation called scalar multiplication F× V → V ,

F× V → V, (λ, v)→ λv,

where these operations satisfy the following properties:

(1) Commutativity: u+ v = v+u for all u, v ∈ V and (λµ)v = λ(µv) for
all λ, µ ∈ F;

(2) Associativity: (u+ v) + w = u+ (v + w) for all u, v, w ∈ V ;
(3) Additive identity: There exists an element 0 ∈ V such that 0 + v = v

for all v ∈ V ;
(4) Additive inverse: For every v ∈ V , there exists an element w ∈ V

such that v + w = 0;
(5) Multiplicative identity: 1v = v for all v ∈ V ;
(6) Distributivity: λ(u + v) = λu + λv and (λ + µ)u = λu + µu for all

u, v ∈ V and λ, µ ∈ F.

If F = R, we say that V is a real vector space; if F = C, we say that V is
complex.

15
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The elements of a vector space are called vectors. Given v1, ..., vn ∈ V and
λ1, ..., λn ∈ F we call the vector

v = λ1v1 + · · ·+ λnvn

a linear combination.
Examples 2.1.2. We define some useful vector spaces.

• Spaces of n-tuples: The set of tuples (x1, ..., xn) of real and com-
plex numbers are vector spaces Rn and Cn with respect to component-
wise addition and scalar multiplication: (x1, ..., xn) + (y1, ..., yn) = (x1 +
y1, ..., xn + yn) and λ(x1, ..., xn) = (λx1, ..., λxn).

• The set of functions F(X,Y ) of a set X to a set Y : λf(x) + µg(x) :=
(λf + µg)(x) for all x ∈ X.

• The space of polynomials of degree at most n, denoted by Pn, where we
define the operations of multiplication and addition coefficient-wise: For
p(x) = a0 + a1x+ · · · anxn and q(x) = b0 + b1x+ · · · bnxn we define

(p+ q)(x) = (a0 + b0) + (a1 + b1)x+ · · · (an + bn)xn and

= (λp)(x) = λa0 + λa1x+ · · ·λanxn, λ ∈ F.

The space of all polynomials P is the vector space of polynomials of
arbitrary degree.

• Sequence spaces: s denotes the set of sequences, c the set of all conver-
gent sequences, c0 the set of all sequences converging to 0, cf the set of
all sequences with finitely many non-zero elements.

• Function spaces: The set of continuous functions C(I) on an interval of
R. Popular choices for I are [0, 1] and R. We define addition and scalar
multiplication as follows: For f, g ∈ C(I) and λ ∈ F

(f + g)(x) = f(x) + g(x) and (λf)(x) = λf(x).

We denote by C(n)(I) the space of n-times continuously differentiable
functions on I and by C∞(I) the space of functions on I with infinitely
many continuous derivatives. More generally, the set F(X) of functions
from a set X to F is a vector space with the operations defined above.
Note that F({1, 2, ..., n}) is just Fn and hence the first class of examples.

• Spaces of matrices: Denote by Mm×n(C) the space of complex m× n
matrices where we define addition and scalar multiplication entry-wise:
For A = (aij)i,j and B = (aij)i,j where i = 1, ...,m and j = 1, ...n we
define

A+B := (aij + bij)i,j and α(aij)ij = (αaij)ij , α ∈ F.

There are relations between the vector spaces in the aforementioned list. We
start with clarifying their inclusion properties.

Definition 2.1.3. A subset W of a vector space V is called a subspace if W is
a vector space with respect to addition and scalar multiplication of V , denoted
by W ⊆ V and if W is a proper subspace by W ⊂ V .

One way to express this more concretely is stated in the next lemma:
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Lemma 2.1. A subset W of a vector space V is a subspace if and only if W
is closed under linear combinations: For any α, β ∈ F and w1, w2 ∈W we have
α1w1 +α2w2 ∈W . Equivalently, we have that the subset W of a vector space
V is a subspace if and only if

(1) 0 ∈W ;
(2) w1 + w2 ∈W for any w1, w2 ∈W ;
(3) αw ∈W for any α ∈ F and any w ∈W .

Some examples of vector subspaces are:

Pn ⊂ P ⊂ F , C∞(I) ⊂ C(n)(I) ⊂ C(I), cf ⊂ c0 ⊂ c ⊂ s.

Definition 2.1.4. A linear transformation T : V → W between the vector
spaces V and W is a mapping T that preserves the linear structure of a vector
space:

T (α1v1 + α2v2) = α1T (v1) + α2T (v2) for any v1, v2 ∈ V, α1, α2 ∈ F.

We denote by L(V,W ) the set of all linear transformations between V and W . This
is a subspace of the vector space of all functions f : V →W ,

L(V,W ) ⊆ F(V,W ).

Example 2.1.5. Let D denote the differentiation operator Df = f ′. Then D :
C(1)(a, b)→ C(a, b) is a linear transformation.

Linear transformations have some useful properties.

Lemma 2.2. For any T ∈ L(V,W ) we have T (0) = 0.

Proof. We have that v + 0 = v for any v ∈ V ; in particular, for v = 0 we get

T (0) = T (0 + 0) = T (0) + T (0).

Subtracting T (0) from both sides in the equation, we get T (0) = 0. �

The kernel of T ∈ L(V,W ) is the set

ker(T ) := {v ∈ V |Tv = 0},

i.e. ker(T ) = T−1(0).

Lemma 2.3. For a linear transformation T : V → W the kernel of T is a
subspace of V .

Proof. Suppose v1, v2 ∈ ker(T ). Then for any scalars α1, α2 we have

T (αv1 + α2v2) = α1T (v1) + α2T (v2) = α1 · 0 + α2 · 0 = 0

and thus αv1 + α2v2 ∈ ker(T ). �
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Lemma 2.4. The range of a linear transformation T : V → W is a subspace
of W .

Proof. Exercise, see problem set 2. �

Definition 2.1.6. Let V and W be subspaces of Z.

(1) The sum of V and W is defined by V +W := {z ∈ Z| z = v+w, v ∈
V,w ∈W}.

(2) The intersection of V and W is defined by V ∩W := {z ∈ Z| z ∈
V and z ∈W}.

From the definition we see that V +W and V ∩W are subspaces of Z. We introduce
further notions: If the sum of the subspaces V and W equals Z, then we say that
Z is the sum of V and W and write V + W = Z. Moreover, if the subspaces just
have the zero vector in common, V ∩W = {0}, then we refer to V + W as the
direct sum of V and W .

Lemma 2.5. Let I be an index set. For any collection of vector spaces {Vi}i∈I ,
the intersection ∩i∈IVi is a vector space.

Proof. Exercise. �

Definition 2.1.7. Let S be a nonempty subset of a vector space V . Then we
define the span of S, span(S), as the intersection of all subspaces of V that
contain S.

Lemma 2.6. Let S ⊂ V be a nonempty subset. Then

span(S) = {λ1 v1 + . . .+ λn vn : v1, . . . , vn ∈ S and λ1, . . . , λn ∈ F}.

Proof. By definition, span(S) is the intersection of all subspaces W of V that
contain the set S. From the preceding lemma, it follows that span(S) is a subspace
of V , hence it is the smallest subspace of V that contains S.

Let us denote

W := {λ1 v1 + . . .+ λn vn : v1, . . . , vn ∈ S and λ1, . . . , λn ∈ F},

so W is the set of all linear combinations with elements in S.
Being a subspace of V , span(S) must contain all such linear combinations, so

we must have that

W ⊂ span(S).

All we have left to show is that W is a subspace of V . This is not hard to see,
since linear combinations of linear combinations are linear combinations as well.

Indeed, let a, b ∈ F and let w1, w2 ∈W , so

w1 = λ1 v1 + . . .+ λn vn with v1, . . . , vn ∈ S,
w2 = µ1 u1 + . . .+ µm um with u1, . . . , um ∈ S.
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Then

aw1 + bw2 = aλ1 v1 + . . .+ aλn vn + bµ1 u1 + . . .+ bµm um,

and since v1, . . . , vn, u1, . . . , um ∈ S, it follows that aw1 + bw2 ∈W .
Therefore, W is a subspace of V that contains S, so we must have

span(S) ⊂W.

Together with the previous inclusion, this proves the equality of the two sets.
�

2.2. Normed spaces and metric spaces

The norm on a general vector space generalizes the notion of length of a vector
in R2 and R3.

Definition 2.2.1. Let F be either R or C. A normed space is a vector space
X over F endowed with a function ‖.‖ : X → R, the norm on X, such that for
all x, y ∈ X:

(1) Positivity: 0 ≤ ‖x‖ <∞ and ‖x‖ = 0 if and only if x = 0;
(2) Homogeneity: ‖αx‖ = |α|‖x‖ for α ∈ F;
(3) Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

We denote this normed space by (X, ‖.‖)

Example 2.2.2. The vector space Rn with usual addition and scalar multiplication
is a normed space when endowed with the summation norm

‖(x1, . . . , xn)‖1 = |x1|+ · · ·+ |xn|.

This is a special case of the p-norm, which will be introduced below.

A norm provides us with a way to measure the distance between two vectors in
X. We say that the distance between x ∈ X and y ∈ X is given by d(x, y) := ‖x−y‖.
This is an example of a metric on the vector space X.

Definition 2.2.3. Let X be a set. A metric d : X ×X → [0,∞) is a function
such that for every x, y, z ∈ X

(i) d(x, y) = 0 if and only if x = y (positivity);
(ii) d(x, y) = d(y, x) (symmetry);
(iii) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

The pair (X, d) is called a metric space.

Example 2.2.4. i) Any set X becomes a metric space when endowed with
the discrete metric

d(x, y) =

{
1, x 6= y

0, x = y.

ii) The summation norm ‖ · ‖1 gives rise to a metric d(x, y) := ‖x − y‖1 on
Rn. Similarly, any norm ‖ · ‖ on a vector space X induces a metric d on
X.
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Proposition 2.7. If ‖ · ‖ is a norm on X then d(x, y) := ‖x− y‖ is a metric
on X.

Proof. The properties in Definition 2.2.3 are direct consequences of the ax-
ioms for a norm. In particular, (i) follows from property (1) of a norm, (ii) is
derived from property (2) of a norm for λ = −1 and (iii) is deduced from property
(3) of a norm. �

Proposition 2.7 shows that any normed space may be viewed as a metric space.
Note, however, that metric spaces need not even be vector spaces. For instance,
the positive real numbers R+ = (0,∞) with the metric d(x, y) := |x−y| is a metric
space, but it is not a vector space, as it contains neither an additive identity nor
additive inverses.

In this course, we will mainly be interested in normed spaces and inner prod-
uct spaces. Nevertheless, we introduce certain topological properties in the more
general setting of metric spaces.

Definition 2.2.5. For r > 0 and x ∈ X we define the open ball Br(x) of
radius r centered at x as the set

Br(x) = {y ∈ X : d(x, y) < r}.

Balls generalize the concept of an interval in R to any metric space (X, d).

Definition 2.2.6. For p ∈ [1,∞) we define the p-norm, denoted by ‖ · ‖p, on
Rn by assigning to x = (x1, ..., xn) ∈ Rn the number ‖x‖p:

‖x‖p = (|x1|p + |x2|p + · · · |xn|p)1/p.
For p =∞ we define the `∞-norm ‖ · ‖∞ on Rn by

‖x‖∞ = max |x1|, ..., |xn|.

The notation ‖.‖∞ is justified by the fact that it is the limit of the ‖.‖p norms.

Lemma 2.8. For x ∈ Rn we have

‖x‖∞ = lim
p→∞

‖x‖p.

Proof. Without loss of generality we may assume that ‖x‖∞ = |xn|. For
1 ≤ p <∞ we then have

‖x‖p = (|x1|p+|x2|p+· · · |xn|p)1/p = ‖x‖∞
((

|x1|
‖x‖∞

)p
+

(
|x2|
‖x‖∞

)p
+ · · ·+ 1

)1/p

.

Finally, since |xi|
‖x‖∞ < 1 for each i = 1, . . . , n− 1, we get limp→∞( |xi|‖x‖∞ )p = 0, and

it follows that

lim
p→∞

‖x‖p = ‖x‖∞.

If the maximum is attained by k components of x, we get that the expression in
the bracket behaves like k1/p, which for p→∞ still converges to 1. �
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Proposition 2.9. For any 1 ≤ p ≤ ∞ the vector space Rn endowed with the
p-norm ‖.‖p is a normed space.

Confirming that the p-norm ‖ · ‖p satisfies positivity and homogeneity is straight-
forward. However, showing that it also satisfies the triangle inequality is more
involved, and requires the following preliminary results:

For p ∈ (1,∞), define its conjugate as the number q such that

1

p
+

1

q
= 1.

If p = 1, then we define q to be ∞ and vice versa (i.e. for p =∞ we set q = 1).

Lemma 2.10 (Young’s inequality). For p ∈ (1,∞) and q its conjugate we
have

ab ≤ ap

p
+
bq

q
,

for any non-negative real numbers a, b. We have equality if and only if ap = bq.

Here are a few identities about conjugate exponents:

• q = p/(p− 1), since 1
p + 1

q = 1 if and only if 1
q = p−1

p .

• (p− 1)(q − 1) = 1, since (p− 1)q = p is equal to (p− 1)q − (p− 1) = 1.

Proof. Consider the function f(x) = xp−1 and integrate this with respect to
x from zero to a. Now take the inverse function of f given by f−1(y) = yq−1, where
we used that 1/(p−1) = q−1 for conjugate exponents p and q. Let us integrate f−1

from zero to b. Then the sum of these two integrals always exceeds the product ab.
Note that the two integrals are given by ap/p and bq/q. Hence we have established
Young’s inequality.
Equality occurs when f(a) = f−1(b), i.e. if ap = bq. �

A consequence of Young’s inequality is Hölder’s inequality.

Lemma 2.11 (Hölder’s inequality). Suppose p ∈ (1,∞) and q its conjugate,
and x = (x1, ..., xn) and y = (y1, ..., yn) are vectors in Rn. Then∣∣∣∣∣

n∑
i=1

xiyi

∣∣∣∣∣ ≤
n∑
i=1

|xi| |yi| ≤
( n∑
i=1

|xi|p
)1/p( n∑

i=1

|yi|q
)1/q

.

Proof. Set ai = |xi|/(
∑n
i=1 |xi|p)1/p and bi = |yi|/(

∑n
i=1 |yi|q)1/q. Then we

have
∑
i a
p
i = 1 and

∑
i b
q
i = 1. By Young’s inequality, we get

n∑
i=1

|xi||yi| ≤

(
n∑
i=1

|xi|p
)1/p( n∑

i=1

|yi|q
)1/q

.

�

Proof of Proposition 2.9. Positivity and homogeneity of ‖ · ‖p are conse-
quences of the corresponding properties for the absolute value of a real number.
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The triangle inequality is non-trivial, and we split the proof into three cases: p = 1,
p =∞ and p ∈ (1,∞). Let x = (x1, ..., xn) and y = (y1, ..., yn) be points in Rn.

(1) For p = 1 we have

‖x+ y‖1 = |x1 + y1|+ · · ·+ |xn + yn| ≤ |x1|+ |y1|+ · · ·+ |xn|+ |yn| = ‖x‖1 + ‖y‖1

.
(2) For p =∞ the argument is similar:

‖x+ y‖∞ = max{|x1 + y1|, ..., |xn + yn|}
≤ max{|x1|+ |y1|, ..., |xn|+ |yn|}
≤ max{|x1|, ..., |xn|}+ max{|y1|, ..., |yn|} = ‖x‖∞ + ‖y‖∞.

(3) The general case p ∈ (1,∞): The triangle inequality follows from Hölder’s
inequality.

‖x+ y‖pp =

n∑
i=1

|xi + yi|p

≤
n∑
i=1

|xi + yi|p−1(|xi|+ |yi|)

=

n∑
i=1

|xi + yi|p−1|xi|+
n∑
i=1

|xi + yi|p−1|yi|

≤
( n∑
i=1

|xi + yi|p
)1/q(( n∑

i=1

|xi|p
)1/p

+
( n∑
i=1

|yi|p
)1/p)

= ‖x+ y‖p/qp (‖x‖p + ‖y‖p)

Dividing by ‖x + y‖p/qp and using 1 − 1/q = 1/p we obtain the triangle
inequality:

‖x+ y‖p ≤ ‖x‖p + ‖y‖p.

Thus the space Rn with the p-norm ‖.‖p is a normed space for p ∈ [1,∞].

�

The triangle inequality for p-norms on Rn is also known as Minkowski’s inequal-
ity: ( n∑

i=1

|xi + yi|p
)1/p

≤
( n∑
i=1

|xi|p
)1/p

+
( n∑
i=1

|yi|p
)1/p

.

Finally, observe that the unit balls of the vector spaces (R2, ‖.‖1), (R2, ‖.‖2)
and (R2, ‖.‖∞) illustrate how the choice of norm affects the nature of the resulting
normed space:
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p = 1 p = 2 p =∞

The unit sphere ‖x‖p = 1 for different values of p.

We may replace the vector space Rn by Cn in (Rn, ‖ · ‖p), and still obtain a
normed space.

Proposition 2.12. Let Cn be the vector space of complex n-tuples z =
(z1, ..., zn)T , zi ∈ C for i = 1, ..., n. For 1 ≤ p <∞ we define

‖z‖p =
( n∑
i=1

|zi|p
)1/p

, z ∈ Cn

and for p = ∞ we have ‖z‖∞ := max |zi| : i = 1, ..., n. where zi ∈ C and
|zi| = (zizi)

1/2 denotes the modulus of zi. Then (Cn, ‖.‖p) is a normed space
for 1 ≤ p ≤ ∞.

The proof for the case Rn extends to Cn without significant changes. Similarly,
we can define a p-type norm on the vector space of m × n matrices Mm×n(F)
by using the p-norm on the space Fnm: For 1 ≤ p < ∞ we define ‖A‖(p) =

(
∑m
i=1

∑n
j=1 |aij |p)1/p or ‖A‖(∞) = max |aij | for A ∈Mm×n(F). The case p = 2 is

of special interest and is known as the Frobenius norm.

Proposition 2.13. For 1 ≤ p ≤ ∞ we have that (Mm×n(F), ‖.‖(p)) is a
normed space.

We move on to spaces of sequences.

Definition 2.2.7. For p ∈ [1,∞) and a sequence x = (x1, x2, ...) of real or
complex numbers, we define the p-norm on x by

‖x‖p := (|x1|p + |x2|p + · · · )1/p.
For p =∞, we define the `∞-norm by

‖x‖∞ := sup
i∈N
|xi|.

We denote by `p = `p(R) (resp. `p(C)) the set of all real (resp. complex)
sequences with bounded p-norm.

Proposition 2.14. The set `p is a normed vector space for every 1 ≤ p ≤ ∞.

In the proof of Proposition 2.14 we rely again on Hölder’s inequality.
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Lemma 2.15 (Hölder’s inequality). For 1 ≤ p ≤ ∞ and q its conjugate we
have for x ∈ `p and y ∈ `q

∞∑
i=1

|xi||yi| ≤
( ∞∑
i=1

|xi|p
)1/p( ∞∑

i=1

|yi|q
)1/q

.

Proof. Since Hölder’s inequality (Lemma 2.11) is true for all n ∈ N we deduce
that the limits of the partial sums in question also satisfy these inequalities. Hence
we deduce the desired inequality for sequences instead of n-tuples. �

Proof of Proposition 2.14. We show first that `p is a vector space for p ∈
[1,∞): For α ∈ F and x ∈ `p it is clear that αx ∈ `p. Confirming that x + y ∈ `p
when x, y ∈ `p requires an argument:

‖x+ y‖pp =
∞∑
i=1

|xi + yi|p

≤
∞∑
i=1

(|xi|+ |yi|)p

≤ 2p
∞∑
i=1

max{|xi|, |yi|}p

= 2p
∞∑
i=1

|max{|xi|p, |yi|p}|

≤ 2p(

∞∑
i=1

|xi|p +

∞∑
i=1

|yi|p) = 2p(‖x‖pp + ‖y‖pp) <∞.

The norm properties may be deduced as in the case of Rn, as we have Hölder’s
inequality at our disposal.

The case p =∞ is easier and left as an exercise. �

For 1 ≤ p < ∞ the spaces (`p, ‖.‖p) are subspaces of the vector space of
sequences converging to zero, c0. In contrast (`∞, ‖.‖∞) is the space of bounded
sequences and is much larger than the other `p-spaces. We have the following
inclusions:

Lemma 2.16. For p1 < p2 the space `p1 is a proper subspace of `p2 , i.e.

`p1 ⊂ `p2 ⊂ `∞.

Proof. Exercise. �

For example (1/n)n is in `p for p ≥ 2, but not in `1.

We complete this section by discussing normed spaces of continuous functions.
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Definition 2.2.8. For f ∈ C[a, b] we define its p-norm for 1 ≤ p <∞ by

‖f‖p =

(∫ b

a

|f(x)|pdx

)1/p

and ‖f‖∞ = supx∈[a,b] |f(x)|. We denote by (C[a, b], ‖.‖p) the set of all func-

tions satisfying ‖f‖p <∞.

Proposition 2.17. The space (C[a, b], ‖.‖p) is a normed space for p ∈ [1,∞].

We do not include the proof of this proposition, but strongly encourage the reader
to go through it. The following version of Hölder’s inequality will be useful in
confirming that ‖ · ‖p is indeed a norm on C[a, b].

Lemma 2.18 (Hölder’s inequality). For 1 ≤ p ≤ ∞ and its conjugate q we
have ∫ b

a

|f(x)||g(x)|dx ≤ ‖f‖p‖g‖q.

Proof. We assume without loss of generality that ‖f‖p = 1 = ‖g‖q. By
Young’s inequality we have

|f(x)||g(x)| ≤ |f(x)|p/p+ |g(x)|q/q

and thus∫ b

a

|f(x)||g(x)| dx ≤ 1

p

∫ b

a

|f(x)|p dx+
1

q

∫ b

a

|g(x)|q dx = 1 = ‖f‖p‖g‖q.

�

One considers as well (C(R), ‖.‖p) and in this case ‖.‖p <∞ behaves differently as
for bounded intervals. Namely, we have for f ∈ C(R) that ‖.‖p < ∞ implies for
p =∞ that f is bounded, and for 1 ≤ p <∞ one has in some sense that f has to
converge to zero at a certain rate.

2.3. Inner product spaces

In this section we introduce inner product spaces. For vectors z, z′ ∈ Cn, we
are familiar with the ’dot product’

z · z′ = z1z′1 + · · ·+ znz′n,

where, if we take the dot product of z with itself, we get the length of the vector z
squared:

z · z = |z1|2 + · · ·+ |zn|2.
For real vectors x ∈ Rn, this can be expressed without conjugates as

x · x′ = x1x
′
1 + · · ·+ xnx

′
n,

and

x · x = |x1|2 + · · ·+ |xn|2.
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It is this concept that we now extend to general vector spaces by introducing the
notion of an inner product.

Definition 2.3.1. Let X be a vector space over F ∈ {R,C}. An inner product
〈·, ·〉 on X is a map 〈·, ·〉 : X ×X → F which is

(1) conjugate symmetric,

〈x, y〉 = 〈y, x〉,
(2) linear in its first argument,

〈αx, y〉 = α 〈x, y〉 ,
〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 ,

(3) and positive definite,

〈x, x〉 ≥ 0 with equality only if x = 0,

for any x, y, z ∈ X and α ∈ F. The pair (X, 〈·, ·〉) is called an inner
product space.

Example 2.3.2. The familiar dot product on Rn defines an inner product on this
vector space:

〈x, y〉 := x · y =

n∑
j=1

xjyj ,

and the familiar dot product on Cn defines an inner product on Cn:

〈z, z′〉 := z · z′ =

n∑
j=1

zjz′j .

Proposition 2.19 (Properties of the inner product). An inner product 〈·, ·〉
on X satisfies

i) 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉 ,
ii) 〈x, αy〉 = α 〈x, y〉 ,

iii) 〈x, 0〉 = 〈0, x〉 = 0,

iv) If 〈x, z〉 = 0 for all z ∈ X, then x = 0.

Proof. Proof of i): We have that

〈x, y + z〉 = 〈y + z, x〉 = 〈y, x〉+ 〈z, x〉 = 〈y, x〉+ 〈z, x〉 = 〈x, y〉+ 〈x, z〉 .
The proofs of the remaining statements are left as an exercise. �

An inner product space (X, 〈·, ·〉) carries a natural norm given by

‖x‖ = 〈x, x〉1/2 .
To prove that this is indeed a norm on X we need the following inequality.
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Proposition 2.20 (Cauchy-Schwarz inequality). For all x, y ∈ (X, 〈·, ·〉), we
have

| 〈x, y〉 | ≤ ‖x‖‖y‖.
If both x and y are non-zero, we have equality if and only if x = αy for some
α ∈ F.

Proof. Assume first that x = αy for some α ∈ F. Then

| 〈x, y〉 | = | 〈αy, y〉 | = |α| | 〈y, y〉 |
= |α|‖y‖2 = |α|‖y‖ ‖y‖ = ‖x‖‖y‖.

Now assume that there is no α ∈ F for which x = αy. Then x − αy 6= 0 for all
α ∈ F, and thus

0 < 〈x− αy, x− αy〉
= 〈x, x〉 − α 〈x, y〉 − α 〈y, x〉+ |α|2 〈y, y〉

= ‖x‖2 − α 〈x, y〉 − α〈x, y〉+ |α|2‖y‖2

= ‖x‖2 − 2Re(α 〈x, y〉) + |α|2‖y‖2.

The Cauchy-Schwarz inequality is trivially true if ‖y‖ = 0, so we may assume
‖y‖ 6= 0. We can then choose to insert α = 〈x, y〉 /‖y‖2 in the inequality above to
obtain

0 < ‖x‖2 − 2

‖y‖2
| 〈x, y〉 |2 +

| 〈x, y〉 |2

(‖y‖2)2
· ‖y‖2

= ‖x‖2 − 1

‖y‖2
| 〈x, y〉 |2.

Finally multiplying by ‖y‖2 > 0 on both sides in this inequality, we get

0 < ‖x‖2‖y‖2 − | 〈x, y〉 |2.

The Cauchy-Schwarz inequality follows. �

Proposition 2.21. If (X; 〈·, ·〉) is an inner product space, then ‖x‖ = 〈x, x〉1/2
defines a norm on X.

Proof. We see immediately that

‖x‖ = 0 ⇔ ‖x‖2 = 0 ⇔ 〈x, x〉 = 0 ⇔ x = 0,

and the positive homogeneity is also straightforward:

‖αx‖ = 〈αx, αx〉1/2 = (αα 〈x, x〉)1/2 =
(
|α|2‖x‖2

)1/2
= |α|‖x‖.

Finally, we have

‖x+ y‖2 = ‖x‖2 + 2Re(〈x, y〉) + ‖y‖2

≤ ‖x‖2 + 2| 〈x, y〉 |+ ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2 ,
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where we have used the Cauchy-Schwarz inequality in the third line. This shows

that the triangle inequality holds for ‖x‖ = 〈x, x〉1/2. �

Example 2.3.3. (1) The sequence space `2 of square-summable (real- or)
complex-valued sequences (zi), (z

′
i) with the inner product

〈z, z′〉 =

∞∑
i=1

ziz′i,

is an inner product space. Moreover, the ‖ · ‖2-norm on `2 is induced by
this inner product, so the Cauchy-Schwarz inequality yields

| 〈z, z′〉 | ≤ ‖z‖2‖z′‖2.

The sequence space `2 was the first example of an inner product space,
studied by D. Hilbert in 1901 in his work on Fredholm operators.

(2) The vector space C[a, b] of continuous (real- or) complex-valued functions
on an interval [a, b] with the inner product

〈f, g〉 =

∫ b

a

f(x)g(x)dx

is an inner product space. Moreover, the ‖ · ‖2-norm on C[a, b] is induced
by this inner product, so the Cauchy-Schwarz inequality yields

| 〈f, g〉 | ≤ ‖f‖2‖g‖2.

We have seen that any inner product 〈·, ·〉 carries a norm ‖ · ‖ = 〈·, ·〉1/2.
Let us now turn this around: How can we determine if a given norm is induced
by an underlying inner product? Jordan and von Neumann gave the following
characterization of these norms.

Theorem 2.22 (Jordan-von Neumann). Let (X, ‖ · ‖) be a normed space. If
the norm ‖ · ‖ satisfies the parallelogram law

‖x− y‖2 + ‖x+ y‖2 = 2‖x‖2 + 2‖y‖2 for all x, y ∈ X,

then there exists an inner product 〈·, ·〉 on X such that 〈·, ·〉1/2 = ‖ · ‖. If X is
a complex vector space, then the inner product is given by

〈x, y〉 =
1

4

4∑
k=1

ik‖x+ iky‖2.

If X is a real vector space, then

〈x, y〉 =
1

4

(
‖x+ y‖2 − ‖x− y‖2

)
.

The last two equations are both known as the polarization identity.

We state Theorem 2.22 without proof in this course. Checking the inner product
axioms for the suggested inner product is not difficult, but non-trivial, and involves
repeated use of the parallelogram law. Using Theorem 2.22, we can argue that not
every normed space is necessarily induced by an inner product space.
Example 2.3.4. By showing that the following norms do not satisfy the parallel-
ogram law for all vectors x, y ∈ X, one can verify that:
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i) The supremum norm ‖ · ‖∞ on C[0, 1] is not induced by an inner product.
Neither is the p-norm on C[0, 1] for any p 6= 2.

ii) The p-norm on the sequence space `p is not induced by an inner product
if p 6= 2.

Finally, we will see that inner products provide us with a generalization of the
notion of orthogonality of elements.

Definition 2.3.5. Two elements x, y in an inner product space (X, 〈·, ·〉) are
orthogonal if 〈x, y〉 = 0

The theorem of Pythagoras is true for any innerproduct space (X, 〈., .〉).

Proposition 2.23 (Pythagoras’ Theorem). Let (X, 〈·, ·〉) be an inner product
space. For two orthogonal elements x, y ∈ X we have

‖x+ y‖2 = ‖x‖2 + ‖y‖2.

Proof. By assumption we have 〈x, y〉 = 0. It follows that

‖x+ y‖2 = ‖x‖2 + 2Re 〈x, y〉+ ‖y‖2 = ‖x‖2 + ‖y‖2.
�

Example 2.3.6. Consider the collection of exponential functions

em(x) = e2πimx, m ∈ Z,
in the inner product space (C[0, 1], 〈·, ·〉) of continuous, complex-valued functions
on the unit interval [0, 1]. For m 6= n, we see that em and en are orthogonal, as

〈em, en〉 =

∫ 1

0

e2πi(m−n)xdx =
1

2πi(m− n)
(e2πi(m−n) − 1) = 0.

Note that 〈en, en〉 = 1. We can express this using Kronecker’s delta function as

〈em, en〉 = δm,n.

Definition 2.3.7. A set of vectors {ei}i∈I in an inner product space (X, 〈., , 〉)
is called an orthogonal family if 〈ei, ej〉 = 0 for all i 6= j. If additionally ‖ei‖ = 1
for all i ∈ I, then we refer to it as an orthonormal family.

We see that the set of exponentials {e2πinx}n∈Z in the previous example is an
orthonormal family in (C[0, 1], 〈·, ·〉). This particular system lies at the very heart
of Fourier analysis, or more generally harmonic analysis.
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Banach and Hilbert spaces

With normed spaces and inner product spaces introduced, we focus on com-
pleteness in this chapter. This requires that we first define what we mean by
convergent sequences in these spaces. We will learn that a complete normed space
is called a Banach space, whereas a complete inner product space is called a Hilbert
space. Finally, we prove Banach’s fixed point theorem, and discuss some applications
thereof.

3.1. Sequences in metric spaces and normed spaces

Definition 3.1.1. Let (X, d) be a metric space. A sequence (xn)n∈N in X is
said to converge to x ∈ X if for every ε > 0 one can find N = N(ε) ∈ N such
that

d(xn, x) < ε

whenever n ≥ N . The element x is called the limit of the sequence (xn)n∈N.
In particular, if (X, ‖.‖) is a normed space, then (xn)n∈N converges to

x ∈ X if for every ε > 0 one can find N = N(ε) ∈ N such that

‖x− xn‖ < ε

whenever n ≥ N .

This notion of convergence for a sequence is a natural generalization of the notion
of convergence for sequences of real or complex numbers. Note, however, that the
elements of our sequence can now belong to any (metric or) normed space; for
example, a sequence in `2 is a sequence of sequences, i.e. a sequence (xn) where
each element xn = (xn1, xn2, . . .) is itself a (square-summable) sequence. A more
geometric view on convergence is to observe that for any ε > 0 there must exist
an N = N(ε) such that (xN , xN+1, ...) lies inside the ball Bε(x) of radius ε around
the limit point x. Note that (xN , xN+1, ...) is often called the tail of the sequence
(xn)n∈N. Hence convergence of xn → x means that for arbitrary small balls around
the limit point x, the tail of (xn)n∈N is contained in Bε(x).

Proposition 3.1 (Properties). Suppose that the sequence (xn)n∈N in the
normed space (X, ‖ · ‖) is convergent.

i) The limit x ∈ X of the sequence (xn)n∈N is unique.
ii) The norm of xn converges to the norm of x:∣∣∣ ‖xn‖ − ‖x‖ ∣∣∣→ 0.

31
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Proof. i) Suppose there exist two limits x, y ∈ X of (xn)n∈N. Then for
any ε > 0 there exist N1, N2 ∈ N such that ‖xn−x‖ ≤ ε/2 for all n ≥ N1,
and ‖xn − y‖ ≤ ε/2 for all n ≥ N2. Hence for all n ≥ max{N1, N2}, we
have

‖x− y‖ = ‖x− xn + xn − y‖ ≤ ‖x− xn‖+ ‖xn − y‖ ≤ ε/2 + ε/2 = ε.

It follows that ‖x− y‖ = 0, and thus x = y.
ii) By the reversed triangle inequality we have that∣∣∣ ‖xn‖ − ‖x‖ ∣∣∣ ≤ ‖xn − x‖,

and by assumption ‖xn − x‖ → 0. The claim follows.
�

The notion of convergence depends on the metric that the set X is equipped with,
or similarly on the norm that the vector space is equipped with. This is illustrated
by the following example.
Example 3.1.2. Consider the sequence (fn)n∈N in C[0, 1] given by

fn(t) = e−nt.

It is clear that fn converges to the zero function in (C[0, 1], ‖.‖1), as

‖fn − 0‖1 =

∫ 1

0

e−ntdt =
1

n
(1− e−n)→ 0

as n→∞. However, the sequence (fn)n∈N does not converge to the zero function
in (C[0, 1], ‖.‖∞), since

‖fn − 0‖∞ = sup
t∈[0,1]

|e−nt| = 1

for any n ∈ N. In fact, one can show that there is no g ∈ C[0, 1] such that fn → g
in (C[0, 1], ‖.‖∞).

Let A be a subset of the metric space (X, d).

• A point x0 ∈ A is called an interior point of A if there is a small ball
centered at x0 which is contained entirely in A, i.e. if there exists an ε > 0
such that Bε(x0) ⊆ A.

• A point x0 ∈ X is called a boundary point of A if any small ball centered
at x0 has nonempty intersections with both A and its complement, i.e. if
for all ε > 0 there exist x, y ∈ Bε(x0) such that x ∈ A and y ∈ X\A.

• The set of interior points of A constitutes its interior, int(A), and the set
of boundary points its boundary, ∂A. We say that A is open if any point
in A is an interior point, and A is closed if its boundary ∂A is contained
in A. The closure of A is the union of A and its boundary, and is denoted
A := A ∪ ∂A.

Note: The open ball Br(x0) is an open set. Its closure is contained in the closed
ball

Br(x0) = {y ∈ X : d(x, y) ≤ r},
but for a normed space (X, ‖.‖) we have that the closure of Br(x0) may be identified
with the closed ball of radius r centered at x0.
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A useful reformulation of the definition of closed sets is stated in the following
lemma:

Lemma 3.2. Let A be a subset of (X, d). Then A is closed if and only if its
complement X\A is open.

A few remarks concerning closed and open sets: A set in a metric space does not
need to be either open or closed, e.g. [0, 1) in (R, |.|). Furthermore, a set might be
both open and closed, e.g. in (X, d) the set X and the empty set are both open
and closed.
Example 3.1.3. The ball Br(x) in the metric space (R, | · |) is the open interval
(x−r, x+r). The boundary points of Br(x) are x−r and x+r, and accordingly the
closure Br(x) of Br(x) is the closed interval [x−r, x+r]. The intervals [x−r, x+r)
and (x− r, x+ r] are neither open nor closed in the metric space (R, | · |).

Now suppose A is a subset of X, and let (an)n∈N in A be a convergent sequence
such that an → x, with x ∈ X\A. That is, the sequence an converges to an element
x ∈ X which is not contained in A. Then we call x a limit point of A. We write
A for the union of A and all its limit points. This agrees with our definition of the
closure of a set A . We see that x ∈ A if there exists a sequence (an)n∈N in A such
that an → x.

Lemma 3.3. Let A be subset of a metric space (X, d). Then the closure of
A, A consists of all limits of convergent sequences (xn)n ⊂ A. Consequently,
a set A in (X, d) is closed if and only if the limit of any convergent sequence
of elements in A is also in A.

Proof. Assume A is closed in (X, d) and let (xn)n ⊂ A converge to x ∈ X.
Suppose x is not in the closed set A. Hence x is an element of the open set X\A,
i.e. there exists a ball of radius ε around x which does not contain any elements of
the sequence (xn)n ⊂ A. This contradicts our assumption that xn → x.
Suppose now that x ∈ A. Then x ∈ A or x ∈ ∂A. Hence we have for any ε > 0
that Bε(x) ∩ A 6= ∅. Thus if we pick for ε = 1/n for n ∈ N, then we obtain a
sequence (xn) ⊂ A. For any ε > 0 there exists an N ∈ N such that ε > 1/N . By
the construction of the sequence (xn)n we have |x− xn| < 1/N < ε. �

Example 3.1.4. We revisit Example 3.1.2. Let A be the subset of C[0, 1] contain-
ing all positive-valued functions, i.e.

A = {f ∈ C[0, 1] : f(t) > 0 for all t ∈ [0, 1]} .

We have seen that fn converges to the zero function in (C[0, 1], ‖ · ‖1). Thus,
although fn ∈ A for every n ∈ N, the sequence (fn)n∈N converges to an element
(the zero function) which is not contained in A. This shows that the function
f(t) = 0 for all t ∈ [0, 1] is a limit point of A.

We know that if (an)n∈N is a convergent sequence of real numbers, then (an)n∈N
is a bounded sequence, meaning that there exists a constant M > 0 such that
|an| < M for all n ∈ N. The same is true for convergent sequences in metric spaces
and normed spaces, provided that we define bounded subsets appropriately.
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Definition 3.1.5. A subset A of a metric space (X, d) is bounded if there
exists a radius r0 > 0 and a vector x0 ∈ X such that A ⊆ Br0(x0). In this
case we define the diameter of A, diam(A), to be the real number

diam(A) = sup{d(x, y) : x, y ∈ A}.

In particular, if A is a bounded subset of a normed space (X, ‖·‖), then the diameter
of A is

diam(A) = sup{‖x− y‖ : x, y ∈ A}.

Lemma 3.4. For a subset A of a normed space (X, ‖ · ‖), the following state-
ments are equivalent:

i) A is bounded.
ii) There exists a constant M > 0 such that ‖x−y‖ ≤M for all x, y ∈ A.

iii) diam(A) <∞
iv) For every x ∈ X one can find a radius r > 0 such that A ⊆ Br(x).
v) There exists a m > 0 such that ‖x‖ ≤ m for all x ∈ A.

Proof. We show that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i), and finally that
(i)⇒ (v)⇒ (i).

If (i) holds, we have A ⊂ Br0(x0) for some x0 ∈ X and r0 > 0. Then for any
x, y ∈ A, we have x, y ∈ Br0(x0), and thus

‖x− y‖ ≤ ‖x− x0‖+ ‖x0 − y‖ ≤ 2r0.

Hence, ‖x− y‖ ≤M = 2r0 for all x, y ∈ A.

If (ii) holds, then diam(A) ≤M <∞ by the definition of supremum.

If (iii) holds, then for all x, y ∈ A we have ‖x − y‖ ≤ diam(A) < ∞. Fix an
element a1 ∈ A. Given any x ∈ X and a ∈ A, we have ‖x − a‖ ≤ ‖x − a1‖ +
‖a1 − a‖ ≤ d(x, a1) + diam(A) (where d is the metric induced by ‖ · ‖). Now define
r := d(x, a1) + diam(A). Then A ⊆ Br(x), so (iv) is satisfied.

The implication (iv) → (i) is immediate from our definition of boundedness of
A.

To see that (i)→ (v), we simply observe that

A ⊆ Br0(x0) ⊆ B‖x0‖+r0(0),

and thus ‖x‖ ≤ m := ‖x0‖+ r for all x ∈ A.

Finally, if (v) is satisfied, then A ⊆ Bm(0), and again the condition defining bound-
edness of A is immediately satisfied (with x0 = 0 and r0 = m). �

Lemma 3.5. A convergent sequence in a metric space (X, d) is bounded.

Proof. Exercise. �
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The definition of convergence of a sequence has one obvious disadvantage; it
involves a specified limit value. In order to prove that a sequence (xn)n∈N is indeed
convergent, we must first have a candidate x for the limit value. This shortcoming
in the definition motivates the introduction of the following notion.

Definition 3.1.6. Let (xn)n∈N be a sequence in the metric space (X, d). We
say that (xn)n∈N is a Cauchy sequence if for any ε > 0 there exists an N ∈ N
such that for all m,n ≥ N we have

d(xn, xm) < ε.

In particular, if (xn)n∈N is a sequence in the normed space (X, ‖ · ‖), then
(xn)n∈N is Cauchy if for any ε > 0 there exists an N ∈ N such that

‖xn − xm‖ < ε, n,m ≥ N.
In an inner product space (X, 〈·, ·〉), we say that a sequence (xn)n∈N is Cauchy
if the sequence is Cauchy with respect to the induced norm ‖x‖ := 〈x, x〉1/2.

Later, we will also discuss Cauchy sequences in an inner product space

Lemma 3.6. Any Cauchy sequence in (X, d) is bounded.

Proof. Let (xn)n∈N be a Cauchy sequence. Then there exists N ∈ N such
that for all m,n ≥ N we have

d(xn, xm) < 1.

In particular, we have

d(xN , xm) < 1 ∀m ≥ N,
or equivalently xm ∈ B1(xN ) for all m ≥ N . Now let

r = max {1, d(x1, xN ), d(x2, xN ), . . . , d(xN−1, xN )} .

Then for any n ∈ N, we have xn ∈ Br+1(xN ), so (xn)n∈N is bounded. �

Lemma 3.7. Every convergent sequence in (X, ‖.‖) (or in (X, d)) is a Cauchy
sequence.

Proof. Exercise. �

The reversed implication does not hold; Cauchy sequences need not necessarily be
convergent.
Example 3.1.7. The sequence of functions (fn)n∈N in (C[a, b], ‖ · ‖1) given by

fn(t) =


0 for a ≤ t ≤ a+b

2 ,

n(t− a+b
2 ) for a+b

2 < t ≤ a+b
2 + 1

n ,

1 for a+b
2 + 1

n ≤ t ≤ b.

is a Cauchy sequence. For m > n, we have

‖fm − fn‖1 =
1

2

(
1

n
− 1

m

)
<

1

2n
→ 0 as n→∞.
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(To see this, observe that the norm of the difference is necessarily equal to the area
of the red triangle in Figure 1.)

10 1
2

1

1
2 + 1

n

Figure 1. The function fn in Example 3.1.7 when [a, b] = [0, 1].

However, the sequence fn does not converge in (C[a, b], ‖ · ‖1). Suppose to
the contrary that there exists f ∈ C[a, b] such that fn → f . Let us analyze the
implications of ‖fn − f‖1 → 0 as n→∞ by splitting the integral in three:∫ b

a

|fn(t)− f(t)|dt =
[ ∫ a+b

2

a

+

∫ a+b
2 +

1
n

a+b
2

+

∫ b

a+b
2 +

1
n

]
|fn(t)− f(t)|dt

In order for ‖fn − f‖1 to tend to zero, each of the integrals on the right hand side
must necessarily tend to 0. We have that:

(1)
∫ a+b

2
a

|fn(t)− f(t)|dt→ 0 only if f = 0 on [a, a+b2 ];

(2) Since fn is continuous for all n ∈ N and f is continuous on [a, b] we have∫ a+b
2 +

1
n

a+b
2

|fn(t)− f(t)|dt ≤ (max
t∈[a,b

|f(t)|+ 1)
1

n
→ 0

as n → ∞. Hence, requiring
∫ a+b

2 +
1
n

a+b
2

|fn(t) − f(t)|dt → 0 imposes no

condition on the limit function f .

(3) By the continuity of f we have that∫ b

a+b
2 +

1
n

|fn(t)− f(t)|dt =

∫ b

a+b
2 +

1
n

|1− f(t)|dt→
∫ b

a+b
2

|1− f(t)|dt,

as n→∞. Hence, for this limit to be zero, we must have 1− f(t) = 0 for
all t ∈ ((a + b)/2, b], or equivalently f(t) = 1 for t ∈ ((a + b)/2, b]. This
shows that if fn has a limit f , it must necessarily satisfy

f(t) =

{
0 for a ≤ t ≤ a+b

2 ,

1 for a+b
2 < t ≤ b.

But this is a discontinuous function f /∈ C[a, b].
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Example 3.1.7 illustrates that the vector space (C[a, b], ‖ · ‖1) is not complete;
this is the topic of our next subsection.

3.2. Completeness

We have seen that a convergent sequence (xn)n∈N must be Cauchy. To the
contrary, a Cauchy sequence (yn)n∈N need not necessarily be convergent. However,
this is indeed the case in the vector space of real (or complex) numbers endowed
with the norm ‖ · ‖ = | · |.

Theorem 3.8. Suppose (an)n∈N is a Cauchy sequence in (R, | · |). Then
(an)n∈N is convergent in R, meaning there exists a ∈ R such that an → a.

Proof. We are assuming (an)n∈N is Cauchy, so by Lemma 3.6 the sequence
(an)n∈N is bounded, and we can find M ∈ R such that an ∈ [−M,M ] for all n.
Now let

S := {s ∈ [−M,M ] : there exist infinitely many n ∈ N such that an ≥ s}.

It is clear that −M ∈ S and that S is bounded above by M . We now define
a := supS. Then a is necessarily an element of R.1

Claim: an → a as n→∞.
Observe that for any ε > 0, the Cauchy condition ensures that we can find N1

such that

(3.1) |am − an| < ε/2, m, n > N1.

By the definition of supremum as the least upper bound, it is clear that a+ε/2 /∈ S,
meaning only finitely many elements an exceed a + ε/2. In other words, we can
find N2 such that

an ≤ a+ ε/2, n > N2.

On the other hand, since a is the least upper bound of S, the smaller number
a − ε/2 cannot be an upper bound of S. Thus, there exists s ∈ S such that
s ≥ a− ε/2. Consequently, we have infinitely many elements an satisfying

an > s ≥ a− ε/2,

and in particular there exists N > max{N1, N2} such that

(3.2) a− ε/2 < aN ≤ a+ ε/2.

Finally, combining (3.1) and (3.2) we get

|an − a| ≤ |an − aN |+ |aN − a| < ε

for all n ≥ N . This completes the proof that an → a. �

When we define a := supS in the proof above, we are using a fundamental
property of R, namely that any non-empty subset S ⊂ R that is bounded from
above must have a least upper bound (or supremum) in the set of real numbers.
This is known as the completeness property or least upper bound property

1We elaborate on this once the proof is completed.
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of R. In contrast, the set Q of rational numbers does not have the least upper
bound property. An example that illustrates this is

S :=
{
x ∈ Q : x2 < 3

}
.

This set is non-empty and bounded from above, but it does not have a least upper
bound in Q; its least upper bound as a subset of the reals would be

√
3, but this

is not an element in Q. For any upper bound y ∈ Q, we can always find another
upper bound x ∈ Q such that x < y.

Exercise 3.2.1. Show that the equation x2 = 3 has no solutions in Q.

The property of R that any Cauchy sequence converges is such a desirable
property that it has a name when it occurs in general metric and normed spaces.

Definition 3.2.2. A metric space (X, d) is said to be complete if every Cauchy
sequence (xk)k∈N in X converges to a limit x ∈ X. A complete normed space
(X, ‖ · ‖) is called a Banach space. Similarly, a complete inner product space
(X, 〈·, ·〉) is called a Hilbert space.

We will return to Hilbert spaces in Chapters 5 and 6, and focus now on examples
of Banach spaces. We have seen already that (R, | · |) is a Banach space. It is an
almost immediate consequence that so is (Rd, ‖ · ‖∞).

Theorem 3.9. (Rd, ‖.‖∞) is a Banach space.

Proof. Suppose (xn)n∈N is a Cauchy sequence in Rd. Then for any ε > 0 we
can find N such that

‖xn − xm‖∞ = max
1≤j≤d

|xnj − xmj | < ε, n,m > N,

where xnj is the jth entry in the vector xn. It follows that for every j = 1, . . . , d,
we have

|xnj − xmj | < ε, n,m > N.

In other words, the sequence (xnj)n∈N is Cauchy in (R, | · |). Since (R, | · |) is
complete, it follows that there exists yj ∈ R such that xnj → yj , and we can find
Nj such that

|xnj − yj | < ε, n > Nj .

Now let y = (y1, . . . , yd) ∈ Rd and N = max1≤j≤dNj . Then

‖xn − y‖∞ = max
1≤j≤d

|xnj − yj | < ε, n > N.

Thus xn → y ∈ Rd, and this completes the proof that (Rd, ‖ · ‖∞) is complete. �

We move on to examples of sequence spaces.

Theorem 3.10. (`1, ‖ · ‖1) is a Banach space.

Proof. A useful strategy when proving that a metric space is complete is to
split the proof into three steps.
Step 1: Find a candidate for the limit.
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Let (xn)n be a Cauchy sequence in `1. We denote the nth element of the
sequence by

xn = (x
(n)
1 , x

(n)
2 , ...).

Fix ε > 0. Note that for any fixed coordinate j, we have

|x(m)
j − x(n)j | ≤ ‖xm − xn‖1 < ε

for sufficiently large m and n, so the sequence (x
(n)
j )n∈N is Cauchy in (R, | · |). Since

(R, | · |) is complete, we can find zj ∈ R such that x
(n)
j → zj as n → ∞. Hence, a

reasonable candidate for the limit of (xn) (should it converge) is the sequence

z = (z1, z2, z3, . . .).

Step 2: Show that z ∈ `1.
We have that

N∑
j=1

|zj | =
N∑
j=1

| lim
n→∞

x
(n)
j | =

N∑
j=1

lim
n→∞

|x(n)j | = lim
n→∞

N∑
j=1

|x(n)j |,

where the interchange of limit and (finite) sum in R does not pose a problem (make
sure you agree with this!). Treating the sum on the right hand side above, we see
that

(3.3)

N∑
j=1

|x(n)j | ≤
∞∑
j=1

|x(n)j | ≤ C,

since xn ∈ `1. Moreover, as the sequence (xn) is Cauchy, it is bounded by Lemma
3.6, so there exists a universal C such that (3.3) holds for all n ∈ N. By taking the
limit n→∞ on both sides in this inequality, we get

N∑
j=1

|zj | = lim
n→∞

N∑
j=1

|x(n)j | ≤ C,

and since this holds for arbitrary N , it also holds as N →∞. We get
∞∑
j=1

|zj | ≤ C,

and conclude that z ∈ `1.
Step 3: Show that xn → z.

Finally, we prove that ‖xn − z‖1 → 0 as n→∞. Fix ε > 0, and find N1 such
that

‖xn − xm‖1 < ε, n,m > N1.

For any fixed N , we then have

N∑
j=1

|x(n)j − x(m)
j | ≤ ‖xn − xm‖1 < ε, n,m > N1.

In particular, this holds as m→∞. We get

lim
m→∞

N∑
j=1

|x(n)j − x(m)
j | =

N∑
j=1

|x(n)j − lim
m→∞

x
(m)
j | =

N∑
j=1

|x(n)j − zj | ≤ ε.
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As this holds for arbitrary N , it must also hold in the limit N →∞. We get

‖xn − z‖1 =

∞∑
j=1

|x(n)j − zj | ≤ ε, n ≥ N1,

and xn → z as n→∞. �

By similar reasoning, one can show the following.

Theorem 3.11. (`p, ‖ · ‖p) is a Banach space for any 1 ≤ p ≤ ∞.

Exercise 3.2.3. Show that (`∞, ‖ · ‖∞) is a Banach space.

Inspired by Theorem 3.11, it is tempting to suggest that also the function spaces
(C[a, b], ‖ · ‖p) are complete. However, we have seen that this is not the case for
p = 1 (recall Example 3.1.7). In fact, it is not the case for any 1 ≤ p <∞.

Theorem 3.12. (C[a, b], ‖ · ‖∞) is a Banach space.

Before we pursue the proof of Theorem 3.12, let us briefly review some notions and
results from the theory of continuous functions. Recall that a function f defined
on an interval I is continuous at a point x0 ∈ I if for every ε > 0 we can find δ > 0
such that

|x− x0| < δ ⇒ |f(x)− f(x0)| < ε.

We say that the function is continuous on the interval I if it is continuous at every
point x0 ∈ I.

Definition 3.2.4. Let (fn) be a sequence of functions on an interval I ⊂ R.

i) We say that (fn) converges pointwise to a limit function f if for any
given ε > 0 and x ∈ I there exists N such that

|fn(x)− f(x)| < ε, n ≥ N.
ii) We say that (fn) converges uniformly to a limit function f if for any

given ε > 0 there exists N such that

|fn(x)− f(x)| < ε, n ≥ N,
for all x ∈ I.

There is a substantial difference between pointwise and uniform convergence. While
pointwise convergence allows you to find an N , which might depend on both ε and
x, such that |fn(x)− f(x)| < ε whenever n ≥ N , uniform convergence implies that
there exists a universal N such that |fn(x)− f(x)| < ε for all x ∈ I, n ≥ N . The
latter implies the former.
Remark 3.2.5. It is clear from the definition of ‖ · ‖∞ on C[a, b] that the uniform
convergence of a sequence (fn) in C[a, b] to a limit function f is equivalent to saying
that ‖fn − f‖∞ → 0 as n→∞.

Finally, we recall the following.
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Theorem 3.13. Let (fn) be a sequence of continuous functions on [a, b] which
converges uniformly to a limit function f . Then f is continuous on [a, b].

Proof. We want to show that for any fixed y ∈ [a, b] and ε > 0 we can find
δ > 0 such that

|x− y| < δ ⇒ |f(x)− f(y)| < ε.

By the uniform convergence of (fn) to f , there exists an N such that

|fn(x)− f(x)| < ε

3
for all x ∈ [a, b], n ≥ N.

Moreover, the function fN is continuous, so there exists a δ > 0 such that

|x− y| < δ ⇒ |fN (x)− fN (y)| < ε

3
.

It follows that

|f(x)− f(y)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (y)|+ |fN (y)− f(y)|

<
ε

3
+
ε

3
+
ε

3
= ε

whenever |x− y| < δ. �

Proof of Theorem 3.12.
Step 1: Find a candidate for the limit.

Fix x ∈ [a, b] and note that

|fn(x)− fm(x)| ≤ ‖fn − fm‖∞ = max
a≤x≤b

|fn(x)− fm(x)|.

Thus if (fn) is a Cauchy sequence in (C[a, b], ‖ · ‖∞), then (fn(x))n∈N is a Cauchy
sequence in (R, | · |). Since (R, | · |) is complete, there exists a point f(x) ∈ R such
that fn(x)→ f(x). A reasonable candidate for the limit is the function f given by
pointwise limits.
Step 2: Show that f ∈ C[a, b].

We observe that the convergence of fn to f is not only pointwise, but in fact
uniform; Since (fn) is Cauchy, there is for every ε > 0 an integer N such that

‖fn − fm‖∞ = max
a≤x≤b

|fn(x)− fm(x)| < ε

2
, n,m ≥ N.

In particular, this holds as m→∞, and we get

(3.4) max
a≤x≤b

|fn(x)− f(x)| ≤ ε

2
< ε, n ≥ N.

Thus, fn converges uniformly to f on the interval [a, b], and it follows by Theorem
3.13 that f ∈ C[a, b].
Step 3: Show that fn → f .

This is immediate from (3.4). �

Remark. In the proof of Theorem 3.12, we are assuming for simplicity that the
functions in C[a, b] are real-valued. Note, however, that Theorem 3.12 is true also
for complex-valued functions.

We close this subsection with a useful result on completeness in subsets.



42 Chapter 3

Theorem 3.14.

i) A subset Y of a complete metric space (X, d) is itself a complete
metric space (with the inherited metric) if and only if Y is closed.

ii) A subspace Y of a Banach space (X, ‖ · ‖) is itself a Banach space
(with the inherited norm) if and only if Y is closed.

Proof of Theorem 3.14 i). Suppose Y is a complete metric space (with the
inherited metric d), and choose any point x in the closure Y . Then there exists a
sequence (xn) in Y such that xn → x. Since the sequence (xn) is convergent (in
X), it is necessarily Cauchy by Lemma 3.7. Finally, since Y is complete, we must
have x ∈ Y . This shows that Y = Y , and thus Y is closed.

Conversely, suppose Y is closed, and let (xn) be a Cauchy sequence in Y . Since
(X, d) is complete, we have xn → x with x ∈ X. In other words, x is a limit point
of Y . Since Y = Y by assumption, it follows that x ∈ Y , so the Cauchy sequence
(xn) converges in Y , and Y is complete. �

3.3. Completions

We have seen that not all metric (or normed) spaces are complete, and in
particular (C[a, b], ‖ · ‖p) is not complete for any 1 ≤ p < ∞. However, every
metric space and every normed space can be “made complete” by adding some
more elements to the space. In this section we introduce the concepts needed to
give a precise explanation of this vaguely formulated claim.

3.3.1. Isometries and isomorphisms. Recall that in mathematics an iso-
morphism is a bijective (one-to-one and onto) map that preserves the essential
structure of something. Similarly, an isometry is a map that preserves distances.

Definition 3.3.1. Given two metric spaces (X, dX) and (Y, dY ).

• A map ϕ : X → Y is called an embedding and it is an isometric
embedding of X into Y if for all x1, x2 ∈ X we have

dX(x1, x2) = dY (ϕ(x1), ϕ(x2)) .

• If ϕ : X → Y is surjective and isometric, then we say that (X, dX)
and (Y, dY ) are isometric.

The function ϕ is called an isometry.

Note that we did not require an isometry to be injective, because it is a consequence
of the isometry condition.

Lemma 3.15. Suppose ϕ is an isometry between (X, dX) and (Y, dY ). Then
ϕ is injective.

Proof. For two points x1 6= x2 inX we have 0 6= dX(x1, x2) = dY (ϕ(x1), ϕ(x2))
and thus ϕ is injective. �
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Example 3.3.2. The spaces C[0, 1] and C[a, b] (for a < b) of continuous, real-
valued functions endowed with the supremum norm ‖ · ‖∞ are isometric. An isom-
etry between these spaces is given by

ϕ : C[0, 1]→ C[a, b], f(·)→ f

(
· − a
b− a

)
.

To show that this is an isometry, we calculate that:

dC[0,1](f, g) = max
x∈[0,1]

|f(x)− g(x)|

= max
x∈[a,b]

∣∣∣∣f (x− ab− a

)
− g

(
x− a
b− a

)∣∣∣∣ = dC[a,b](ϕ(f), ϕ(g)).

We leave it to the reader to check the ϕ is a surjection. Note that the metrics on
C[0, 1] and C[a, b] are those induced by the supremum norm.

Definition 3.3.3. A vector space isomorphism is a bijective linear map
T : X → Y between vector spaces X and Y (over the same field F ∈ {R,C}).
If such a function exists, the vector spaces X and Y are isomorphic, and we
write

X ∼= Y.

Recall from Section 2.1 that T : X → Y is a linear map if

T (x+ y) = T (x) + T (y) and T (λx) = λT (x), for all x, y ∈ X, λ ∈ F.

Example 3.3.4. Regarded as a real vector space (i.e. where F = R), the space Cn
is isomorphic to Euclidean space R2n via the isomorphism

z = (x1 + iy1, . . . , xn + iyn)→ (x, y) = (x1, . . . , xn, y1, . . . , yn).

Example 3.3.5. Recall from Example 2.1.2 that the set of polynomials with real-
valued coefficients of degree at most n, denoted Pn, is a vector space. It is isomor-
phic to Euclidean space Rn+1, because

(3.5) T : Pn → Rn+1, anx
n + an−1x

n−1 + . . .+ a1x+ a0 → (a0, a1, . . . , an)

is an isomorphism.

Exercise 3.3.6. Show that the map T : Pn → Rn+1 in (3.5) is both linear and
bijective.

Definition 3.3.7. We say that two normed spaces (X, ‖.‖X) and (Y, ‖.‖Y ) are
called isometrically isomorphic if the isomorphism T between the vector
spaces X and Y is also an isometry.

For instance, the spaces of real-valued continuous functions C[0, 1] and C[a, b] are
isometric; returning to example 3.3.2, it is not difficult to check that the provided
isometry is also a vector space isomorphism.
Example 3.3.8. i) The vector space of polynomials of degree at most one,

P1(R), is embedded in Euclidean space R3, since

P1
∼= R2 ⊂ R3.
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ii) The identity operator provides an embedding of the vector space of con-
tinuously differentiable functions on an interval I into the vector space of
continuous functions on the same interval:

C1(I,R) ↪→ C(I,R).

3.3.2. Dense subsets and separability.

Definition 3.3.9. A subset M ⊂ X of a metric space (X, d) is dense in X if
its closure is the whole space:

M is dense in X ⇔ M = X.

Hence, the subspace (M,d) is densely embedded in (X, d).

By going back to the definition of closure in a metric space, one can see that M ⊂ X
is dense if and only if for every x ∈ X and every ε > 0 there exists some m ∈ M
such that d(x,m) < ε. In a sense, one can think that a dense subset M contains
“almost all of X”.

Example 3.3.10. (1) Q is dense in R: for any λ ∈ R and ε > 0, there is a
rational number q ∈ Q such that d(q, λ) < ε. We will not prove this fact
in this course.

(2) Qn is dense in Rn and Qn + iQn is dense in Cn.
(3) The space cf of sequences with finitely many non-zero entries is dense in

`p for every 1 ≤ p <∞ (Exercise).
(4) cf is dense in the normed space (c0, ‖.‖∞), where c0 denotes the space of

real-valued sequences converging to zero.
The argument is based on identifying for a given x ∈ c0 an approximant
y to x in cf .
Since x is in c0, i.e. there exists an N ∈ N such that |xn| < ε for all n ≥ N .
We set y := (x1, ..., xN , 0, 0, ...), then y ∈ cf and we have ‖x− y‖∞ < ε.

Another very important example of a dense subset is given by the following
result.

Theorem 3.16 (Stone-Weierstrass). Let [a, b] be a bounded interval in R.
The space P of polynomials is dense in (C[a, b], ‖·‖∞). In other words, for any
f ∈ C[a, b] and ε > 0, there exists a polynomial p ∈ P such that ‖f −p‖∞ < ε.

There are many versions of the Stone-Weierstrass theorem, and the one stated above
is perhaps the most classical. Another variant established by Weierstrass is that
for continuous periodic functions: let us denote by T the space of all trigonometric
polynomials, that is all functions tn(x) of the form

tn(x) = c−ne
−2πinx + · · ·+ c−1e

−2πix + c0 + c1e
2πix + · · ·+ cne

2πinx, n ∈ N.

Theorem 3.17 (Weierstrass). Suppose f is a continuous, 1-periodic function.
Then for every ε > 0 there exists a trigonometric polynomial t such that
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‖f − t‖∞ < ε. In other words, T is dense in the space of all 1-periodic
continuous functions (with respect to the supremum norm).

The proof of the Stone-Weierstrass theorem is outside the scope of this course.

Definition 3.3.11. A metric space is said to be separable if it contains a
countable dense set:

X separable ⇔ ∃ (xn)n∈N ⊂ X such that (xn)n∈N = X.

Example 3.3.12. Since Q is countable, and Q = R (with respect to the norm
‖ · ‖1 = | · |), it follows that (R, | · |) is separable. Using this, one can show that all
the spaces Rn, Cn, `p(R) and `p(C) with 1 ≤ p <∞ are separable.

However, as we will see from the following proposition, `∞ is not separable. In this
respect, the space `∞ is “bigger” than any other `p.

Proposition 3.18. The space (`∞, ‖ · ‖∞) is not separable.

Proof. For an index set I ⊆ N we define vectors eI ∈ `∞ by (eI)n = 1 for
n ∈ I and (eI)n = 0 for n /∈ I. Note that ‖eI − eJ‖∞ = 1 whenever I 6= J . We
define a collection of disjoint open balls by B = {B1/2(eI) : I ⊆ N}.
Recall from Chapter 1.3 that there exist uncountably many binary sequences of
zeros and ones. Hence B is uncountable. Now let M be any dense set in `∞. Then
because M is dense in `∞, each of the elements in B must contain an element of M .
Hence, M is uncountable and this shows `∞ does not contain a countable dense
subset. Consequently, `∞ is not separable. �

3.3.3. The completion theorem. With density of subsets and embeddings
defined, we are finally equipped to state precisely what is meant by saying that any
metric (or normed) space can be “made complete”.

Theorem 3.19. Every metric (normed) space is densely and isometrically
embedded in a complete metric (normed) space.

For the case of a normed space (X, ‖ · ‖X), Theorem 3.19 states that there exists

a Banach space (X̃, ‖ · ‖X̃), and an injective linear mapping T : X → X̃ such that

T (X) is dense in X̃, and

‖x− y‖X = ‖T (x)− T (y)‖X̃ for all x, y ∈ X.

We call (X̃, ‖ · ‖X̃) the completion of (X, ‖ · ‖X).

Example 3.3.13. (1) The completion of the metric space (Q, | · |) is the com-
plete metric space (R, | · |)

(2) If we complete the normed space of smooth functions C∞([0, 1],R) with
respect to the supremum norm ‖ ·‖∞, we get the Banach space (C[0, 1], ‖ ·
‖∞).
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Proposition 3.20. For 1 ≤ p < ∞, the normed space (C[a, b], ‖ · ‖p) has a
completion which we denote by Lp[a, b].

In this course we will not define precisely what the space Lp[a, b] is. However, you
should think of this as the space of all (measurable) functions such that the integral∫ b

a

|f(x)|p dx

exists and is finite. The space Lp[a, b] is equipped with the norm

‖f‖Lp[a,b] =

(∫ b

a

|f(x)|p
)1/p

.

In particular, it contains all functions f where |f |p is Riemann integrable. The case
p = 2 is of special interest; L2[a, b] is called the space of square-integrable functions.
A deep result in analysis states that L2[a, b] ∼= `2.

3.4. Banach’s Fixed Point Theorem

The Banach fixed point theorem or contraction theorem concerns certain map-
pings (so-called contractions) of a complete metric space into itself. It states con-
ditions sufficient for the existence and uniqueness of a fixed point, which we will see
is a point that is mapped onto itself. The theorem also gives an iterative process
by which we can obtain approximations to the fixed point and error bounds.

Definition 3.4.1. A fixed point of a mapping T : X → X of a set X into
itself is an x ∈ X which is mapped onto itself, that is

Tx = x.

Example 3.4.2.

i) A translation x→ x+ a in R has no fixed points.
ii) A rotation of the plane has a single fixed point, namely the center of

rotation.
iii) The mapping x→ x2 on R has two fixed points; 0 and 1.
iv) The projection (x1, x2) → (x1, 0) on R2 has infinitely many fixed points;

all points of the form (x, 0).

Banach’s fixed point theorem is an existence and uniqueness theorem for fixed
points of certain mappings. As we will see from the proof, it also provides us with
a constructive procedure for getting better and better approximations of the fixed
point. This procedure is called iteration; we start by choosing an arbitrary x0 in a
given set, and calculate recursively a sequence x0, x1, x2 . . . by letting

xn+1 = Txn, n = 0, 1, 2 . . .

Such iteration procedures appear in nearly every branch of applied mathematics,
and Banach’s fixed point theorem is often what guarantees convergence of the
scheme and uniqueness of the solution.
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Definition 3.4.3. Let (X, d) be a metric space. A mapping T : X → X is
called a contraction on X if there exists a positive constant K < 1 such that

(3.6) d (T (x), T (y)) ≤ Kd(x, y) for all x, y ∈ X.

Geometrically, this means that the images T (x) and T (y) are closer together than
the points x and y. Note in particular that if (X, ‖ · ‖) is a normed space, then T
is a contraction on X if there exists a positive constant K < 1 such that

‖T (x)− T (y)‖ ≤ K‖x− y‖ for all x, y ∈ X.

Theorem 3.21 (Banach’s fixed point theorem). Let (X, d) be a complete
metric space and let T : X → X be a contraction on X. Then T has a unique
fixed point x ∈ X (such that T (x) = x).

Proof. Let us choose any x0 ∈ X, and define the sequence (xn), where

(3.7) xn+1 = T (xn), n = 0, 1, 2, . . .

Our proof strategy will be to 1) show that this sequence is Cauchy; 2) show that
its limit is a fixed point in X; and 3) show that the fixed point is unique.

Step 1: By (3.6) and (3.7), we have that

d(xm+1, xm) = d(T (xm), T (xm−1))

≤ Kd(xm, xm−1)

= Kd(T (xm−1), T (xm−2))

≤ K2d(xm−1, xm−2)

. . . ≤ Kmd(x1, x0).

Hence by the triangle inequality we get (for n ≥ m) that

d(xm, xn) ≤ d(xm, xm+1) + d(xm+1, xm+2) + · · ·+ d(xn−1, xn)

≤ (Km +Km+1 + · · ·+Kn−1)d(x1, x0) = Km 1−Kn−m

1−K
d(x0, x1),

where in the last equality we have used the summation formula for a geometric
series. Since 0 < K < 1, we have 1−Kn−m < 1, and consequently

(3.8) d(xm, xn) ≤ Km

1−K
d(x1, x0).

Since 0 < K < 1 and d(x0, x1) are fixed, it is clear that that we can make d(xm, xn)
as small as we please by choosing m sufficiently large (and n > m). This proves
that (xn) is Cauchy. Finally, since (X, d) is complete, there exists an x ∈ X such
that xn → x.

Step 2: To show that x is a fixed point, we consider the distance d(x, T (x)).
From the triangle inequality and (3.6), we get

d(x, T (x)) ≤ d(x, xm) + d(xm, T (x))

= d(x, xm) + d(T (xm−1), T (x))

≤ d(x, xm) +Kd(xm−1, x),
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and because xn → x it is clear that we can make this distance as small as we please
by choosing m sufficiently large. We conclude that

d(x, T (x)) = 0 ⇒ T (x) = x,

so x ∈ X is a fixed point of T .
Step 3: Suppose there are two fixed points x = T (x) and x̃ = T (x̃). Then from

(3.6) it follows that

d(x, x̃) = d(T (x), T (x̃)) ≤ Kd(x, x̃),

which implies d(x, x̃) = 0 since 0 < K < 1. Hence x = x̃, and the fixed point x of
T is unique. �

Note that for Banach’s fixed point theorem to hold, it is crucial that T is a con-
traction; it is not sufficient that (3.6) holds for K = 1, i.e. that

d(T (x), T (y)) ≤ d(x, y) for all x, y ∈ X.

To see this, observe that the maps T1, T2 : R → R given by T1(x) = x + 1 and
T2(x) = x both satisfy (3.6) with K = 1. The map T1 has no fixed points, whereas
T2 has infinitely many.

Corollary 3.22 (Iterations and error bounds). The iterative sequence (3.7)
with arbitrary x0 ∈ X converges (under the assumptions in Banach’s fixed
point theorem) to the unique fixed point x of T . Error estimates are the a
prior estimate

(3.9) d(xm, x) ≤ Km

1−K
d(x0, x1),

and the posterior estimate

(3.10) d(xm, x) ≤ K

1−K
d(xm−1, xm).

The prior error bound (3.9) can be used at the beginning of a calculation for
estimating the number of steps necessary for obtaining a given accuracy. The
posterior bound (3.10) can be used at intermediate stages to check whether we are
possibly converging faster than suggested by (3.9). We see that if two successive
iterations xm and xm+1 = T (xm) are nearly equal, then this guarantees that we
are very close to the true fixed point x.

Proof of Corollary 3.22. The first statement is obvious from the proof
of Banach’s fixed point theorem. The prior bound (3.9) follows from (3.8) by
letting n → ∞. Finally let us establish (3.10). Since x is a fixed point and T is a
contraction, we have

d(xm, x) = d(T (xm−1), T (x))

≤ Kd(xm−1, x)

≤ K (d(xm−1, xm) + d(xm, x)) ,

where in the last step we have used the triangle inequality. Rearranging terms, we
arrive at (3.10). �
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A classical application of Banach’s fixed point theorem is Newton’s method for
finding roots of equations. Starting with a differentiable function f and an initial
guess x0 for a root of f , Newton’s method suggests

(3.11) xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, 2, . . .

as a sequence of successively better approximations to the true root of f . We look
at a specific example.
Example 3.4.4. Consider the equation f(x) = x2 − 3, which we know has two
roots, and let us apply Banach’s fixed point theorem to determine when we can
expect the scheme (3.11) to converge to x =

√
3. Setting

T (x) := x− f(x)

f ′(x)
= x− x2 − 3

2x
=

1

2
(x+

3

x
),

we see that T is a map from the closed set [
√

3,∞) into itself. Moreover, a point

x ∈ [
√

3,∞) is a fixed point of T if and only if f(x) = 0. Finally, we observe that

d(T (x), T (y)) = |T (x)− T (y)|

=
1

2

∣∣∣∣(x+
3

x

)
−
(
y +

3

y

)∣∣∣∣
=

1

2
|x− y| ·

∣∣∣∣1− 3

xy

∣∣∣∣
≤ 1

2
|x− y| = 1

2
d(x, y),

for all x, y ∈ [
√

3,∞). Hence, T is a contraction on the complete space
(
[
√

3,∞), | · |
)
,

and by Banach’s fixed point theorem we conclude that the scheme (3.11) converges

to the root x =
√

3 for any starting point x0 ∈ [
√

3,∞).

In fact, the scheme will converge to x =
√

3 for any starting point x0 ∈ (0,∞);

one can check that for any x0 ∈ (0,
√

3), we have

x1 = T (x0) =
1

2
(x0 +

3

x0
) >
√

3,

and we may therefore use Banach’s fixed point theorem with the “new” starting
point x1.

3.5. Applications of Banach’s fixed point theorem

The most interesting applications of Banach’s fixed point theorem arise in con-
nection with function spaces. The theorem then yields existence and uniqueness
results for differential and integral equations, as we will now see.

3.5.1. Applications to integral equations. In this section we consider in-
tegral equations of the form

(3.12) f(x) = λ

∫ b

a

k(x, y)f(y) dy + g(x),

where f : [a, b]→ R is an unknown function, k : [a, b]× [a, b]→ R is a given function
(called the kernel) and λ is a parameter. Such integral equations can be considered
in various function spaces. In this section we consider (3.12) only on (C[a, b], ‖·‖∞).
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Recall that this is a complete normed space. We assume that g ∈ C[a, b], and that
the kernel k is continuous on the square [a, b]× [a, b].

Equation (3.12) can be restated as T (f) = f , where

(3.13) T (f)(x) = g(x) + λ

∫ b

a

k(x, y)f(y) dy.

Since g and k are both continuous, this defines an operator T : C[a, b] → C[a, b].
Let us now determine for which values of λ the map T is a contraction. Note first
that since k is continuous, it must also be bounded

(3.14) |k(x, y)| ≤ c for all (x, y) ∈ [a, b]× [a, b].

We have

d(T (f1), T (f2)) = ‖T (f1)− T (f2)‖∞

= |λ| max
x∈[a,b]

∣∣∣∣∣
∫ b

a

k(x, y) (f1(y)− f2(y)) dy

∣∣∣∣∣
≤ |λ| max

x∈[a,b]

∫ b

a

|k(x, y)||f1(y)− f2(y)| dy

≤ c|λ| max
x∈[a,b]

|f1(x)− f2(x)|
∫ b

a

dy

= c|λ|(b− a)d(f1, f2).

Recall that T is a contraction if

d(T (f1), T (f2)) ≤ Kd(f1, f2) for all f1, f2 ∈ C[a, b]

for some constant 0 < K < 1, and we see that this is indeed the case if

(3.15) |λ| < 1

c(b− a)
.

Banach’s fixed point theorem now gives:

Theorem 3.23. Suppose k and g in (3.12) are continuous on [a, b] × [a, b]
and [a, b], respectively, and assume that the parameter λ satisfies (3.15), with
c defined in (3.14). Then the integral equation (3.12) has a unique solution
f ∈ C[a, b]. This solution is the limit of the iterative sequence (f0, f1, f2, . . .),
where f0 is any continuous function on [a, b], and

fn+1(x) = g(x) + λ

∫ b

a

k(x, y)fn(y) dy, n = 0, 1, 2, . . .

3.5.2. Applications to differential equations. Let us consider the initial
value problem

(3.16) x′(t) =
dx

dt
= f(t, x), x(t0) = x0,

where f : A ⊂ R2 → R is a given function and x(t) is an unknown function which
we wish to determine. In this subsection we will use Banach’s fixed point theorem
to prove the famous Picard-Lindelöf Theorem, which guarantees the uniqueness and
existence of a solution to (3.16).
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Theorem 3.24 (Picard-Lindelöf). Let f be continuous on a rectangle

R = {(t, x) : |t− t0| ≤ a, |x− x0| ≤ b} ,
and thus bounded on R, say |f(x, t)| ≤ c. Suppose that f satisfies a Lipschitz
condition on R with respect to its second argument, meaning there exists a
constant k such that

|f(t, x)− f(t, y)| ≤ k|x− y| for all (t, x), (t, y) ∈ R.
Then the initial value problem (3.16) has a unique solution which exists on an
interval [t0 − β, t0 + β], where

(3.17) β < min

{
a,
b

c
,

1

k

}
.

Proof. Step 1: Equivalent formulation as an integral equation: We observe
first that if a function x ∈ C1[t0 − a, t0 + a] solves (3.16), then necessarily

(3.18) x(t) = x0 +

∫ t

t0

f(s, x(s)) ds

by integration. On the other hand, if x ∈ C[t0 − a, t0 + a] fulfils (3.18), then x is
a continuously differentiable solution to (3.16) (this follows from the Fundamental
Theorem of Calculus). Thus, the initial value problem (3.16) for x ∈ C1[t0−a, t0+a]
is equivalent to (3.18) for x ∈ C[t0 − a, t0 + a].

Step 2: Constructing an operator T on a complete space to which we can apply
Banach’s fixed point theorem: For J = [t0 − β, t0 + β] and y ∈ C(J), define the
operator

T (y)(t) := x0 +

∫ t

t0

f(s, y(s)) ds, t ∈ J.

Consider the set

X :=

{
y ∈ C(J) : y(t0) = x0, sup

t∈J
|x0 − y(t)| ≤ cβ

}
.

This is a closed subspace of C(J) (endowed with the norm ‖ · ‖∞), so (X, ‖ · ‖∞) is
complete.

Step 3: Observe that T : X → X: For y ∈ X, we need to show that T (y) ∈ X.
Observe that T (y)(t0) = x0. Moreover, we have

|x0 − T (y)(t)| =
∣∣∣∣∫ t

t0

f(s, y(s)) ds

∣∣∣∣ ≤ |t− t0| ·max
t∈J
|f(t, y(t))| ≤ cβ,

so T (y) ∈ X.

Step 4: Showing T is a contraction: Fix y1, y2 ∈ X. We have

|T (y1)(t)− T (y2)(t)| =
∣∣∣∣∫ t

t0

f(s, y1(s))− f(s, y2(s)) ds

∣∣∣∣
≤ |t− t0| ·max

s∈J
k|y1(s)− y2(s)|

≤ kβd(y1, y2).



52 Chapter 3

The right hand side above is independent of t, so taking the maximum over t ∈ J
on both sides, we get

d(T (y1), T (y2)) ≤ kβd(y1, y2).

Recalling (3.17), we see that kβ < 1, so T is a contraction on X.

Step 5: Conclusion: Banach’s fixed point theorem implies that T has a unique
fixed point x ∈ X such that

x(t) = T (x)(t) = x0 +

∫ t0

t

f(s, x(s)) ds.

It thus follows from Step 1 that (3.16) has a unique, continuous solution x(t) on
the interval [t0 − β, t0 + β]. �

In addition to existence and uniqueness of a solution, Banach’s fixed point theorem
provides us with an iterative procedure for finding the solution.

Corollary 3.25 (Picard iteration). Under the assumptions of the Picard-
Lindelöf Theorem, the sequence given by

x0(t) = x0, xn+1(t) = T (xn)(t) = x0 +

∫ t

t0

f(s, xn(s)) ds, n = 0, 1, 2, . . . ,

converges uniformly to the unique solution x(t) on J = [t0 − β, t0 + β].

Note, however, that the practical usefulness of Picard iteration is rather limited,
due to the integrations involved. This is illustrated by the following example.

Example 3.5.1. The first Picard iteration for the initial value problem

x′(t) =
√
x+ x3, x(1) = 2,

is given by

x1(t) = 2 +

∫ t

1

(√
2 + 23

)
ds = 2 + (

√
2 + 8)(t− 1).

The second is

x2(t) = 2 +

∫ t

1

(√
x1(s) + (x1(s))3

)
ds

= 2 +

∫ t

1

(√
2 + (

√
2 + 8)(s− 1) + (2 + (

√
2 + 8)(s− 1))3

)
ds.

We see that even the second integral in Picard iteration looks quite uninviting. The
next iterations x3, x4, . . . will involve even worse integrals, illustrating that Picard
iteration is often of limited use in practice.
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Bounded linear operators between normed spaces

In this section we focus on bounded linear operators between normed spaces.
We define the operator norm, and see that the vector space of bounded linear
operators between two normed spaces is itself a normed space when endowed with
the operator norm.

4.1. Revisiting linear operators

Recall from Section 2.1 that a transformation, or operator, T : V → W be-
tween two vector spaces V and W over the same field F is linear if it respects linear
structure, meaning that

T (α1v1 + α2v2) = α1T (v1) + α2T (v2) for all v1, v2 ∈ V, α1, α2 ∈ F.

When we work with a linear operator T : V → W , we often write Tv instead of
T (v).
Example 4.1.1. (1) For any vector space V , the identity operator IV : V →

V defined by IV v = v for all v ∈ V , is a linear operator.
(2) For any two vector spaces V and W , the zero operator 0 : V →W defined

by 0v = 0 for all v ∈ V , is a linear operator.
(3) Differentiation: Let X be the vector space of all polynomials on [a, b]

Then differentiation defines a linear operator T on X by setting

Tx(t) = x′(t).

(4) Integration: A linear operator T from C[a, b] into itself can be defined by

Tx(t) =

∫ t

a

x(τ) dτ, t ∈ [a, b].

(5) Another linear operator from C[a, b] into itself can be defined by multi-
plication by t:

Tx(t) = tx(t).

(6) A real matrix A = (αjk) with r rows and n columns defines an operator
T : Rn → Rr by means of matrix multiplication

y = Ax,

where y ∈ Rr and x ∈ Rn.

For a linear operator T : V →W , we denote by ker(T ) its kernel

ker(T ) = {v ∈ V | Tv = 0} ⊆ V,
and by ran(T ) ⊆ W its range. It is easily checked in the examples above that the
kernels and ranges of the given operators are vector subspaces, and we recall from
Section 2.1 that this is true in general.

53
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Lemma 4.1. Let T : V → W be a linear operator between vector spaces V
and W over the same field F. Then

• The kernel ker(T ) is a vector subspace of V .
• The range ran(T ) is a vector subspace of W .

4.2. Bounded and continuous linear operators

4.2.1. Continuous operators. We are familiar with what it means for a
real- or complex-valued function to be continuous in a point or on an interval.
This definition has a natural extension to operators between metric (or normed)
spaces.

Definition 4.2.1. Let X = (X, d) and Y = (Y, d̃) be metric spaces. An
operator T : X → Y is said to be continuous at a point x0 ∈ X if for every
ε > 0 there is a δ > 0 such that

d̃(Tx, Tx0) < ε for all x satisfying d(x, x0) < δ.

T is said to be continuous if it is continuous at every point of X.

In particular, an operator T : X → Y between normed spaces (X, ‖ · ‖X) and
(Y, ‖ · ‖Y ) is continuous at a point x0 ∈ X if for every ε > 0 there exists δ > 0 such
that

‖x− x0‖X < δ ⇒ ‖Tx− Tx0‖Y < ε.

Definition 4.2.2. An operator T : X → Y between normed spaces (X, ‖·‖X)
and (Y, ‖ · ‖Y ) is called Lipschitz continuous if there exists a constant L > 0
such that

‖Tx− Tx′‖Y ≤ L‖x− x′‖X for all x, x′ ∈ X.
The constant L is referred to as the Lipschitz constant.

Note in particular that a Lipschitz continuous operator from a space X to itself
with Lipschitz constant L < 1 defines a contraction on X.

Exercise 4.2.3. Show that a Lipschitz continuous operator between normed
spaces is necessarily continuous.

The following characterization of continuity will be useful as we move forward.
Note that it applies to all operators between metric spaces, not just linear opera-
tors.

Theorem 4.2. An operator T : X → Y between metric spaces (X, d) and

(Y, d̃) is continuous at a point x0 ∈ X if and only if for any sequence (xn)n in
X converging to x0 we have that

xn → x0 implies Txn → Tx0.

Proof. Assume T is continuous at x0. Then for a given ε > 0 there exists
δ > 0 such that

d(x, x0) < δ implies d̃(Tx, Tx0) < ε.
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Let xn → x0. Then there exists an N such that for all n > N we have

d(xn, x0) < δ.

Hence, for all n > N , we have

d̃(Txn, Tx0) < ε.

By definition, this means that Txn → Tx0.
Conversely, say

xn → x0 implies Txn → Tx0,

and suppose that T is not continuous at x0. Then there is an ε > 0 such that for
every δ > 0 there is an x 6= x0 satisfying

d(x, x0) < δ but d̃(Tx, Tx0) ≥ ε.
Then in particular, for δ = 1

n there is an xn satisfying

d(xn, x0) <
1

n
but d̃(Txn, Tx0) ≥ ε.

We clearly have xn → x0, but (Txn) does not converge to Tx0. This contradicts
Txn → Tx0, so T must be continuous at x0. �

Finally, we make the following simple observation:

Proposition 4.3. Given a normed space (X, ‖ · ‖), the norm is a continuous
mapping x→ ‖x‖ of (X, ‖ · ‖) into R.

Proof. Exercise. �

4.2.2. Bounded linear operators. Continuity of an operator is naturally
defined in any metric space. When we now turn our attention to bounded operators,
we need the richer structure of a normed space.

Definition 4.2.4. Let X and Y be normed spaces. A linear operator T :
X → Y is said to be bounded if there exists a real number c such that

(4.1) ‖Tx‖ ≤ c‖x‖ for all x ∈ X.

In equation (4.1), the norm on the left hand side is the norm in Y , whereas the
norm on the right hand side is the norm in X. For simplicity we denote both by
‖ · ‖. Notice that a bounded linear operator maps bounded sets in X to bounded
sets in Y . This motivates the name “bounded operator”.

A natural question now is: what is the smallest possible c such that (4.1) holds
for all nonzero x ∈ X? Dividing by ‖x‖, we get

‖Tx‖
‖x‖

≤ c for all non-zero x ∈ X.

So the smallest possible c is actually the least upper bound of the left hand side,
which is the supremum by definition. This quantity is denoted by ‖T‖; we have

(4.2) ‖T‖ = sup

{
‖Tx‖Y
‖x‖X

: x 6= 0

}
,

and ‖T‖ is called the norm of the operator T . In the (relatively uninteresting)
special case X = {0}, we define ‖T‖ = 0.
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Notice that inserting c = ‖T‖ in (4.1), we get

‖Tx‖ ≤ ‖T‖‖x‖.

We will apply this formula frequently.
So far we have not justified the use of the word “norm” in this setting. This is

done in the following lemma.

Lemma 4.4. Let T be a bounded linear operator. Then

(1) An alternative formula for the norm (4.1) of T is

‖T‖ = sup
‖x‖=1

‖Tx‖.

(2) The norm defined by (4.2) satisfies the norm axioms stated in Defi-
nition 2.2.1.

Proof. (1) For x 6= 0, we write ‖x‖X = a and set y = (1/a)x. Then
‖y‖X = 1, and since T is linear we have

‖T‖ = sup
x∈X,x 6=0

‖Tx‖Y
‖x‖X

= sup
x∈X,x 6=0

1

a
‖Tx‖Y

= sup
x∈X,x 6=0

∥∥T ( 1ax)∥∥Y = sup
y∈X,‖y‖X=1

‖Ty‖Y .

(2) Exercise.
�

Let us compute the operator norm of a composition of operators.

Lemma 4.5. Let (X, ‖.‖X), (Y, ‖.‖Y ) and (Z, ‖.‖Z) be normed spaces and
S : X → Y and T : Y → Z linear bounded mappings. Then ‖TS‖ ≤ ‖T‖‖S‖.
In particular, if T : X → X is a bounded linear operator, then ‖Tn‖ ≤ ‖T‖n
for any n ∈ N.

Proof. ‖TS‖ = supx6=0
‖T (Sx)‖Z
‖x‖X ≤ ‖T‖ supx 6=0

‖Sx‖Y
‖x‖X = ‖T‖‖S‖. �

Example 4.2.5. (1) The identity operator I : X → X on a normed space
X 6= {0} is bounded and has norm ‖I‖ = 1.

(2) The zero operator 0 : X → Y between normed spaces is bounded and
has norm ‖0‖ = 0.

(3) Differentiation operator: Let X be the normed space of all polynomials
on J = [0, 1] endowed with the norm ‖x‖ = maxt∈J |x(t)| (sup-norm). We
can define the differentiation operator T on X by

Tx(t) = x′(t).

This operator is linear, but not bounded. Indeed let xn(t) = tn, with
n ∈ N. Then ‖xn‖ = 1 and

Txn(t) = x′n(t) = ntn−1.

It follows that ‖Txn‖ = n and ‖Txn‖/‖xn‖ = n. Since n ∈ N is arbitrary,
this shows that there is no fixed number c such that ‖Txn‖/‖xn‖ ≤ c. We
thus conclude that T is not bounded.
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(4) Integral operators: We can define an integral operator T : C[0, 1] →
C[0, 1] by

y(t) = (Tx)(t) =

∫ 1

0

k(t, τ)x(τ) dτ.

Recall from our discussion of integral equations that k is called the kernel
of T (not to be confused with ker(T ), which is a very different concept)
and is assumed to be continuous on the closed square [0, 1] × [0, 1]. This
operator is linear. It is also bounded. To see this, observe first that the
continuity of k guarantees that it is bounded, say |k(t, τ)| ≤ k0 for all
(t, τ) ∈ [0, 1]× [0, 1]. Hence, we have

‖y‖ = ‖Tx‖ = max
0≤t≤1

∣∣∣∣∫ 1

0

k(t, τ)x(τ) dτ

∣∣∣∣
≤ max

0≤t≤1

∫ 1

0

|k(t, τ)| · |x(τ)| dτ

≤ k0 max
0≤t≤1

∫ 1

0

x(τ) dτ = k0‖x‖.

Hence, T is bounded and ‖T‖ ≤ k0. Note, however, that we can not
conclude that ‖T‖ = k0 (this is in general incorrect).

(5) Shift operators: On a given sequence space, say `∞, we can define the left
and right shift operators by

Lx = (x2, x3, x4, . . .),

and

Rx = (0, x1, x2, x3, . . .),

where x = (xn) ∈ `∞. These are linear operators from `∞ to itself. They
are also bounded; observe that

‖Lx‖ = sup
2≤j≤∞

|xj | ≤ sup
1≤j≤∞

|xj | = ‖x‖,

and thus L is a bounded operator with ‖L‖ ≤ 1. Similarly, we have

‖Rx‖ = sup
1≤j≤∞

|xj | = ‖x‖,

so R is a bounded operator with ‖R‖ = 1.
(6) Matrices: Recall that a real matrix A = (αjk) with r rows and n columns

defines a linear operator T : Rn → Rr by means of matrix multiplication

(4.3) y = Ax,

where y = (ηj) ∈ Rr and x = (ξj) ∈ Rn. In terms of components, (4.3)
reads

ηj =

n∑
k=1

αjkξk for each j = 1, 2, . . . , r.

Let us now show that T is a bounded operator. We endow Rr and
Rn with the ‖ · ‖2-norm, which we recall is the norm associated with the
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classical inner product 〈·, ·〉 on these spaces. Using the Cauchy-Schwarz
inequality, we get

‖Tx‖22 =

r∑
j=1

η2j =

r∑
j=1

(
n∑
k=1

αjkξk

)2

≤
r∑
j=1

( n∑
k=1

α2
jk

)1/2( n∑
k=1

ξ2k

)1/2
2

= ‖x‖22
r∑
j=1

n∑
k=1

α2
jk.

Thus, we have

‖Tx‖22 ≤ c2‖x‖22 with c2 =

r∑
j=1

n∑
k=1

α2
jk,

meaning that T is bounded and ‖T‖ ≤ c.
Operator norms of linear mappings between finite-dimensional vector spaces are
an important class of examples. We restrict our discussion to linear mappings
T : Rn → Rn. Suppose (Rn, ‖.‖α) and (Rn, ‖.‖β) be the space of n-tuples with
norms ‖.‖α and ‖.‖β are norms for the domain and co-domain, resp. Then the
operator norm of T is given by

‖T‖(α,β) = sup
‖x‖α=1

‖Tx‖β .

Note that the supremum is attained since {x ∈ Rn| ‖x‖α = 1} is a closed bounded
set and thus the continuous function ‖, ‖β attains its maximum.
Let A be the matrix representing T with respect to the standard basis of Rn. Then
we have that

• ‖T‖(1,1) = max1≤j≤n
∑n
i=1 |aij | is the maximal absolute column sum of

A. (Exercise)
• ‖T‖(∞,∞) = max1≤i≤n

∑n
j=1 |aij | is the maximal absolute row sum of A.

‖Tx‖∞ = max
1≤i≤n

|
n∑
j=1

aijxj |

≤ max
1≤i≤n

n∑
j=1

|aij ||xj |

≤
(

max
1≤i≤n

n∑
j=1

|aij |
)

max
1≤j≤n

|xj |

=
(

max
1≤i≤n

n∑
j=1

|aij |
)
‖x‖∞.

Claim: ‖T‖(∞,∞) = max1≤i≤n
∑n
j=1 |aij |.

We construct a vector x̂ ∈ Rn such that ‖T x̂‖β = ‖T‖(∞,∞)‖x̂‖∞. Let i be

the row the maximal absolute row sum ofA. Then x̂ := (sign(ai1), ..., sign(ain))T ,
where sign(x) denotes the sign of x ∈ R, is the desired n-tuple.
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• ‖T‖(2,2) is the largest eigenvalue of A∗A. (Proof in the linear algebra
chapter)

4.2.3. Bounded and continuous linear operators. Let us now show the
remarkable property of linear operators that boundedness and continuity are equiv-
alent concepts.

Theorem 4.6 (Continuity and boundedness). Let T : X → Y be a linear
operator between normed spaces X and Y . Then:

i) T is continuous if and only if T is bounded.
ii) If T is continuous at a single point, then T is continuous (everywhere).

Proof. i) For T = 0 the statement is trivial, so let T 6= 0 and thus
‖T‖ 6= 0. Assume first that T is bounded. Consider any x0 ∈ X and any
fixed ε > 0. Then, since T is linear, for every x ∈ X with

‖x− x0‖ < δ =
ε

‖T‖
,

we have

‖Tx− Tx0‖ = ‖T (x− x0)‖ ≤ ‖T‖‖x− x0‖ < ‖T‖δ = ε.

This shows that T is continuous at x0, which was chosen arbitrarily, so T
is continuous.

Conversely, assume that T is continuous, and consider an arbitrary
point x0 ∈ X. Then given any ε > 0 we can find δ > 0 such that

‖Tx− Tx0‖ ≤ ε whenever ‖x− x0‖ ≤ δ.
Now take any y ∈ X \ {0}, and set

x = x0 +
δ

‖y‖
y. Then x− x0 =

δ

‖y‖
y,

and we have ‖x− x0‖ = δ. By the linearity of T we get

‖Tx− Tx0‖ = ‖T (x− x0)‖ =

∥∥∥∥T ( δ

‖y‖
y

)∥∥∥∥ =
δ

‖y‖
‖Ty‖,

and from the continuity of T it thus follows that

δ

‖y‖
‖Ty‖ ≤ ε ⇒ ‖Ty‖ ≤ ε

δ
‖y‖.

Thus, T is bounded and ‖T‖ ≤ ε/δ.
ii) Continuity of T at a point implies boundedness of T by the second part

of the proof of (i), which in turn implies continuity of T by (i).
�

Now recall that the kernel, or null space, of a linear operator T is the subspce

ker(T ) = {x ∈ X : Tx = 0} .

Corollary 4.7 (Closed kernels). Let T be a bounded linear operator between
normed spaces X and Y . Then:
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i) xn → x (in X) implies Txn → Tx (in Y ).
ii) The kernel ker(T ) is closed.

Proof. i) Follows directly from the assumption that T is bounded, as

‖Txn − Tx‖ = ‖T (xn − x)‖ ≤ ‖T‖‖x− x0‖ → 0.

One might also use that T is continuous from the above Theorem, and
conclude using Theorem 4.2.

ii) We want to show that ker(T ) = ker(T ). Choose an arbitrary x ∈ ker(T ).
Then there exists a sequence (xn) ∈ ker(T ) such that xn → x. By (i), it
follows that Txn → Tx. But Txn = 0 for all n, and thus Tx = 0, so we
have x ∈ ker(T ). Since x ∈ ker(T ) was arbitrary, ker(T ) is closed.

�

Note, however, that the range of a bounded linear operator is in general not closed.

Example 4.2.6. (1) Let T be the multiplication operator Tx = (xnn ) on `∞.
Then T is a bounded linear operator. However, the range of T is not
closed:

The sequence x(n) = (1,
√

2, ...,
√
n, 0, 0, ...) ∈ `∞ is mapped to the

sequence y(n) = (1, 1/
√

2, ..., 1/
√
n, 0, 0, 0, ...). Hence y(n) ∈ T (`∞) for

every n. It is easily verified that y(n) → y = (1, 1/
√

2, ..., 1/
√
n, . . .) ∈ `∞.

However, y /∈ ran(T ); The only sequence which can satisfy T (x) = y is

x = (1,
√

2, ...,
√
n, ...), but this is not an element of `∞. Hence ran(T ) is

not closed.
(2) We define the linear operator V : (C[0, 1], ‖.‖∞)→ (C[0, 1], ‖.‖∞) by

V f(x) :=

∫ x

0

f(y)dy.

This is known as the Volterra integral operator. It is clearly bounded, as

‖V f‖∞ ≤ sup
x∈[0,1]

∫ x

0

|f(y)|dy ≤
∫ 1

0

|f(y)|dy ≤ ‖f‖∞.

The range of V is the set of continuously differentiable functions on
[0, 1] that vanish at x = 0. This is a subspace of C[0, 1] which is not
closed. (Exercise: prove this!)

Finally, let us close this section with a result on bounded linear extensions.

Definition 4.2.7. Let M ⊂ X be a proper subset of X, and let T : M → Y
be an operator. An extension of T to X is an operator

T̃ : X → Y such that T̃ (m) = T (m) for all m ∈M.

A given operator T can have many extensions. Of practical interest are usually
those which preserve some basic property, such as linearity or boundedness. The
following important result is typical in this respect. It concerns the extension of
a bounded linear operator T from a dense subset of a space to the entire space
such that the extended operator is again bounded and linear, and even has the
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same norm. In particular, this includes extensions from a normed space X to its
completion.

Theorem 4.8. Let X be a normed space and Y be a Banach space. Suppose
M is a dense subspace of X and T : M → Y is a bounded linear operator.
Then T has an extension

T̃ : X → Y,

where T̃ is a bounded linear operator of norm

‖T̃‖ = ‖T‖.

Proof. Consider any x ∈ X. Since M ⊂ X is dense, there exists a sequence
(xn) ∈M such that xn → x. Since T is linear and bounded, we have

‖Txn − Txm‖Y = ‖T (xn − xm)‖ ≤ ‖T‖‖xn − xm‖X .

This shows that the sequence (Txn) in Y is Cauchy, since (xn) is convergent in X.
By assumption, Y is complete (it is a Banach space), so (Txn) converges in Y , say

Txn → y ∈ Y.

We now define T̃ by

T̃ x = y.

Let us first show that this definition is independent of the particular choice of
sequence converging to x. Suppose that xn → x and zn → x. Then necessarily

‖xn − zn‖X ≤ ‖xn − x‖X + ‖x− zn‖X ,

and it follows that xn−zn → 0 as n→∞. As M is a subspace of X, we have 0 ∈M ,
and it thus follows from Corollary 4.7 that T (xn− zn) = Txn−Tzn → T (0) = 0 as

n→∞. In other words, the definition of T̃ does not depend on the approximation
sequence.

The map T̃ is linear because T is linear, and it is easily seen that T̃ = T on the
subspace M . Finally, let us see that ‖T̃‖ = ‖T‖. It is clear that ‖T̃‖ ≥ ‖T‖, because
the norm is defined as a supremum, and thus cannot decrease for an extension. For
the opposite inequality, we use

‖Txn‖Y ≤ ‖T‖‖xn‖X ,

and let n→∞. Then Txn → y = T̃ x. Since x→ ‖x‖ defines a continuous mapping
(recall Proposition 4.3), we thus obtain

‖T̃ x‖Y ≤ ‖T‖‖x‖X .

Hence T̃ is bounded and ‖T̃‖ ≤ ‖T‖. We thus get ‖T̃‖ = ‖T‖. �

4.3. Normed spaces of operators. Dual space

Let us now take any two normed spaces X and Y (either both real or both
complex), and consider the set

B(X,Y )
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consisting of all bounded linear operators from X into Y . In this section, we aim
to show that B(X,Y ) can itself be made into a normed space.1

Note first that B(X,Y ) becomes a vector space if we define the sum T1 +T2 of
two operators T1, T2 ∈ B(X,Y ) by

(T1 + T2)x = T1x+ T2x

and the product αT of T ∈ B(X,Y ) and a scalar α by

(αT )(x) = αTx.

Recalling Lemma 4.4 (2), we immediately get:

Theorem 4.9. The vector space B(X,Y ) of all bounded linear operators from
a normed space X to a normed space Y is itself a normed space with norm
defined by

‖T‖ = sup
x∈X,x 6=0

‖Tx‖
‖x‖

= sup
x∈X,‖x‖=1

‖Tx‖.

When is the normed space B(X,Y ) a Banach space? This is a central question
which is answered in the next theorem. Remarkably, the answer does not pose any
conditions on the set X.

Theorem 4.10. If Y is a Banach space, then B(X,Y ) is a Banach space.

The curious reader might ask whether this implication goes both ways. The answer
is yes if X is nontrivial; in this case, if B(X,Y ) is a Banach space, then so is Y .
However, in this course we focus on the implication in Theorem 4.10.

Proof of Theorem 4.10. Let Y be a Banach space. We consider an arbi-
trary Cauchy sequence (Tn) in B(X,Y ), and aim to show that (Tn) converges to
an operator T ∈ B(X,Y ). Fix ε > 0. Since (Tn) is Cauchy, we can find N ∈ N
such that

‖Tn − Tm‖ < ε for m,n > N.

Thus for all x ∈ X and all m,n > N , we have

(4.4) ‖Tnx− Tmx‖ = ‖(Tn − Tm)x‖ ≤ ‖Tn − Tm‖‖x‖ < ε‖x‖.
For each fixed x ∈ X we can make the right hand side in this inequality as small
as we wish by choosing n, m sufficiently large, so the sequence (Tnx) is Cauchy in
Y . Since Y is complete, (Tnx) converges, say Tnx → y ∈ Y . Clearly, the limit y
depends on x ∈ X, so this defines an operator T : X → Y , where Tx = y. The
operator is linear, since

T (αx+ βz) = lim
n→∞

Tn(αx+ βz)

= lim
n→∞

(αTnx+ βTnz)

= α lim
n→∞

Tnx+ β lim
n→∞

Tnz

= αTx+ βTz.

1The “B” in B(X,Y ) suggests “bounded”. In section 2.1, we referred to this same set of
operators as L(X,Y ), where L suggests “linear”. Both notations commonly appear in literature.

We will stick to B(X,Y ) from now on.
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Now let us see that T is bounded, and that Tn → T , meaning ‖Tn − T‖ → 0.
Returning to (4.4), we let m→∞, and using the continuity of the norm we get

(4.5)
‖Tnx− Tx‖ = ‖Tnx− lim

m→∞
Tmx‖

= lim
m→∞

‖Tnx− Tmx‖ ≤ ε‖x‖ for n > N.

This shows that (Tn − T ) is a bounded linear operator when n > N . Since Tn is
bounded, it follows that T = Tn − (Tn − T ) is also bounded, that is T ∈ B(X,Y ).
Finally, if in (4.5) we take the supremum over all x with ‖x‖ = 1, we get

‖Tn − T‖ = sup
‖x‖=1

‖Tnx− Tx‖
‖x‖

≤ ε, n > N.

Hence, we have ‖Tn − T‖ → 0. �

Let us now look at a very important special case of B(X,Y ), namely that where
Y is the field F ∈ {R,C} over which X is defined.

Definition 4.3.1. A linear functional f is a linear operator whose domain is
a vector space X and where the range of f lies in the scalar field of X; thus,

f : X → F,
where F = R if X is a real vector space and F = C if X is a complex vector
space.

Definition 4.3.2. A bounded linear functional f is a bounded linear operator

f : X → F,
where F = R if X is a real vector space and F = C if X is a complex vector
space. Thus, there exists a real number c such that

|f(x)| ≤ c‖x‖ for all x ∈ X.
Moreover, the norm of f is

‖f‖ = sup
x∈X,x 6=0

|f(x)|
‖x‖

= sup
x∈X,‖x‖=1

|f(x)|.

The results we have established for bounded linear operators in general also hold
for the special case of bounded linear functionals. For instance, a linear functional
is bounded if and only if it is continuous. Similarly, we have the inequality

|f(x)| ≤ ‖f‖‖x‖,

for all bounded linear functionals on a normed space X.
Example 4.3.3. i) Definite integral: Consider the space C[a, b] of real-

valued functions on [a, b], endowed with the sup-norm. Then f defined
by

f(x) =

∫ b

a

x(t) dt, x ∈ C[a, b],
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is a linear functional on C[a, b]. Let us see that f is also bounded, with
norm ‖f‖ = b− a. We have that

|f(x)| =

∣∣∣∣∣
∫ b

a

x(t) dt

∣∣∣∣∣ ≤ (b− a) max
0≤t≤1

|x(t)| = (b− a)‖x‖,

and taking the supremum over all x with ‖x‖ = 1, we get ‖f‖ ≤ b−a. To
see that, in fact, ‖f‖ = b−a, we choose the particular function x0(t) = 1;
we then have ‖x0‖ = 1 and

‖f‖ ≥ |f(x0)|
‖x0‖

= |f(x0)| =
∫ b

a

dt = b− a.

ii) Point evaluation: Another practically important functional on C[a, b]
(with the sup-norm) is obtained if we choose a fixed t0 ∈ [a, b], and set

f(x) = x(t0), x ∈ C[a, b].

This is a bounded linear functional on C[a, b] with norm ‖f‖ = 1.
Exercise: Show this.

iii) On `2: We can obtain a linear functional f on the Hilbert space `2 by
choosing a fixed sequence a = (aj)j∈N ∈ `2, and setting

f(x) =

∞∑
j=1

ξjaj , x = (ξj)j∈N ∈ `2.

This series converges absolutely and f is bounded, as the Cauchy-Schwarz
inequality gives

|f(x)| =
∣∣∣∑ ξjaj

∣∣∣ ≤∑ |ξjaj |

≤
(∑

|ξj |2
)1/2 (∑

|aj |2
)1/2

= ‖x‖‖a‖,

where the summation everywhere is over j from 1 to ∞.

The space of bounded linear functionals B(X,F) on a normed space (X, ‖ · ‖)
has been given a special name.

Definition 4.3.4 (Dual space). Let X be a normed space. Then the set of
all bounded linear functionals on X constitutes a normed space with norm
defined by

‖f‖ = sup
x∈X,x 6=0

|f(x)|
‖x‖

= sup
x∈X,‖x‖=1

|f(x)|.

It is called the dual space of X and is denoted by X ′.

Since a linear functional on X maps X into R or C (depending on whether the
vector space X is real or complex), and since R and C are both complete (with the
| · | norm), we see that X ′ = B(X,F) with the complete space F. It thus follows
immediately from Theorem 4.10 that:

Theorem 4.11. The dual space X ′ of a normed space X is a Banach space
(whether or not X is).
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Best approximation and projection theorem

The focus of this chapter is Hilbert space theory, more specifically the projection
theorem and its ramifications. We will see that the projection theorem indicates
that Hilbert spaces are, in some sense, infinite-dimensional Euclidean spaces. In
contrast, the structure of Banach spaces can be rich and full of strange phenomena.

5.1. Best approximations and the projection theorem

In a metric space X, the distance δ from an element x ∈ X to a nonempty
subset M ⊂ X is defined as

δ = inf
m∈M

d(x,m).

In a normed space, this becomes

δ = inf
m∈M

‖x−m‖.

In theory as well as applications, it can be important to determine whether there
exists a y ∈M such that

(5.1) δ = ‖x− y‖,

that is, whether there exists a y ∈ M which is closest to the given point x ∈ X.
Moreover, if such an element exists, it is of interest whether or not this point is
unique. This is an existence and uniqueness problem.

Even in very simple spaces such as R2 it is not difficult to construct examples of
sets M and points x where either (5.1) is satisfied for no y ∈M , or (5.1) is satisfied
for infinitely many y ∈ M (Exercise: Try to construct examples of both cases).
However, our first result shows that if we restrict our attention to proper closed
subspaces of a Hilbert space, then both existence and uniqueness is guaranteed.

Theorem 5.1 (Best Approximation Theorem). Suppose M is a closed sub-
space of a Hilbert space X. Then for any x ∈ X there exists a unique element
z ∈M such that

‖x− z‖ = inf
m∈M

‖x−m‖.

Remark 5.1.1. Note that in general, Theorem 5.1 is not true in Banach spaces.
Consider the Banach space `∞ and its closed subspace c0 (the space of sequences
converging to 0). For the point x = (1, 1, 1, . . .) ∈ `∞, we have

inf
y∈c0
‖x− y‖∞ = 1,

65
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and this infimum is indeed attained, for instance by the sequence z = (0, 0, 0, . . .) ∈
c0. However, z is by no means unique. We also have

‖x− z′‖∞ = inf
y∈c0
‖x− y‖∞ = 1

for z′ = (1, 0, 0, 0, . . .) or z′ = (1, 1, 0, 0, 0, . . .).

Proof of Theorem 5.1. Existence: Denote by δ2 = infm∈M ‖x −m‖2. By
the definition of an infimum there exists a sequence (mk) in M such that for each
ε > 0 there exists an N ∈ N such that

‖x−mk‖2 ≤ δ2 + ε for all k ≥ N.
We show now that the sequence (mk) is Cauchy. Applying the parallelogram

identity to x−mk and x−ml, we get

2
(
‖x−mk‖2 + ‖x−ml‖2

)
= ‖2x−mk −ml‖2 + ‖mk −ml‖2

= 4

∥∥∥∥x− mk +ml

2

∥∥∥∥2 + ‖mk −ml‖2.

Since M is a vector subspace, we have (mk + ml)/2 ∈ M , and it follows that
‖x− (ml +mk)/2‖ ≥ δ. We thus get

‖mk −ml‖2 ≤ 2
(
‖x−mk‖2 + ‖x−ml‖2

)
− 4δ2

Finally, using that ‖x−mk‖2 ≤ δ2 + ε/4 for all sufficiently large k, we get

‖mk −ml‖2 ≤ 2
(
δ2 +

ε

4
+ δ2 +

ε

4

)
− 4δ2 = ε,

for all sufficiently large l, k. Hence, (mk) is a Cauchy sequence. Since M is closed,
we recall from Theorem 3.14 that (M, ‖ · ‖) is complete, so mk converges to some
element z ∈M . Since the norm is continuous we have ‖x−z‖ = limk→∞ ‖x−mk‖ =
δ.

Uniqueness: We assume that z ∈M and z0 ∈M both satisfy

‖x− z‖ = δ and ‖x− z0‖ = δ,

and show that then z = z0. By the parallelogram identity, we have

‖z − z0‖2 = ‖(z − x)− (z0 − x)‖2

= 2‖z − x‖2 + 2‖z0 − x‖2 − ‖(z − x) + (z0 − x)‖2

= 2δ2 + 2δ2 − 4

∥∥∥∥z + z0
2
− x
∥∥∥∥2 .

Again, we have that (z− z0)/2 ∈M , so ‖(z− z0)/2− x‖ ≥ δ. Inserting this above,
we get

‖z − z0‖ ≤ 0.

Clearly, ‖z − z0‖ ≥ 0, so we must have equality, and z = z0. �

Let us now see that the familiar idea of elementary geometry that the unique
point in a given subspace M closest to a given point x is found by “dropping a
perpendicular from x to M” generalizes to the Hilbert space setting.
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Lemma 5.2. Suppose M is a closed subspace of a Hilbert space X, and let z
be the unique point in M at minimal distance from x, that is

‖x− z‖ = inf
m∈M

‖x−m‖.

Then x− z is orthogonal to M .

Proof. Suppose z minimizes ‖x − m‖, but x − z is not orthogonal to M ,
meaning there exists an element m ∈M with norm ‖m‖ = 1 such that 〈x− z,m〉 =
d 6= 0. We will see that this leads to a contradiction.

Consider the element y = z + dm, which is clearly an element in M since this
is a vector subspace. We have

‖x− y‖2 = ‖x− z − dm‖2

= 〈x− z − dm, x− z − dm〉
= 〈x− z, x− z〉 − 〈x− z, dm〉 − 〈dm, x− z〉+ 〈dm, dm〉
= ‖x− z‖2 − dd− dd+ dd‖m‖
= ‖x− z‖2 − |d|2.

This indicates that ‖x − y‖ ≤ ‖x − z‖, contradicting the fact that z minimizes
‖x − m‖. We conclude that 〈x− z,m〉 = 0 for all m ∈ M , and thus x − z is
orthogonal to M . �

Example 5.1.2. Let X be the space of square-integrable real-valued functions
L2[0, 1] and the subspace P1 is the space of polynomials of degree at most 1, M =
{a1x+ a0 : a0, a1 ∈ R}. We look for the best approximation of f(x) = x2 from M .
Hence we want to find the polynomial p ∈ P1 such that

‖f − p‖2 =
(∫ 1

0

|x2 − p(x)|2 dx
)1/2

= inf
a0,a1∈R

(∫ 1

0

|x2 − a0 − a1x|2 dx
)1/2

.

We determine p via the orthogonality of the error vector/residual f − p onto P1.
Since P1 is spanned by b0(x) = 1 and b1(x) = x this amounts to f − p ⊥ b0 and
f − p ⊥ b1, i.e. ∫ 1

0

(x2 − a0 − a1x)1 dx = 0∫ 1

0

(x2 − a0 − a1x)x dx = 0

which gives the following system of equations:

1

3
− a0 −

a1
2

= 0

1

4
− a0

2
− a1

3
= 0,

which has the unique solution a0 = −1/6 and a1 = 1, i.e. the best approximation
is attained by p(x) = x− 1/6.

Our current goal is to establish the projection theorem, which states that any
Hilbert space can be represented as a particularly simple direct sum if we make use
of orthogonality. The concept direct sum is introduced below, and makes sense for
any vector space.
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Definition 5.1.3. A vector space X is said to be the direct sum of two sub-
spaces Y and Z of X, written

X = Y ⊕ Z,
if each x ∈ X has a unique representation

x = y + z, y ∈ Y, z ∈ Z.

Let us pause for a moment and compare the direct sum and the sum of two subspaces
Y and Z of X. The sum Y + Z = {y + z| y ∈ Y and z ∈ Z} and we say that X
is the sum of Y and Z if X = Y + Z, i.e. every x ∈ X may be decomposed in the
form x = y + z for some vectors y ∈ Y and z ∈ Z.
Example 5.1.4. Let Y = {(x1, x2, 0) : xi ∈ R for i = 1, 2} and Z = {(0, x2, x3) :
xi ∈ R for i = 2, 3} be two subspaces of R3. We have that X + Y = R3. How-
ever, this is not a direct sum since vectors of the form (0, x, 0) have non-unique
decompositions, e.g. (0, x, 0) = (0, 0, 0) + (0, x, 0) for (0, 0, 0) ∈ Y, (0, x, 0) ∈ Z and
(0, x, 0) = (0, x, 0) + (0, 0, 0) for (0, x, 0) ∈ Y, (0, 0, 0) ∈ Z.

Observe that in the example Y ∩ Z 6= {0} and the next result shows that this
is the reason for not giving a direct sum decomposition.

Lemma 5.3. Let Y and Z be subspaces of X. Then X = Y ⊕ Z if and only
if the following two conditions hold:

(i) X = Y + Z
(ii) Y ∩ Z = {0}

Proof. (⇒) Suppose X = Y ⊕ Y . Then Condition (i) holds by the definition
of direct sum. Let x be a vector in ∈ Y ∩ Z. Then −x ∈ Y ∩ Z since Y ∩ Z is a
vector space. Hence we have that 0 = x+ (−x) but we also have 0 = 0 + 0. Since
X = Y ⊕ Z the decomposition 0 = 0 + 0 is unique and thus x = 0. Equivalently,
Y ∩ Z = {0}.
(⇐) Suppose Condition (i) and (ii) hold. Then we want to show that vectors in
X have a unique decomposition. Assume that 0 has a non-trivial decomposition
0 = y + z for y ∈ Y and z ∈ Z. Hence we have that y = −z and thus y ∈ Z, i.e.
y ∈ Y ∩ Z. By Condition (ii) we have y = 0 and thus z = 0. �

Example 5.1.5. (1) Take for X = C(R), the space of real-valued continuous
functions on R. The subspace Y is the space of all even functions, Y =
{f ∈ C(R) : f(x) = f(−x) for all x ∈ R} and Z is the space of all
odd functions, Z = {f ∈ C(R) : f(x) = −f(−x) for all x ∈ R}. Since
Y ∩Z = {0} we have C(R) = Y ⊕Z and we have the unique decomposition

f(x) = f(x)+f(−x)
2 + f(x)−f(−x)

2 .
(2) Let X be the space of real n×n matrices Mn(R). We define the subspaces

Y = {A ∈ Mn(R) : AT = A} and Z = {A ∈ Mn(R) : AT = −A} of
symmetric and skew-symmetric matrices. Then Mn(R) = Y ⊕ Z since

Y ∩Z = {0}, and we have the unique decomposition: A = A+AT

2 + A−AT
2 .

Inspired by the notation used in Rn, we will write x ⊥ y when x, y are orthog-
onal elements of some Hilbert space. Hence x ⊥ y means that 〈x, y〉 = 0.
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Definition 5.1.6 (Orthogonal complement). Let M be a closed subspace of
a Hilbert space X. Then the orthogonal complement M⊥ of M is the set of
all vectors orthogonal to M , that is

M⊥ = {x ∈ X : x ⊥ y for any y ∈M} .

The orthogonal complement M⊥ is a vector subspace, since for all x, y ∈ M⊥ and
scalars α, β, we have

〈αx+ βy,m〉 = α 〈x,m〉+ β 〈y,m〉 = 0 for all m ∈M,

and thus αx + βy ∈ M⊥. It is also easy to see that M ∩M⊥ = {0}, since any
x ∈ M ∩M⊥ must satisfy ‖x‖2 = 〈x, x〉 = 0, hence x = 0. Moreover, it is always
closed:

Lemma 5.4. Let M be a subspace of an inner product space (X, 〈·, ·〉). Then
M⊥ is closed.

Proof. Exercise. Hint: Use that for a fixed y ∈ X the inner product is con-
tinuous in the first entry x 7→ 〈x, y〉 is continuous from X to F. �

We are now equipped to state the projection theorem. An explanation of why
this name is fitting is given after the proof.

Theorem 5.5 (Projection Theorem). Let M be any closed subspace of a
Hilbert space X. Then

X = M ⊕M⊥.
In other words, every x ∈ X has a unique representation

(5.2) x = y + z, y ∈M, z ∈M⊥.

Proof. By Theorem 5.1 there exists a best approximation y ∈ M of x ∈ X,
and by Lemma 5.2 we have z = x− y ∈M⊥. It is thus clear that

x = y + (x− y) = y + z, y ∈M, z ∈M⊥.

To prove uniqueness, we assume that

x = y + z = y1 + z1,

where y, y1 ∈ M and z, z1 ∈ M⊥. Then y − y1 = z1 − z. Since y − y1 ∈ M and
z1 − z ∈ M⊥, we see that y − y1 ∈ M ∩M⊥ = {0}. This implies y = y1, and
likewise z = z1. �

The element y in (5.2) is called the orthogonal projection (or just projection) of x
on M . In fact, we see that (5.2) defines a mapping

P : X →M by x 7→ y = Px.

The map P is called the projection of X onto M . It is clear that P is a bounded
linear operator which maps X onto M , M onto itself (meaning P |M is the identity
map), and M⊥ onto {0}. Moreover, P is idempotent, meaning

P 2 = P,

or, for every x ∈ X, we have P 2x = P (Px) = Px.
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Let us now look at some consequences of the projection theorem.

Lemma 5.6. If M is a closed subspace of a Hilbert space X, then

M = M⊥⊥.

Proof. In general, we have M ⊆M⊥⊥, because

x ∈M ⇒ x ⊥M⊥ ⇒ x ∈ (M⊥)⊥.

Let us now see that for closed subspaces, we also have M⊥⊥ ⊆M .
Let x ∈M⊥⊥. Then by the projection theorem, we have

x = y + z, y ∈M, z ∈M⊥.
Note that y ∈ M ⊆ M⊥⊥. Since M⊥⊥ is a vector space, and x ∈ M⊥⊥ by
assumption, we also have z = x− y ∈ M⊥⊥, so z ⊥ M⊥. Combined with the fact
that z ∈M⊥, this means z ⊥ z, or equivalently 〈z, z〉 = 0, so z = 0. We thus have
x = y ∈M . This shows M⊥⊥ ⊆M , as x was arbitrary. �

The projection theorem also provides a characterization of sets in Hilbert spaces
whose span is dense, as follows. Recall that the span of a subset M is the set of all
linear combinations of vectors in M .

Lemma 5.7. For any subset M 6= ∅ of a Hilbert space X, the span of M is
dense in X if and only if M⊥ = {0}.

Proof. Let x ∈ M⊥, and assume V = spanM is dense in X. We will show
that x = 0.

Since V = X, we have x ∈ V , so there exists a sequence (xn) in V such that
xn → x. Since x ∈ M⊥ and M⊥ ⊥ V , we have 〈xn, x〉 = 0 for all n. On the other
hand, using the linearity of the inner product and Cauchy-Schwarz inequality, we
get

| 〈xn, x〉 − 〈x, x〉 | = | 〈xn − x, x〉 | ≤ ‖xn − x‖‖x‖,

so if xn → x then 〈xn, x〉 → 〈x, x〉. It follows that 〈x, x〉 = ‖x‖2 = 0, so x = 0.
For the other direction, suppose that M⊥ = {0}. It then follows that V ⊥ = {0},

since
x ⊥ V ⇒ x ⊥M ⇒ x ∈M⊥ ⇒ x = 0.

Now observe that V
⊥ ⊆ V ⊥ = {0}, and applying the projection theorem with the

closed subspace V ⊆ X, we get

X = V ⊕ V ⊥ = V ⊕ {0} = V .

This shows that V is dense in X. �

Finally, let us look at a “practical” application of the projection theorem.
Example 5.1.7. Recall that L2[−1, 1], the space of square integrable functions on
the interval [−1, 1], is the completion of the normed space (C[−1, 1], ‖ · ‖2). When
endowed with the inner product

〈f, g〉 =

∫ 1

−1
f(x)g(x) dx,

this is a Hilbert space.
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Let Me ⊂ L2[−1, 1] be the subspace of even functions, that is

Me =
{
f ∈ L2[−1, 1] : f(−x) = f(x)

}
.

This is a closed subspace (exercise: show this). Thus, according to the projection
theorem, we can write any function f ∈ L2[−1, 1] uniquely as a sum

f = f1 + f2, f1 ∈Me, f2 ∈M⊥e .

Let us now see that M⊥e is in fact the closed subspace of odd functions, that is

M⊥e = Mo =
{
f ∈ L2[−1, 1] : f(x) = −f(−x)

}
.

If f ∈Me and g ∈Mo, then

〈f, g〉 =

∫ 1

−1
f(x)g(x) dx = 0,

since the integrand fg is an odd function and the interval of integration is symmetric
about the origin. This shows that Mo ⊆ M⊥e . To see that M⊥e ⊆ Mo, we observe
that any function f ∈ L2[−1, 1] can indeed be written as a combination of an odd
and an even function, by simply putting

(5.3) f(x) =
f(x) + f(−x)

2
+
f(x)− f(−x)

2
= fe(x) + fo(x).

Thus, for any f ∈M⊥e , we have

0 = 〈f, fe〉 = 〈fe + fo, fe〉 = 〈fe, fe〉 = ‖fe‖2 = 0.

This implies fe = 0 and f = fo ∈Mo, so M⊥e ⊆Mo.
Returning to the projection theorem, we see that the representation (5.3) of f as

a sum of an odd function fo and an even function fe is in fact unique. Moreover, it is
clear from the argument above that the associated projection P : L2[−1, 1]→Me

is given by

Pf(x) =
f(x) + f(−x)

2
.

5.2. Riesz’ representation theorem

In this section we will state and prove Riesz’ representation theorem. This result
characterizes the dual space of bounded linear functionals on a Hilbert space.

Theorem 5.8 (Riesz’ representation theorem). Let X be a Hilbert space. For
each z ∈ X define ϕz(x) = 〈x, z〉. Then ϕz ∈ X ′ is a bounded linear functional
on X.

On the other hand, every ϕ ∈ X ′ is given by an inner product

ϕ(x) = ϕz(x) = 〈x, z〉
for some unique z ∈ X, and ‖ϕ‖ = ‖z‖.

In other words, a Hilbert space is its own dual. Note that the first part of the
statement is easily verified using the Cauchy-Schwarz inequality. The final assertion
is the subtle part of the theorem, and we prove only this.
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Proof. Existence: Let M = kerϕ. This is a closed linear subspace of X. If
M = X, then ϕ = 0 (the zero operator), and

ϕ(x) = ϕ0(x) = 〈x, 0〉 .
Now assumeM 6= X, soM is a proper closed subspace ofX. Then by the Projection
Theorem there exists a non-zero element z0 ∈ M⊥, z0 6= 0. Since z0 ⊥ kerϕ, we
have ϕ(z0) 6= 0, and by the linearity of ϕ we see that

x− ϕ(x)

ϕ(z0)
z0 ∈ kerϕ for all x ∈ X.

As z0 ⊥ kerϕ it follows that〈
x− ϕ(x)

ϕ(z0)
z0, z0

〉
= 0 ⇒ 〈x, z0〉 =

ϕ(x)

ϕ(z0)
‖z0‖2

⇒ ϕ(x) =
ϕ(z0)

‖z0‖2
〈x, z0〉 =

〈
x,
ϕ(z0)

‖z0‖2
z0

〉
.

Thus, we have for any x ∈ X that

ϕ(x) = 〈x, z〉 for z =
ϕ(z0)

‖z0‖2
z0.

Uniqueness: Suppose there exist two elements z, w ∈ X such that

ϕ(x) = 〈x, z〉 = 〈x,w〉 for all x ∈ X.
Then

〈x, z − w〉 = 〈x, z〉 − 〈x,w〉 = 0 for all x ∈ X.
In particular, this holds for x = z − w, and it follows that

‖z − w‖2 = 0 ⇒ z = w.

Equality of norms: We have

‖ϕ‖ = sup
‖x=1‖

|ϕ(x)| = sup
‖x‖=1

| 〈x, z〉 | ≤ sup
‖x‖=1

‖x‖‖z‖ = ‖z‖,

where we have used Cauchy-Schwarz for the final inequality. On the other hand,
we have

‖z‖2 = 〈z, z〉 = |ϕ(z)| ≤ ‖ϕ‖‖z‖ ⇒ ‖ϕ‖ ≥ ‖z‖.
We thus get ‖ϕ‖ = ‖z‖. �

Remark 5.2.1. In the proof of uniqueness above, we observed that if 〈x, z〉 =
〈x,w〉 for all x ∈ X, then z = w. As this is a fact we will use repeatedly in the
following subsection, we write it out as a separate result:

Proposition 5.9. Let X be a Hilbert space, and let z, w ∈ X. If

〈x, z〉 = 〈x,w〉 for all x ∈ X,
then z = w.

Let us now apply Riesz’ representation theorem to some familiar Hilbert spaces.
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Example 5.2.2. i) Every bounded linear functional ϕ on Cn is realized by
a dot product

ϕ(x) = 〈x, y〉 = x · y, for some fixed y ∈ Cn.

ii) Every bounded linear functional ϕ on L2[a, b] is realized by an inner prod-
uct

ϕ(f) =

∫ b

a

f(x)g(x) dx for some fixed g ∈ L2[a, b].

Moreover, observe that by the Cauchy-Schwarz inequality, we have

|ϕ(f)| = | 〈f, g〉 | =

∣∣∣∣∣
∫ b

a

f(x)g(x) dx

∣∣∣∣∣ ≤
(∫ b

a

|f(x)|2
)1/2(∫ b

a

|g(x)|2
)1/2

= ‖f‖‖g‖,

with equality for f = λg, so ‖ϕ‖ = ‖g‖.

iii) Every bounded linear functional ϕ on `2 is realized by an inner product

ϕ(x) = 〈x, a〉 =

∞∑
j=1

xjaj , for some fixed a = (aj)j∈N ∈ `2.

5.3. Adjoint operators

Consider a Hilbert space X over a field F ∈ {R,C}. In this section we introduce
adjoint operators, which provide us with an alternative description of bounded linear
operators on X. We will see that the existence of so-called adjoints is guaranteed
by Riesz’ representation theorem.

Theorem 5.10 (Adjoint operator). Let T ∈ B(X,X) be a bounded linear
operator on a Hilbert space X. There exists a unique operator T ∗ ∈ B(X,X)
such that

〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ X.
The operator T ∗ is called the adjoint of T .

Proof. Existence: Fix y ∈ X, and define the map

ϕ(x) = 〈Tx, y〉 , x ∈ X.

This is a bounded linear functional on X, as it is easily seen to be linear and

|ϕ(x)| = | 〈Tx, y〉 | ≤ ‖Tx‖‖y‖ ≤ ‖T‖‖y‖‖x‖.

By Riesz’ representation theorem it follows that there exists a unique element y∗ ∈
X such that

ϕ(x) = 〈Tx, y〉 = 〈x, y∗〉 for all x ∈ X.

We thus define T ∗y := y∗, so by definition T ∗ satisfies 〈Tx, y〉 = 〈x, T ∗y〉. It
remains to show that T ∗ is linear, bounded and unique.
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Linearity of T ∗: We have

〈x, T ∗(αy1 + βy2)〉 = 〈Tx, αy1 + βy2〉
= α〈Tx, y1〉+ β〈Tx, y2〉
= α〈x, T ∗y1〉+ β〈x, T ∗y2〉
= 〈x, αT ∗y1〉+ 〈βT ∗y2〉 for all x ∈ X,

and it follows by Proposition 5.9 that

T ∗(αy1 + βy2) = αT ∗y1 + βT ∗y2.

Boundedness of T ∗: By the Cauchy-Schwarz inequality, we get

‖T ∗y‖2 = 〈T ∗y, T ∗y〉 = 〈TT ∗y, y〉
≤ ‖TT ∗y‖‖y‖
≤ ‖T‖‖T ∗y‖‖y‖.

If ‖T ∗y‖ > 0, we divide by ‖T ∗y‖ on both sides in the inequality and obtain

‖T ∗y‖ ≤ ‖T‖‖y‖.

This inequality is clearly also satisfied when ‖T ∗y‖ = 0, so T ∗ is a bounded operator.
Moreover, we have attained the additional information that

‖T ∗‖ ≤ ‖T‖.

Uniqueness: Suppose there exists another operator S ∈ B(X,X) such that

〈x, Sy〉 = 〈x, T ∗y〉 for all x, y ∈ X.

Then necessarily, for each y ∈ X, we have

〈x, Sy − T ∗y〉 = 0 for all x ∈ X,

so by Proposition 5.9 we get that Sy = T ∗y for every y ∈ X, meaning S = T ∗. �

We list and prove some general properties of adjoints which are frequently used
in applying these operators.

Proposition 5.11. Let X be a Hilbert space, S : X → X and T : X → X
be bounded linear operators and α, β ∈ F any two scalars. We then have:

i) (αS + βT )∗ = αS∗ + βT ∗

ii) (ST )∗ = T ∗S∗

iii) (T ∗)∗ = T

iv) ‖T ∗‖ = ‖T‖

v) ‖TT ∗‖ = ‖T ∗T‖ = ‖T‖2

Proof. i) and ii): Exercise.
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iii) Fix any y ∈ X. We have

〈x, T ∗∗y〉 = 〈T ∗x, y〉 = 〈y, T ∗x〉

= 〈Ty, x〉 = 〈x, Ty〉

for all x ∈ X. It thus follows from Proposition 5.9 that T ∗∗ = T .

iv) In the proof of the existence of the adjoint, we established that ‖T ∗‖ ≤ ‖T‖.
For the opposite inequality, simply observe that by iii), we have

‖T‖ = ‖T ∗∗‖ ≤ ‖T ∗‖,

and thus ‖T ∗‖ = ‖T‖.

v) For any x ∈ X, we have

‖T ∗Tx‖ ≤ ‖T ∗‖‖Tx‖ ≤ ‖T ∗‖‖T‖‖x‖,

and accordingly

‖T ∗T‖ ≤ ‖T ∗‖‖T‖ = ‖T‖2.
On the other hand, using the Cauchy-Schwarz inequality, we have

‖Tx‖2 = 〈Tx, Tx〉 = 〈T ∗Tx, x〉
≤ ‖T ∗Tx‖‖x‖ ≤ ‖T ∗T‖‖x‖2,

and it follows that ‖T‖ ≤ ‖T ∗T‖1/2, or equivalently ‖T‖2 ≤ ‖T ∗T‖. We conclude
that

‖T ∗T‖ = ‖T‖2.
Finally, replacing T by T ∗ in the equality above, and recalling that T ∗∗ = T , we
also get

‖TT ∗‖ = ‖T ∗‖2 = ‖T‖2.
�

Example 5.3.1. i) Left and right shift operators: Consider the right shift
operator R on `2, given by

Rx = (0, x1, x2, x3, . . .), x = (xj)j∈N ∈ `2.

Its adjoint is the left shift operator L, given by

Lx = (x2, x3, x4, . . .).

To see this, observe that

〈Rx, y〉 = 〈(0, x1, x2, x3, . . .), (y1, y2, y3, . . .)〉
= x1y2 + x2y3 + x3y4 + . . .

= 〈(x1, x2, x3, . . .), (y2, y3, y4, . . .)〉 = 〈x, Ly〉

for any x, y ∈ `2. Thus, the operator R∗ satisfying 〈Rx, y〉 = 〈x,R∗y〉 for
all x, y ∈ `2 is R∗ = L.

ii) Multiplication operator on `2: Consider the multiplication operator Ta :
`2 → `2 given by

Tax = (ajxj)j∈N, x = (xj)j∈N ∈ `2,
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for some fixed a ∈ `∞. The adjoint of Ta is the multiplication operator
for the conjugate sequence a, that is

T ∗a = Ta.

Exercise: Confirm this.

iii) Multiplication operator on L2[0, 1]: Consider the multiplication operator
Ta : L2[0, 1]→ L2[0, 1] given by

Taf = af, f ∈ L2[0, 1],

for some fixed function a ∈ C[0, 1]. Its adjoint is the multiplication op-
erator given by the conjugate function a, that is T ∗a = Ta. To see this,
observe that

〈Taf, g〉 =

∫ 1

0

a(t)f(t)g(t) dt =

∫ 1

0

f(t)a(t)g(t) dt = 〈f, ag〉 = 〈f, Tag〉 .

iv) Matrices: Consider Cn with the standard inner product

〈x, y〉 = x1y1 + . . .+ xnyn = x>y,

and let T : Cn → Cn be the linear map given by matrix multiplication

Tx = Ax, x ∈ Cn,
for some fixed, n× n matrix A. Then the adjoint T ∗ of T is given by

T ∗x = A
>
x, x ∈ Cn.

To see this, observe that

〈Tx, y〉 =

〈
(

n∑
j=1

aijxj)i, (yi)i

〉

=

n∑
i=1

n∑
j=1

aijxjyi

=

n∑
j=1

xj

n∑
i=1

aijyi

=

n∑
j=1

xj

n∑
i=1

ajiyi =
〈
x,A

>
y
〉
.

v) Integral operators on L2[0, 1]: For any k ∈ C([0, 1]×[0, 1]) we have that the

integral operator Tkf(x) =
∫ 1

0
k(x, y)f ∗ (y)dy is a bounded operator on

L2[0, 1]. Hence T ∗k exists and equals T ∗k f(x) =
∫ 1

0
k(y, x)f(y)dy. Exercise:

Confirm this assertion.

Certain classes of bounded linear operators of great practical importance can
be defined by the use of adjoint operators as follows.

Definition 5.3.2. A bounded linear operator T : X → X on a Hilbert space
X is said to be

i) normal if T ∗T = TT ∗.
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ii) unitary if T is bijective and T ∗ = T−1. We then have

T ∗T = TT ∗ = I.

iii) self-adjoint or Hermitian if T = T ∗.

Example 5.3.3. i) Multiplication operator on `2: Recall the multiplication
operator Ta on `2, defined for some fixed a ∈ `∞ by

Tax = (ajxj)j∈N, x ∈ `2.
This is a normal operator, since it follows from T ∗a = Ta that

T ∗aTa = TaT
∗
a = T|a|2 .

We see that it is a unitary operator if and only if

|a| = (|a1|, |a2|, |a3|, . . .) = (1, 1, 1, . . .).

For instance, Ta is unitary if

a = (1, i,−1,−i, . . .) = (ik)∞k=0.

Moreover, we see that Ta is self-adjoint if and only if a is real-valued, since

T ∗a = Ta = Ta

only in this case.

ii) Shift operator on `2: The right shift operator R on `2 is not normal. To
see this, observe that

R∗Rx = LRx = L(0, x1, x2, x3, . . .) = (x1, x2, x3, . . .) = Ix,

but

RR∗x = RLx = R(x2, x3, x4, . . .) = (0, x2, x3, x4, . . .) 6= Ix.

Example 5.3.4. Consider Rn with the standard inner product

〈x, y〉 = x1y1 + . . .+ xnyn = x>y,

and let T : Rn → Rn be the linear map given by matrix multiplication

Tx = Ax, x ∈ Rn,
for some real-valued fixed, n × n matrix A. Then following Example 5.3.1iv), the
adjoint T ∗ of T is given by

T ∗x = A>x, x ∈ Rn.
Consequently, we see that the matrix A is

• Symmetric, meaning AT = A, if T is self-adjoint.
• Invertible and orthogonal, meaning AT = A−1, if T is unitary.

We list certain properties of unitary operators.

Lemma 5.12. Let S and T be two unitary operators on a Hilbert space X.
We then have:

i) S is isometric; thus ‖Sx‖ = ‖x‖ for all x ∈ X.

ii) ‖S‖ = 1, provided X 6= {0}.
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iii) The composition operators ST and TS are unitary.

iv) The identity operator I is unitary.

Proof. i) We observe that

‖Sx‖2 = 〈Sx, Sx〉 = 〈x, S∗Sx〉 = 〈x, Ix〉 = ‖x‖2.

ii) This follows immediately from i).

iii) We have

(ST )∗(ST ) = T ∗S∗ST = T ∗IT = T ∗T = I,

and by an equivalent calculation one can verify that (ST )(ST )∗ = I.

iv) It is clear that I∗ = I (i.e. the identity operator is also self-adjoint), since

〈Ix, y〉 = 〈x, y〉 = 〈x, Iy〉 , for all x, y ∈ X.

It immediately follows that I∗I = II∗ = I.
�

We close our discussion of adjoint operators with certain useful relations between
the kernel and range of an operator and its adjoint.

Proposition 5.13. Let T be a bounded linear operator on a Hilbert space X.
We then have

i) ran(T ) = ker(T ∗)⊥ ;

ii) ker(T ) = ran(T ∗)⊥.

Equivalently, we have

ran(T ∗) = ker(T )⊥ and ker(T ∗) = ran(T )⊥,

and consequently

X = kerT ⊕ ran(T ∗) = kerT ∗ ⊕ ran(T ).

Proof. i) Showing ran(T ) ⊆ ker(T ∗)⊥:
Let y ∈ ran(T ). Then y = Tx for some x ∈ X, and for any z ∈

ker(T ∗), we get

〈y, z〉 = 〈Tx, z〉 = 〈x, T ∗z〉 = 〈x, 0〉 = 0.

This shows that y ∈ ker(T ∗)⊥, and thus ran(T ) ⊆ ker(T ∗)⊥. Finally,

since ker(T ∗)⊥ is closed, we must have ran(T ) ⊆ ker(T ∗)⊥.

Showing ker(T ∗)⊥ ⊆ ran(T ): Let x ∈ ran(T )
⊥

. Then necessarily
x ∈ ran(T )⊥, meaning

0 = 〈Ty, x〉 = 〈y, T ∗x〉 , for all y ∈ X.

It follows that T ∗x = 0, so x ∈ ker(T ∗). This shows ran(T )
⊥
⊆ ker(T ∗).

Taking orthogonal complements, we get

ker(T ∗)⊥ ⊆ ran(T )
⊥⊥

= ran(T ).
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ii) Exercise.
�

Example 5.3.5. Let R and L be the right and left shift operator, respectively.

kerR = {0} = ranR = {(0, x1, x2, ...) : (xi) ∈ `2}
kerL = {x1, 0, 0, ...} = ranL = `2.

Note that kerR⊥ = ranL and kerL⊥ = ranR and R∗ = L and L∗ = R.

Corollary 5.14. Let T be a bounded linear operator on a Hilbert space X.
Then ker(T ∗) = {0} if and only if ran(T ) is dense in X.

Proof. This is immediate from Proposition 5.13, as we have

X = ker(T ∗)⊕ ran(T ).

�

This corollary allows one to check if the range of an operator is dense in the space
X by determining the adjoint operator and its kernel. This can be a very useful
strategy in practice, as it is often more difficult to determine the range of an operator
than its kernel.

We mention another consequence for the solvability of linear systems.

Proposition 5.15. Suppose that T is a bounded linear operator on Hilbert
space (X, 〈., .〉) with closed range. Then Tx = b has a solution for x if and
only if b is orthogonal to ker(T ∗).

Note there is an elementary condition that implies that an operator has closed
range: Any T ∈ B(X) for a Banach space X with the following property: If there
exists a constant c > 0 such that ‖Tx‖ ≥ c‖x‖ for all x ∈ X, then T has closed
range.

The result indicates that the solutions of Tx = b are closely related to the
structure of the adjoint linear system T ∗x = b.

Proposition 5.16. Suppose T ∈ B(X) has closed range. If T ∗x = b has a
unique solution, then Tx = b has a solution for any b ∈ X.

Proof. By assumption T ∗x = b has a unique solution, i.e. kerT ∗ = {0}.
Hence for any b ∈ (kerT ∗)⊥ = X the equation Tx = b has a solution. �





CHAPTER 6

Series and bases in normed spaces

In this chapter we investigate series and bases in normed spaces. In particular,
we focus on Schauder bases for Banach spaces, and orthonormal bases for separable
Hilbert spaces.

6.1. Linear dependence, bases and dimension

Let X be a vector space over a field F ∈ {R,C}, and let S ⊂ X be any subset.
Recall from Section 2.1 that a linear combination of vectors v1, . . . , vn ∈ S is a
finite sum

a1v1 + · · · anvn,
where a1, . . . , an are scalars in F, and the span of S is the set of all linear combi-
nations of vectors in S:

span(S) :=


N∑
j=1

ajxj : xj ∈ S, aj ∈ F

 .

Definition 6.1.1. A set of vectors x1, x2, . . . is called linearly independent if
n∑
j=1

ajxj = 0 ⇒ a1 = a2 . . . = an = 0,

for all n ∈ N and aj ∈ F.

Contrarily, the set of vectors is called linearly dependent if one of the vectors is a
linear combination of certain others, meaning

n∑
j=1

ajxj = 0 for some n ∈ N and at least one aj 6= 0.

Example 6.1.2. i) The vectors x = (1, 0), y = (2, 0) and z = (1, 1) are
linearly dependent i R2, since y − 2x = 0. However, both the sets {x, z}
and {y, z} are linearly independent.

ii) {1, x, x2, x3, . . .} is linearly independent in the space of all polynomials P.

iii) {1, cosx, sinx, cos 2x, sin 2x, . . .} is linearly independent in the space C[a, b]
of real-valued continuous functions on an interval [a, b].

A linearly independent set which generates a vector space X is called a Hamel
basis. This is the kind of basis you will most likely have seen in an earlier course
on linear algebra.

81
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Definition 6.1.3. We call a linearly independent set S of a vector space
X a Hamel basis if S spans X, i.e. if any x ∈ X has a unique and finite
representation

x = a1x1 + · · ·+ anxn, xj ∈ S, aj ∈ F.

Example 6.1.4. i) The set {e1, . . . en} ⊂ Rn, where

ej = (0, . . . , 0, 1, 0, . . . , 0),

and the 1 appears at the jth entry, is called the standard basis in Rn.
This is a Hamel basis.

ii) {1, x, x2, . . .} is a Hamel basis for P(R): every real polynomial can be
uniquely expressed as a finite sum

p(x) =

N∑
j=0

ajx
j , aj ∈ R.

Definition 6.1.5. If the vector space X has a (Hamel) basis consisting of
finitely many vectors, then X is said to be finite-dimensional. Otherwise, we
call X infinite-dimensional.

It is a fact that all bases of a finite-dimensional vector space have the same number
of elements. This unique number is called the dimension of the space.

Example 6.1.6. i) Rn has dimension n.

ii) Pn(R) has dimension n+1. (Recall from Section 3.3 that Pn(R) ∼= Rn+1.)

iii) Cn has dimension n when considered as a complex vector space, but 2n
when considered a real vector space.

iv) The spaces `p, C[a, b] and L2[a, b] are all infinite-dimensional.

6.2. Schauder bases

The concept of a Hamel basis is very general, and any vector space has a Hamel
basis. However, these bases are not particularly well suited for infinite-dimensional
Banach spaces.

Proposition 6.1. Infinite-dimensional Banach spaces have only uncountable
Hamel bases.

(We state this result without proof.)
In other words, given that X is an infinite-dimensional Banach space, there is

no sequence {xj}j∈N of elements of X which can serve as a Hamel basis for X.

Definition 6.2.1. A countable set {x1, x2, x3, . . .} of a normed space (X, ‖·‖)
is called a Schauder basis if for every x ∈ X there exists a unique sequence of
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scalars (aj)j∈N such that

‖x− (a1x1 + · · · anxn)‖ → 0 (as n→∞).

In this case we write x as the sum

(6.1) x =

∞∑
j=1

ajxj ,

and this is called the series expansion of x with respect to (xj)j∈N.

Example 6.2.2. i) Denote by en ∈ `p the sequence whose nth term is 1
and all other terms are zero. The set {en}n∈N is a Schauder basis in `p

for 1 ≤ p <∞.

ii) The set of trigonometric functions {e2πikx}k∈Z is a Schauder basis for
L2[0, 1].

A Schauder basis allows us to take infinite linear combinations for expressing ele-
ments of X, as the norm on X gives a way of defining this limiting procedure. Note
that if a normed space has a Schauder basis, it is necessarily separable (Exercise.).
As a consequence, the space `∞ cannot have a Schauder basis. Nevertheless, we
want to be able to discuss infinite series, such as that given in (6.1), also here.

Definition 6.2.3. Let (X, ‖ · ‖) be a normed space and (xj)j∈N a sequence of
vectors in X. We can associate with (xj) the sequence (sn)n∈N of partial sums

sn = x1 + x2 + · · ·+ xn.

If (sn) is convergent and sn → s for some s ∈ X, meaning

‖sn − s‖ → 0 (as n→∞),

then the (infinite) series
∑∞
j=1 xj is said to converge to s, and we write

s =

∞∑
j=1

xj .

6.3. Orthonormal systems and the closest point property

Recall from Section 2.3 that a set of vectors {x1, x2, . . .} in an inner product
space (X, 〈·, ·〉) is said to be orthogonal if

〈xj , xk〉 = 0 for all j 6= k.

Moreover, if ‖xj‖ = 1 for each j ∈ N, then the set is called orthonormal.

Example 6.3.1. i) In the space R3, the three unit vectors (1, 0, 0), (0, 1, 0)
and (0, 0, 1) form an orthonormal set.

ii) In the space `2, the sequence (en)n∈N introduced in Example 6.2.2i) is an
orthonormal set.

iii) The set of exponential functions {e2πikx}k∈N is an orthonormal set in
L2[0, 1].
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Lemma 6.2. An orthonormal set is linearly independent.

Proof. Exercise. �

A great advantage of orthonormal sequences over arbitrary linearly independent
sequences is the following. If we know that a given x can be represented as a linear
combination of some elements of an orthonormal sequence, then the orthonormal-
ity makes the determination of coefficients very easy. Suppose {e1, e2, . . .} is an
orthonormal sequence in an inner product space X and say x ∈ span{e1, . . . en} for
some fixed n. Then by the definition of span we have

x =

n∑
j=1

ajej ,

and by taking the inner product of this sum with a fixed ek, we obtain

〈x, ek〉 =
〈∑

ajej , ek

〉
=
∑

aj 〈ej , ek〉 = ak.

Thus, we get

x =

n∑
j=1

〈x, ej〉 ej .

More generally, if we consider any x ∈ X (not necessarily in Yn = span{e1, . . . , en}),
we can define y ∈ Yn by

y =

n∑
j=1

〈x, ej〉 ej ,

and then define z by setting x = y + z (or equivalently z = x − y). We will now
show that z ⊥ y. By orthonormality it follows that

‖y‖2 =
〈∑

〈x, ej〉 ej ,
∑
〈x, ek〉 ek

〉
=
∑
| 〈x, ej〉 |2,

and thus

〈z, y〉 = 〈x− y, y〉 = 〈x, y〉 − 〈y, y〉

=
〈
x,
∑
〈x, ej〉 ej

〉
− ‖y‖2

=
∑
〈x, ej〉 〈x, ej〉 −

∑
| 〈x, ej〉 |2 = 0.

This shows z ⊥ y, and it follows from the Pythagorean relation that

‖x‖2 = ‖y‖2 + ‖z‖2,
or equivalently

(6.2) ‖z‖2 = ‖x‖2 − ‖y‖2 = ‖x‖2 −
n∑
j=1

| 〈x, ej〉 |2.

Since ‖z‖ ≥ 0, we get for every n = 1, 2, . . .
n∑
j=1

| 〈x, ej〉 |2 ≤ ‖x‖2.

These sums have non-negative terms, so they form a monotone, increasing sequence
bounded above by ‖x‖2. Thus, it must converge, and we get:
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Theorem 6.3 (Bessel’s inequality). Let (ej)j∈N be an orthonormal sequence
in an inner product space X. Then for every x ∈ X, we have

∞∑
j=1

| 〈x, ej〉 |2 ≤ ‖x‖2.

The inner products 〈x, ej〉 are called the Fourier coefficients of x with respect to
the orthonormal sequence (ej).

In light of Lemma 5.2 and what we have just seen, it is tempting to sug-
gest that y =

∑n
j=1 〈x, ej〉 ej is a best approximation of x ∈ X in the subspace

span{e1, . . . en}. Let us now see that this is indeed the case.

Theorem 6.4. An orthonormal sequence (ej) in an inner product space X
satisfies ∥∥∥∥∥∥x−

n∑
j=1

ajej

∥∥∥∥∥∥ ≥
∥∥∥∥∥∥x−

n∑
j=1

〈x, ej〉 ej

∥∥∥∥∥∥ ,
for any x ∈ X, any n ∈ N and any scalars a1, . . . an ∈ F. Equality holds if and
only if aj = 〈x, ej〉 for each j = 1, . . . , n.

Proof. We have∥∥∥∥∥∥x−
n∑
j=1

ajej

∥∥∥∥∥∥
2

= ‖x‖2 − 2<

〈
x,

n∑
j=1

ajej

〉
+

∥∥∥∥∥∥
n∑
j=1

ajej

∥∥∥∥∥∥
2

= ‖x‖2 − 2<
n∑
j=1

aj 〈x, ej〉+

n∑
j=1

|aj |2

= ‖x‖2 +

n∑
j=1

| 〈x, ej〉 − aj |2 −
n∑
j=1

| 〈x, ej〉 |2

≥ ‖x‖2 −
n∑
j=1

| 〈x, ej〉 |2 =

∥∥∥∥∥∥x−
n∑
j=1

〈x, ej〉 ej

∥∥∥∥∥∥
2

,

where the last equality follows from (6.2), and we see that equality holds throughout
if and only if aj = 〈x, ej〉 for every j. �

Corollary 6.5. If {e1, . . . , en} is an orthonormal system in an inner prod-
uct space X, then y =

∑n
j=1 〈x, ej〉 ej is the unique closest point to x in

span{e1, . . . , en}, with d = ‖x− y‖ given by

d2 = ‖x‖2 −
n∑
j=1

| 〈x, ej〉 |2.

We have seen that orthonormal sequences are very convenient to work with.
The remaining practical problem is how to obtain an orthonormal sequence if an
arbitrary linearly independent sequence is given. We have the following result,
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which we will prove using a constructive procedure known as the Gram-Schmidt
orthogonalization algorithm. Hence the proof is an important part of the next result,
as it shows how we obtain the orthogonal sequence.

Proposition 6.6. LetX be an infinite-dimensional inner product space. Then
X contains a countable orthonormal set.

Proof. By assumption there exists a linearly independent subset {x1, x2, . . .}
in X. We will show that there exists an orthonormal sequence {e1, e2, . . .} such
that

span{x1, . . . , xn} = span{e1, . . . , en}
for every fixed n ∈ N.

First step: Set e1 := x1/‖x1‖. Then span(x1) = span(e1) and ‖e1‖ = 1.
Induction step: Suppose that for some n ≥ 2 we have constructed an orthonor-

mal set En−1 = {e1, . . . , en−1} such that

span(En−1) = span{x1, . . . , xn−1}.
We now project xn onto En−1, and set

ẽn := xn −
n−1∑
j=1

〈xn, ej〉 ej .

We have that ẽn must be contained in the span of the linearly independent set
{En−1, xn}, so ẽn must be nonzero (since the coefficient in front of xn is non-zero).
By construction, we have

〈ẽn, ek〉 = 0 for k = 1, . . . , n− 1.

Thus, the normalized vector en := ẽn/‖ẽn‖ can be added to En−1 to obtain the
orthonormal set En = {e1, . . . , en}. Finally note that

span(En) = span{En−1, xn} = span{x1, . . . , xn}.
�

6.4. Orthonormal bases and the Fourier series theorem

We have now seen that any infinite-dimensional inner product space contains
a countable orthonormal sequence. Given such a sequence (en), we now raise the
question of when a series of the form

∞∑
j=1

ajej , aj ∈ F,

converges in the inner product space. Recall that we defined convergence of a series
in Definition 6.2.3. We restrict our discussion to complete inner product spaces X
(i.e. Hilbert spaces).

Theorem 6.7. Let {e1, e2, . . .} be an orthonormal sequence in a Hilbert space
X. Then the series

∑∞
j=1 ajej converges if and only if a = (aj)j∈N ∈ `2. In
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this case, we have

(6.3)

∥∥∥∥∥∥
∞∑
j=1

ajej

∥∥∥∥∥∥ = ‖a‖`2 .

Proof. Let sn be the partial sum

sn = a1e1 + · · ·+ anen,

and let

σn = |a1|2 + · · ·+ |an|2.

Then, by orthonormality, for any m and n > m we have

(6.4)
‖sn − sm‖2 = ‖am+1em+1 + · · ·+ anen‖2

= |am+1|2 + · · ·+ |an|2 = |σn − σm|.

Hence (sn) is Cauchy in X if and only if (σn) is Cauchy in R. Since both spaces
are complete, the sequences either both converge or both diverge. In the case of
convergence, we put m = 0 and let n→∞ in (6.4) to obtain (6.3). �

The truly interesting orthonormal sets in inner product spaces and Hilbert
spaces are those which consist of “sufficiently many” elements so that every element
in the space can be represented (or sufficiently well approximated) by the use of
these elements. In this respect, the following notions are relevant.

Definition 6.4.1. An orthonormal sequence {e1, e2, . . .} is maximal (or total)
in an inner product space X if

span{e1, e2 . . .} = X,

or, equivalently, if span{e1, e2 . . .}
⊥

= {0}.

Thus we have that {e1, e2, . . .} is total in X if and only if for any x ∈ X we have
〈x, en〉 = 0 for all n ∈ N implies that x = 0.

Definition 6.4.2. An orthonormal sequence {e1, e2, . . .} in a Hilbert space X
is called an orthonormal basis of X if

x =

∞∑
j=1

〈x, ej〉 ej

holds for any x ∈ X.

Example 6.4.3. i) In Rn, Cn and `2, the canonical basis {ej}j∈N is also an
orthonormal basis.

ii) The set {1/
√

2, cosx, sinx, cos 2x, sin 2x, . . .} is an orthonormal basis for
real-valued functions in L2[−π, π] if we equip it with the inner product

〈f, g〉 =
1

π

∫ π

−π
f(x)g(x) dx.
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iii) {e2πikx}k∈Z is an orthonormal basis for L2[0, 1] (equipped with the usual
inner product).

It is precisely when the orthonormal sequence {e1, e2, . . . } is maximal that it pro-
vides an orthonormal basis in the Hilbert space X.

Theorem 6.8 (The Fourier series theorem). Let S = (ej)j∈N be an orthonor-
mal sequence in a Hilbert space X. The following are equivalent:

i) S is maximal, meaning spanS = X.

ii) S is an orthonormal basis for X.

iii)
∑∞
j=1 | 〈x, ej〉 |2 = ‖x‖2 for all x ∈ X.

Remark. The last equality in Theorem 6.8 is known as Parseval’s identity.

Proof of Theorem 6.8. i) ⇒ ii): Let x ∈ X. By Bessel’s inequality, we
know that

∞∑
j=1

| 〈x, ej〉 |2 ≤ ‖x‖2 <∞,

so Theorem 6.7 ensures that the series
∑∞
j=1 〈x, ej〉 ej converges. We need to show

that x =
∑∞
j=1 〈x, ej〉 ej . For any k ∈ N, we find that〈

x−
∞∑
j=1

〈x, ej〉 ej , ek

〉
= 〈x, ek〉 −

∞∑
j=1

〈x, ej〉 〈ej , ek〉 = 〈x, ek〉 − 〈x, ek〉 = 0.

This shows x−
∑∞
j=1 〈x, ej〉 ej ∈ span(S)

⊥
= {0}, so x =

∑∞
j=1 〈x, ej〉 ej .

ii) ⇒ iii): If S is an orthonormal basis, then x =
∑
〈x, ej〉 ej , and

‖x‖2 =

〈∑
j∈N
〈x, ej〉 ej ,

∑
j∈N
〈x, ej〉 ej

〉
=
∑
j∈N
| 〈x, ej〉 |2

iii) ⇒ i): Suppose x ∈ spanS
⊥

. Then ‖x‖2 =
∑
j∈N | 〈x, ej〉 |2 = 0, and it

follows that x = 0. This shows that spanS
⊥

= {0}, and thus S is maximal. �

We observe the following:

Theorem 6.9. Any separable Hilbert space X has a (countable) orthonormal
basis.

We will not prove this rigorously, but point out that it can be proven inductively
by starting with a countable, dense set in X, reducing this set until it is also
linearly independent, and finally applying the Gram-Schmidt algorithm to obtain
an orthonormal set. In light of Theorem 6.9, it follows from Theorem 6.8 that the
elements of any separable Hilbert space are uniquely determined by their Fourier
coefficients. In other words, any separable Hilbert space “looks like” `2.

Theorem 6.10 (Riesz-Fischer). Every infinite-dimensional separable Hilbert
space X is isometrically isomorphic to `2.
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Proof. As any infinite-dimensional separable Hilbert space X has an or-
thonormal basis (ej), we can express every x ∈ X uniquely by x =

∑∞
j=1 〈x, ej〉 ej .

We may therefore define a map T : X → `2 by

Tx = (〈x, ej〉)j∈N.

By Parseval’s identity we have ‖Tx‖ = ‖x‖ for any x ∈ X. Finally, T is surjec-
tive (this follows from Theorem 6.7). This shows that X and `2 are isometrically
isomorphic,

X ∼= `2.

�

Corollary 6.11. Any finite-dimensional Hilbert space is isomorphic to Fn.

6.5. Equivalent norms

We briefly make a detour back to normed spaces, and discuss the concept of
equivalent norms.

Definition 6.5.1. Let X be a vector space and let ‖ · ‖a and ‖ · ‖b be two
norms on X. These are called equivalent if there exist (positive) constants C1

and C2 such that

C1‖x‖a ≤ ‖x‖b ≤ C2‖x‖a for all x ∈ X.

We denote by Bar (x) = {y ∈ X : ‖x−y‖a < r} and Bbr(x) = {y ∈ X : ‖x−y‖b < r}
the open balls of radius r and center x ∈ X with respect to the norms ‖.‖a and
‖.‖b.

Proposition 6.12. Let ‖.‖a and ‖.‖b be two norms on a vector space X. Then
the following statements are equivalent:

(1) ‖.‖a and ‖.‖b are equivalent norms.
(2) There exists some r > 0 such that Ba1/r(0) ⊆ Bb1(0) ⊆ Bar (0).

Proof. (1)⇐ (2):
Suppose that ‖.‖a and ‖.‖b are equivalent norms. Then there exists an r > 0 such
that

1

r
‖x‖a ≤ ‖x‖b ≤ r‖x‖a for all x ∈ X.

Then for x with ‖x‖b < 1 we have 1
r‖x‖a ≤ ‖x‖b < 1 and thus we have ‖x‖a < r,

i.e. Bb1(0) ⊆ Bar (0).
Now we assume x ∈ X and ‖x‖a < 1/r. Then we get that ‖rx‖a < 1. Since the
norms are equivalent we have 1

r‖rx‖b ≤ ‖rx‖a < 1 and thus we have ‖x‖b < 1, i.e.

Ba1/r(0) ⊆ Bb1(0).

(2)⇐ (1):
Suppose Ba1/r(0) ⊆ Bb1(0) ⊆ Bar (0) holds for some r > 0. Then for any x ∈ X we

have that x
2‖x‖b is in Bb1(0) and consequently in Bar (0), i.e. ‖ x

2‖x‖b ‖a < r. Hence
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we have

‖x‖b ≤ 2r‖x‖a.
The other inclusion follows by the same reasoning. �

Two equivalent norms on a vector space X necessarily give the same classes of
convergent and Cauchy sequences.

Lemma 6.13. Suppose ‖ ·‖a and ‖ ·‖b are equivalent norms on a vector space
X.

i) A sequence (xn) in X converges to x ∈ X with respect to the norm
‖ · ‖a if and only if it converges to x ∈ X with respect to the norm
‖ · ‖b.

ii) A sequence (xn) in X is Cauchy with respect to the norm ‖ · ‖a if
and only if it is Cauchy with respect to the norm ‖ · ‖b.

Proof. Exercise. �

An important consequence is the following:

Proposition 6.14. Suppose ‖ · ‖a and ‖ · ‖b are equivalent norms on a vector
space X. Then (X, ‖·‖a) is a Banach space if and only if (X, ‖·‖b) is a Banach
space.

One may raise the question of whether all norms on a given vector space are equiv-
alent. If the vector space in question is infinite-dimensional, then the answer is
no.
Example 6.5.2. i) Let s be the vector space of real-valued sequences. Then

the ‖ · ‖1-norm and the ‖ · ‖∞-norm are not equivalent on s. To see this,
fix some N ∈ N, and consider the sequence x = (1, . . . , 1, 0, 0, · · · ) with N
non-zero entries. Then ‖x‖1 = N and ‖x‖∞ = 1. Hence we have

N‖x‖∞ = ‖x‖1,

and since we can do this for every N ∈ N it is not possible to find a
constant C > 0 such that

‖x‖1 ≤ C‖x‖∞ for all x ∈ s.

ii) Consider the space of continuous functions C[0, 1], and endow it with the
two norms ‖ ·‖2 and ‖ ·‖∞. We have seen that (C[0, 1], ‖ ·‖∞) is a Banach
space, whereas (C[0, 1], ‖ · ‖2) is not. Thus, by Proposition 6.14 these two
norms cannot be equivalent.

Here is a general result on non-equivalent norms.

Lemma 6.15. Suppose ‖.‖a and ‖.‖b are two norms on a vector space X.
Then ‖.‖a and ‖.‖b are not equivalent if there exists a sequence (xn) in X such
that ‖xn‖b = 1 for all n ∈ N but ‖xn‖a = n for all n ∈ N.

Proof. Exercise. �
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However, if the vector space in question is finite-dimensional, then the answer
to the aforementioned question is in fact yes.

Theorem 6.16. On a finite-dimensional vector space X, all norms are equiv-
alent. For instance, all norms are equivalent on Rn.

We state this result without proof.





CHAPTER 7

Topics in linear algebra

In Chapter 4, we discussed bounded linear operators between normed spaces X
and Y . In this chapter, we focus on the case when X and Y are finite-dimensional.
We first establish the fundamental fact that B(X,Y ) ∼= Mm×n(C) if X and Y
are complex vector spaces of dimensions n and m, respectively. We then go on
to discuss spectral theory for linear operators between finite-dimensional vector
spaces, and finally consider certain useful matrix decompositions.

7.1. Linear transformations between finite-dimensional spaces

We learned in the previous chapter that any finite-dimensional vector space X
of dimension n has a set of n linearly independent spanning vectors {x1, . . . , xn}.
We call this set a basis for X, and any other basis must necessarily have the same
number of spanning vectors. As a consequence of the Riesz-Fischer theorem we
noted that an n-dimensional vector space is isomorphic to Fn. Now let T : X → Y
be a linear operator between finite-dimensional vector spaces X and Y . We make
the useful observation that T is determined by its action on any basis of X.

Lemma 7.1. LetX be a finite-dimensional vector space with basis {b1, . . . , bn}.
For any vectors y1, . . . , yn ∈ Y there exists precisely one linear transformation
T : X → Y such that

Tbj = yj , j = 1, . . . , n.

Proof. Any x ∈ X has a unique representation x =
∑n
j=1 xjbj . Hence we

have

Tx = T (

n∑
j=1

xjbj) =

n∑
j=1

xjTbj .

Thus T is uniquely determined by the vectors Tb1, ..., T bn in Y . �

Example 7.1.1. Let T : Cn → Cm be the linear map given by matrix multipli-
cation

Tx = Ax, A ∈Mm×n(C).

Then the columns Aj of the matrix A are determined by the action on the standard
basis {ej}nj=1:

Aej = Aj , j = 1, . . . , n.

Note that Aj plays the role of yj in the above lemma.

93
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Example 7.1.2. The differential operator d
dx is a linear operator on Pn(R). Since

P2(R) ∼= R3 via the vector space isomorphism

2∑
j=0

ajx
j → (a0, a1, a2),

we see that

d

dx
:

0 1 0
0 0 2
0 0 0

a0a1
a2

 =

 a12a2
0


expresses the derivation

d

dx
(a0 + a1x+ a2x

2) = a1 + 2a2x+ 0x2.

Next we discuss the link between matrices and linear transformations. On the one
hand a m×n matrix A defines a linear transformation from Cn to Cm by Tx = Ax.
On the other hand any linear transformation on finite-dimensional vector spaces
can by represented in matrix form relative to a choice of bases.

We present the details for this assertion. Let B = {x1, ..., xn} be a basis of X and
C = {y1, ..., ym} be a basis of Y . Suppose T is a linear transformation T : X → Y
Then

x =

n∑
i=1

αixi

yields

T (x) =

n∑
i=1

αiT (xi)

and thus

[T (x)]C =

n∑
i=1

αi[T (xi)]C .

We define a m×n matrix A which has as its j-th column [[T (xj)]C ]. Then we have

[Tx]C = A[x]B.

The matrix A represents T with respect to the bases B and C. Sometimes, we
denote this A sometimes by [T ]CB.

We address now the relation between the matrix representation of T depend-
ing on the change of bases. Suppose we have two bases B = {x1, ..., xn} and
R = {y1, ..., yn} for X. Let x =

∑n
j=1 αixi. Then

[x]R =

n∑
j=1

αi[xi]R.

Define the n × n matrix P with j-th column [xj ]R, and we call P the change of
bases matrix:

[x]R = P [x]B

and by the invertibility of P we also have

[x]B = P−1[x]R.
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Let now C and S be two bases for Y . Then a linear transformation T : X → Y has
two matrix representations:

A = [T ]CB and B = [T ]SR.

In other words we have

[Tx]C = A[x]B , [Tx]S = B[x]R

for any x ∈ X. Let P be the change of bases matrix of size n × n such that
[x]R = P [x]B for any x ∈ X and let Q be the invertible m ×m matrix such that
[y]S = Q[y]C .
Hence we get that

[Tx]S = BP [x]B

and

[y]S = [Tx]S = Q[Tx]C = QA[x]B

for any x ∈ X. Hence we get that

B = QAP−1 and A = Q−1BP.

In the case X = Y we have P = Q and we set S = Q−1 to get B = S−1AS. Then
the matrices A and B represent the same linear transformation T on V with respect
to different bases.
Remark 7.1.3. If X and Y are both finite-dimensional normed spaces, then any
linear transformation T : X → Y is automatically bounded. We therefore use
B(X,Y ) to denote the linear transformations from X to Y when X and Y are finite-
dimensional. Note that the preceding discussion yields that B(X,Y ) ∼=Mm×n(C).

Recall from Section 2.1 that the kernel of a linear operator T : X → Y ,

ker(T ) = {x ∈ X : Tx = 0} ,

is a vector subspace of X, whereas the range of T ,

ran(T ) = {y ∈ Y : Tx = y for some x ∈ X} ,

is a vector subspace of Y . When X and Y are finite-dimensional, and T is repre-
sented by a matrix A ∈Mm×n(C), then these subspaces are equivalently given by
the so-called null space and column space of the matrix A:

• Null space of A: The kernel of T represented by A is clearly equal to
the null space of A. We have

x ∈ ker(T ) ⇔ Ax = 0 ⇔
n∑
j=1

aijxj = 0 ∀i = 1, . . .m

⇔ (x1, . . . , xn) ⊥ (ai1, . . . , ain) ∀i = 1, . . .m.

Note that the final line above tells us that the kernel of T (or null space
of A) is the space of vectors x ∈ Cn orthogonal to the conjugated row
vectors of A. We call the dimension of this subspace the nullity of T .
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• Column space of A: The column space of A is the range of T . Since

Tx = Ax = A1x1 + · · ·+Anxn,

where Aj = (a1j , . . . , amj)
> is the jth column vector of A, we have that

ran(T ) = {Ax : x ∈ Cn} = span{A1, . . . , An}.

This is precisely the column space of A. We call the dimension of this
subspace the rank of T .

• Row space of A: The row space of A is the space spanned by the row
vectors of A. Note that

row space of A = column space of A>,

where A> is the transpose of A. The following result follows almost im-
mediately.

Proposition 7.2. Let A ∈Mm×n(C). Then

ker(A) ⊥ ran(A
>

).

In words, the kernel of A is orthogonal to the range of A
>

.

Proof. We have just seen that the kernel, or null space, of A is orthogonal to

the row space of A. This is in turn equal to the column space, or range, of A
>

. �

Finally let us state the rank-nullity theorem and see some important consequences.

Theorem 7.3. Let T ∈ B(Cn,Cm). Then

dim(ker(T )) + dim(ran(T )) = n.

Proof. Pick a basis {e1, . . . , ek} for kerT . If k = n and ker(T ) = Cn, we are
done, since then ran(T ) = {0}, and

dim(ker(T )) + dim(ran(T )) = n+ 0 = n.

Now assume k < n, and extend {e1, . . . , ek} to a basis {e1, . . . , ek, f1, . . . , fl}
for Cn. This can be done in the following way: pick f1 /∈ span{e1, . . . , ek}. Then
{e1, . . . , ek, f1} is linearly independent. If this set of vectors spans all of Cn, we
stop. If not, we pick f2 /∈ span{e1, . . . , ek, f1}. This process will necessarily stop
when k + l = n (because any linearly independent set of vectors spanning Cn has
precisely n elements).

To finish the proof, we prove that Tf = {Tf1, . . . , T fl} is a basis for ran(T ).
We observe first that Tf is linearly independent:

l∑
j=1

ajTfj = T

 l∑
j=1

ajfj

 = 0 ⇔
l∑

j=1

ajfj ∈ kerT

⇔ aj = 0 for j = 1, 2, . . . , l.

The last implication follows from the fact that by construction, no nonzero linear
combination of vectors fj lies in ker(T ). Now let us see that Tf spans ran(T ). By
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the linearity of T we have

ran(T ) = {Tx : x ∈ Cn} =

T(
k∑
j=1

ajej +

l∑
j=1

bjfj

)
: aj , bj ∈ C


=

T(
k∑
j=1

ajej

)
+ T

( l∑
j=1

bjfj

)
: aj , bj ∈ C


=


l∑

j=1

bjTfj : bj ∈ C

 .

Hence {Tf1, . . . , T fl} is a basis for ran(T ), and

dim(ker(T )) + dim(ran(T )) = k + l = n.

�

An immediate consequence of the rank-nullity theorem is that a linear map T :
Cn → Cn is injective if and only if it is surjective.

Corollary 7.4. Let T ∈ B(Cn,Cn). Then the following are equivalent.

i) T is injective (ker(T ) = {0}).

ii) T is surjective (ran(T ) = Cn).

iii) T is invertible.

iv) The matrix representation A of T (in any given basis) is invertible.

v) For any b ∈ Cn, the system Ax = b has a unique solution.

We close this section with a geometric version of the rank-nullity theorem.

Corollary 7.5. Let A ∈Mm×n(C). Then

Cn = ker(A)⊕ ran(A
>

).

Replacing A by A
>

in the Corollary above, we immediately also have

Cm = ker(A
>

)⊕ ran(A).

In light of the fact that the adoint T ∗ of the operator T represented by the
matrix A is given by

T ∗x = A
>
x,

Corollary 7.5 is an immediate consequence of Proposition 5.13. Nevertheless, let
us also deduce this using the rank-nullity theorem. We will need the following
preliminary result on dimension of subspaces.

Lemma 7.6. Let M,N be subspaces of a finite-dimensional vector space X.
Then

dim(M +N) + dim(M ∩N) = dim(M) + dim(N).
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In particular, if M ⊥ N , then

dim(M +N) = dim(M) + dim(N).

Proof of Corollary 7.5. We have already seen that ker(A) ⊥ ran(A
>

) in
Cn, so by the Lemma above we have

dim(ker(A)) + dim(ran(A
>

)) = dim(ker(A) + ran(A
>

)) = l, l ≤ n.
If we let k = dim(ker(A)), then by the rank-nullity theorem we have

dim(ran(A
>

)) = l − k = l − (n− dim(ran(A))) ≤ dim(ran(A)).

However, this argument is independent of the specific matrix A, and replacing A

by A
>

above, we get

dim(ran(A)) ≤ dim(ran(A
>

)),

and thus
dim(ran(A)) = dim(ran(A

>
)).

It follows that

dim(ker(A) + ran(A
>

)) = dim(ker(A)) + dim(ran(A
>

)) = n,

where the last equality is the rank-nullity theorem since dim(ran(A)) = dim(ran(A
>

)),
and

Cn = ker(A)⊕ ran(A
>

).

�

7.2. Eigenvalues and eigenvectors

In the next section, we will discuss similarity transformations between matrices
and establish Schur’s triangulization lemma. This requires that we recall some
properties of eigenvalues and eigenvectors.

Definition 7.2.1. Let T : X → X be a linear transformation (for example,
T : Cn → Cn given by a matrix A). Then the scalar λ ∈ C is called an
eigenvalue of T if there exists a nonzero vector v ∈ X such that

Tv = λv.

The vector v is called an eigenvector corresponding to the eigenvalue λ.

Definition 7.2.2. Let T : X → X be a linear transformation. The set σ(T )
of scalars satisfying

σ(T ) = {z ∈ C : T − zI is not invertible}
is called the spectrum of T .

Proposition 7.7. For a linear transformation represented by A ∈Mn×n(C),

σ(A) = {λ ∈ C : det(A− λI) = 0}
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consists of the roots (λ1, . . . , λn) of the characteristic polynomial pA(λ) =
det(A− λI); these are precisely the eigenvalues of A.

Proof. Exercise. �

We recall the following notions related to eigenvalues of a matrix A ∈Mn×n(C):

• The multiplicity of a root λ of pA(λ) is the algebraic multiplicity of
the eigenvalue λ.

• The eigenvectors corresponding to an eigenvalue λ span a subspace of Cn,

ker(A− λI),

called the eigenspace of λ. The dimension of this space is the geometric
multiplicity of λ.

In other words, x is an eigenvector of T if and only if x ∈ kerT − λI. For finite-
dimensional vector spaces σ(T ) is the set of all eigenvalues counting multiplicities
of T .

Theorem 7.8. Suppose T is a linear transformation on a finite-dimensional
complex vector space. Then there exists an eigenvalue λ ∈ C for an eigenvector
x of T .

Proof. We assume that dim(X) = n and choose any non-zero vector x in X.
Consider the following set of n+ 1 vectors in X:

{x, Tx, T 2x, ..., Tnx}.
Since n + 1 vectors in an n-dimensional vector space X are linearly independent,
there exists a non-trivial linear combination:

a0x+ a1Tx+ · · ·+ anT
nx = (a0I + a1T + · · ·+ anT

n)x = 0.

Note that not all a1, ..., an are zero. If they were all zero, then a0x = 0 which would
imply that a0 = 0. Hence that the linear combination is trivial.

Let us denote by p(z) = a0 + a1z + · · · + anz
n the polynomial associated to the

linear transformation T . Powers of numbers correspond to powers of T by the cor-
responding iterates of T and T 0 = I.

Then the non-trivial linear combination among the vectors turns into a polyno-
mial equation in T :

p(T ) = 0.

By the Fundamental Theorem of Algebra any polynomial can be written as a prod-
uct of linear factors:

p(t) = c(t− λ1)(t− λ2) · · · (t− λn), λi ∈ C, c 6= 0.

Hence p(T ) has a factorization of the form:

p(T ) = c(T − λ1I)(T − λ2I) · · · (T − λmI).

Hence p(T ) is a product of linear mappings T − λjI for j = 1, ...,m. We know
that p(T )x = 0 for a non-zero x 6= 0, which implies that at least one of these
linear mappings is not invertible. Thus it has to have a non-trivial kernel, let’s
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say y ∈ ker(T − λiI), which yields that y is an eigenvector for the eigenvalue λi.
Consequently, we have shown the desired assertion. �

Definition 7.2.3. Suppose that the matrix A ∈ Mn×n(C) has n linearly
independent eigenvectors. If these eigenvectors are the columns of a matrix S,
then S−1AS is a diagonal matrix Λ with the eigenvalues of A on its diagonal:

S−1AS = Λ =


λ1

λ2
. . .

λn

 .
This is called the diagonalization of A.

Note that the definition above is a simple consequence of the fact that if A has eigen-
values λ1, . . . , λn with associated, and linearly independent, eigenvectors v1, . . . , vn,
then we may rewrite the set of equations

Av1 = λ1v1

...

Avn = λnvn

in matrix form AS = SΛ, where S is the matrix with column vectors v1, . . . vn.
Since the vectors vj are linearly independent, the matrix S is invertible.

Remark 7.2.4. i) If the eigenvectors v1, . . . , vk correspond to different eigen-
values λ1, . . . , λk, then they are automatically linearly independent, as you
will prove in problem set 12. Therefore any (n×n) matrix with n distinct
eigenvalues can be diagonalized.

ii) The diagonalization is not unique, as any eigenvector vj can be multiplied
by a constant and remains an eigenvector. Repeated eigenvalues leave
even more freedom. For the trivial example A = I, any invertible S will
do, since S−1IS = I is diagonal.

iii) Not all matrices possess n linearly independent eigenvectors, so not all
matrices are diagonalizable. The standard example of a “defective” matrix
is

A =

[
0 1
0 0

]
.

Exercise: Show that this matrix cannot be diagonalized.

Recall from Section 5.3 that a map T ∈ B(Cn,Cn) is called

i) normal if TT ∗ = T ∗T ,

ii) unitary if T ∗ = T−1, and

iii) self-adjoint or Hermitian if T = T ∗.

Let A ∈ Mn×n(C) be the matrix representation of T . We have seen in Example

5.3.1iv) that T ∗ is then represented by the matrix A
>

. Accordingly, we let A∗ = A
>

,
and call the matrix A



Topics in linear algebra 101

i) normal if AA∗ = A∗A,

ii) unitary if A∗ = A−1, and

iii) Hermitian if A = A∗.

We make certain observations on the eigenvalues and eigenvectors of Hermitian and
unitary matrices.

Proposition 7.9. Let A ∈Mn×n(C) be a Hermitian matrix. Then all eigen-
values of A are real, and any two eigenvectors corresponding to different eigen-
values are orthogonal.

Proof. Let λ be an eigenvalue of A, and v the corresponding eigenvector.
Then

〈Av, v〉 = 〈v,A∗v〉 = 〈v,Av〉 ,

and since the inner product is conjugate symmetric (〈x, y〉 = 〈y, x〉), it follows that
〈Av, v〉 is real-valued. On the other hand, we have

〈Av, v〉 = 〈λv, v〉 = λ‖v‖2,

and since both 〈Av, v〉 and ‖v‖2 are real, the eigenvalue λ must be real-valued.
Now let λ1 and λ2 be two distinct eigenvalues of A, with corresponding eigen-

vectors x and y:

Ax = λ1x and Ay = λ2y.

Then

λ1 〈x, y〉 = 〈Ax, y〉 = 〈x,A∗y〉 = 〈x,Ay〉 = λ2 〈x, y〉 ,

and it follows that we must have 〈x, y〉 = 0, meaning x ⊥ y. �

Proposition 7.10. Let A ∈Mn×n(C) be a unitary matrix. Then every eigen-
value of A has absolute value |λ| = 1. Moreover, eigenvectors corresponding
to different eigenvalues are orthogonal.

Proof. Let λ be an eigenvalue of A and v the corresponding eigenvector. Then

〈Av,Av〉 = 〈v,A∗Av〉 = 〈v, v〉 = ‖v‖2.

On the other hand

〈Av,Av〉 = 〈λv, λv〉 = |λ|2‖v‖2,
and it follows that |λ| = 1 since v 6= 0.

Now let λ1 and λ2 be two distinct eigenvalues of A, with corresponding eigen-
vectors x and y:

Ax = λ1x and Ay = λ2y.

Then

〈x, y〉 = 〈Ax,Ay〉 = λ1λ2 〈x, y〉 ,
which implies that either λ1λ2 = 1 or 〈x, y〉 = 0. However, we know that λ1λ1 = 1,
so the first condition cannot possibly hold. We conclude that 〈x, y〉 = 0. �
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7.3. Similarity transformations and Schur’s triangulization lemma

We saw in the previous section that if a matrix A ∈ Mn×n(C) has n linearly
independent eigenvectors, then it has a diagonalization Λ = S−1AS, where the ma-
trix S has the eigenvectors of A as its columns. Let us now look at all combinations
M−1AM formed with an invertible matrix M on the right and its inverse on the
left.

Definition 7.3.1. We say that the matrices A and B inMn×n(C) are similar
if there exists an invertible matrix M such that

B = M−1AM.

The matrix M provides a similarity transformation from A to B. If M can be
chosen unitary, then we say that A and B are unitarily equivalent.

At first glance it might not be obvious why we would be interested in similarity
transforms, but the general idea is that a matrix B similar to A shares many
properties with A, yet B might have a much more useful form than A.
Example 7.3.2. Similarity transformations arise in systems of differential equa-
tions, when a “change of variables” u = Mv introduces the new unknown v:

du

dt
= Au becomes M

dv

dt
= AMv, or

dv

dt
= M−1AMv.

The new matrix in the equation is M−1AM . In the special case that M is the
eigenvector matrix S, the system becomes completely uncoupled, because Λ =
S−1AS is diagonal. This is a maximal simplification, but other M ’s can also be
useful. We try to make M−1AM easier to work with than A.

Note also that the similar matrix B = M−1AM is closely connected to A if we
go back to linear transformations. Recall the key idea: Every linear transformation
is represented by a matrix. However, this matrix depends on the choice of basis.
If we recall our observations on page 91, we see that if we change the basis from
e = {e1, . . . , en} to Me, then we change the matrix from A to B.

We will try to shed light on the following two questions:

(1) What do similar matrices M−1AM have in common?

(2) By picking M in a clever way, can we ensure that M−1AM has a special
form?

Our first observation is that similar matrices have the same eigenvalues.

Lemma 7.11. Suppose B = M−1AM . Then A and B have the same eigen-
values.

Proof. We consider the characteristic polynomial of B:

pB(z) = det(M−1AM − zI) = det(M−1AM −M−1Mz)

= det(M−1) det(AM − zM) = det(M−1) det(A− zI) det(M) = pA(z)

It follows that A and B must have the same eigenvalues. �

Let us now focus on question (2) above. We restrict our attention to the case
where M = U is unitary (meaning U∗ = U−1, which necessarily implies that U has
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orthonormal columns). Unless the eigenvectors of A are orthogonal, it is impossible
for U−1AU to be diagonal. However, Schur’s triangulization lemma states the very
useful fact that U−1AU can always achieve a triangular form.

Theorem 7.12 (Schur’s triangulization lemma). For any A ∈Mn×n(C) there
exists a unitary matrix U such that

U−1AU = U∗AU = T,

where T is an upper triangular matrix, and where the eigenvalues of A appear
(with multiplicity) along the diagonal of T .

We recall that an upper triangular matrix is one with only zeros below its diagonal:

T =


a11 a12 · · · a1n

0 a22
...

...
. . .

0 · · · 0 ann


Proof of Theorem 7.12. We proceed by induction on n ≥ 1. For n = 1

there is nothing to do. Suppose now that the result is true for matrices up to
size n − 1 (n ≥ 2). Let A ∈ Mn×n(C) with eigenvalues λ1, . . . , λn (counting
multiplicities). Consider an eigenvector v1 associated to λ1, and assume that ‖v1‖ =
1. We use it to form an orthonormal basis (v1, . . . , vn), and we let V be the unitary
matrix with vj as its columns. The matrix A is equivalent to the matrix of the
linear map x→ Ax relative to the basis V , i.e.

(7.1) A = V


λ1 ∗ · · · ∗
0
... Ã
0

V −1 =: V T̃V −1,

The matrices A and T̃ are similar, so they have the same eigenvalues. We see
that pA(z) = (λ1− z)pÃ(z), so the eigenvalues of the matrix Ã must be λ2, . . . , λn.

By the induction hypothesis there exists an (n − 1) × (n − 1) unitary matrix W̃
such that

Ã = W̃


λ2 ∗ · · · ∗

0
. . .

...
... ∗
0 · · · 0 λn

 W̃−1.
By a tedious calculation it is not difficult to check that if we let

W :=


1 0 · · · 0
0
... W̃
0

 ,
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then

W−1T̃W =


λ1 ∗ · · · ∗

0
. . .

...
... ∗
0 · · · 0 λn

 =: T.

It follows that T̃ = WTW−1, and inserting this in equation (7.1), we get

A = VWTW−1V −1 = (VW )T (VW )−1.

Finally, we observe that W and V are both unitary, so VW is also unitary, and the
matrix T is of the desired form. �

As a consequence of Schur’s triangulization lemma quantifies how many square
matrices are diagonalizable.

Proposition 7.13. The set of diagonalizable matrices D is dense in Mn(C)
with respect to the Frobenius norm. More explicitly, given A ∈ Mn(C) and

ε > 0. There exists a diagonalizable matrix Ã ∈Mn(C) such that
n∑

i,j=1

|aij − ãij |2 < ε.

Proof. We have the Schur form for A

A = U


λ1 x · · · x

0 λ2
. . . x

...
. . .

. . .
...

0 . . . . . . λn

U∗,

for a unitary matrix and eigenvalues λ1, ..., λn counting multiplicities. Define small
perturbations of these eigenvalues λj such that these new numbers λ̃1, ..., λ̃n are all
distinct. We add multiples of a number η to the λj ’s:

λ̃j = λj + jη, η > 0

and fixed at the end of the proof. Set Ã

U


λ̃1 x · · · x

0 λ̃2
. . . x

...
. . .

. . .
...

0 . . . . . . λ̃n

U∗,

where we only change the diagonal entries of the upper triangular matrix. Now Ã
is diagonalizable and we have

tr((A− Ã)∗(A− Ã)) =

n∑
i,j=1

|aij − ãij |2
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Since the diagonal matrix with entries λ1− λ̃1, ..., λn− λ̃n is unitarily equivalent to
A− Ã we deduce that

tr((A− Ã)∗(A− Ã)) =

n∑
j=1

|λj − λ̃j |2.

By the definition of l̃aj this gives
n∑
j=1

|λj − λ̃j |2 = η2
n∑
j=1

j2 = η2Cn.

Consequently,
n∑
j=1

|λj − λ̃j |2 ≤ ε

for η ≤ 2(ε/Cn)1/2. �

A variation of this argument allows one to demonstrate a similar statement for the
set of invertible matrices.

Proposition 7.14. The set of invertible matrices is dense in Mn(C) with
respect to the Frobenius norm.

Proof. Exercise. �

7.4. The spectral theorem

The following theorem, known as the Spectral Theorem, tells us precisely which
matrices can be diagonalized.

Theorem 7.15 (Spectral Theorem). Let A ∈Mn×n(C). Then A is diagonal-
izable, meaning there exists a diagonal matrix Λ (with the eigenvalues of A on
the diagonal) and a unitary matrix U such that

A = UΛU−1 = UΛU∗,

if and only if A is normal (meaning AA∗ = A∗A).

Before proving Theorem 7.15, we establish the following preliminary result.

Lemma 7.16. An upper triangular matrix is normal if and only if it is diag-
onal.

Proof. (⇒) : Suppose T is an upper triangular matrix. Then the (n, n)-th

entry of TT ∗ is |tnn|2, while the (n, n)-th entry of T ∗T is |tnn|2 +
∑n−1
i=1 |tin|2.

If T is normal, then these two entries have to be the same. Hence tin = 0 for
i = 1, ..., n− 1. Repeating this argument for the entries (n− 1, n− 1), ...(2, 2), (1, 1)
gives that T is diagonal.
(⇐) : If T is diagonal, then T is certainly normal. �

Proof of Theorem 7.15. By Schur’s triangulization lemma, there exists a
unitary matrix U and an upper triangular matrix T such that

U∗AU = U−1AU = T.
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We observe that the matrix T is normal if A is normal, since

TT ∗ = (U∗AU)(U∗AU)∗ = U∗AUU∗A∗U = U∗AA∗U

= U∗A∗AU = U∗A∗UU∗AU = T ∗T,

and similarly A is normal if T is normal. Finally, by Lemma 7.16, T is normal if
and only if it is diagonal. We know from Schur’s triangulization lemma that we
must have

T = Λ,

where Λ is the matrix with the eigenvalues of A on its diagonal. Finally, we observe
that it follows from

AU = UΛ

that the columns of U must be the (orthonormal) eigenvectors of A. �

Hence Hermitian matrices and unitary matrices are diagonalizable since these
are normal matrices.

7.5. Singular value decomposition and applications

Let A ∈ Mm×n(C). If m 6= n, it no longer makes sense to ask if A can
be diagonalized. However, one can raise the question of whether there exist two
different unitary matrices U and V such that

A = UΣV ∗,

and where Σ is a diagonal (but rectangular) matrix. It turns out that the answer
to this question is yes, and that the specific factorization, known as the singular
value decomposition, is closely related to the diagonalization of the normal matrix
AA∗ (or similarly A∗A). Before we state the singular value decomposition in detail
and prove its existence, let us briefly discuss positive definite matrices.

Definition 7.5.1. A self-adjoint matrix A ∈ Mn×n(C) is said to be positive
definite if

〈Ax, x〉 > 0, for all nonzero x ∈ Cn.
Similarly, if A satisfies the weaker condition

〈Ax, x〉 ≥ 0, for all nonzero x ∈ Cn,
the A is said to be positive semi-definite.

A useful test for positive definiteness (or semi-definiteness) is to consider the eigen-
values of the matrix in question.

Proposition 7.17. A self-adjoint matrix A ∈Mn×n(C) is positive definite if
and only if all its eigenvalues are positive. Similarly, A is positive semi-definite
if and only if all its eigenvalues are non-negative.

Proof. (⇐): Suppose A is positive definite. Then

〈Ax, x〉 > 0 for all nonzero x ∈ Cn.
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In particular, this holds for any eigenvector of A. Let x be an eigenvector associated
to the eigenvalue λ. We have

〈Ax, x〉 = 〈λx, x〉 = λ‖x‖2 > 0,

and it follows that λ > 0.
(⇒): By the Spectral Theorem, there exists a unitary matrix U such that

A = U∗ΛU,

and where Λ is a diagonal matrix with the positive eigenvalues of A on its diagonal.
It follows that

〈Ax, x〉 = 〈U∗ΛUx, x〉 = 〈ΛUx,Ux〉 .
Now let y := Ux ∈ Cn. We then have

〈Ax, x〉 = 〈Λy, y〉 = λ1|y1|2 + · · ·λn|yn|2,
which is greater than zero for all nonzero y ∈ Cn. Finally note that y = 0 if and
only if x = 0. �

An important pair of self-adjoint, positive semi-definite matrices is AA∗ and
A∗A for any given A ∈Mm×n(C). The following result follows almost immediately
from the proposition above.

Corollary 7.18. Let A ∈ Mm×n(C). Then the (n× n) matrix A∗A and the
(m ×m) matrix AA∗ are self-adjoint with non-negative eigenvalues, and the
positive eigenvalues of the two matrices coincide.

For the proof of Corollary 7.18, we need the following lemma.

Lemma 7.19. For any A ∈Mm×n(C) and B ∈Mn×m(C), the matrices AB
and BA have the same non-zero eigenvalues.

Proof. Exercise. �

Proof of Corollary 7.18. It is clear that AA∗ and A∗A are both self-
adjoint. Moreover, we have that

‖Ax‖2 = 〈Ax,Ax〉 = 〈A∗Ax, x〉 ≥ 0,

so A∗A is clearly positive semi-definite. Running the same argument with ‖A∗x‖
shows that also AA∗ is positive semi-definite. By Proposition 7.17, the eigenvalues
of both matrices are non-negative, and by the preceeding lemma it finally follows
that the positive eigenvalues of the two matrices coincide. �

Let us now return to the so-called singular value decomposition of a matrix.

Definition 7.5.2. Let A ∈ Mm×n(C) have rank r. Let σ2
1 ≥ · · · ≥ σ2

r be
the positive eigenvalues of A∗A. The scalars σ1, . . . , σr are called the positive
singular values of A.

Since the matrix A∗A is of size n × n, it has n eigenvalues. Those that are not
positive are necessarily equal to zero, and accordingly the matrix A has n − r
singular values σj = 0, j = r+ 1, . . . , n. As we have just established that AA∗ and
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A∗A have the same nonzero eigenvalues, one may choose either one for determining
the positive singular values of A.

Theorem 7.20 (Singular Value Decomposition). Suppose A ∈ Mm×n(C) is
of rank r, and let σ1 ≥ · · · ≥ σr be the positive singular values of A. Let Σ be
the (m× n) matrix defined by

Σij =

{
σi if i = j ≤ r
0 otherwise.

Then there exists an (m×m) unitary matrix U and an (n×n) unitary matrix
V such that

A = UΣV ∗.

Through the proof of Theorem 7.20 below, we will see that the columns of V are
the (orthonormal) eigenvectors of A∗A.

Proof. The matrix A∗A is self-adjoint with positive eigenvalues σ2
1 ≥ · · · ≥ σ2

r

and (n− r) eigenvalues equal to zero. Thus, by the Spectral Theorem, there exists
an (n× n) unitary matrix V such that

(7.2) V ∗A∗AV = (AV )∗(AV ) = D,

where D = Σ∗Σ is the (n× n) diagonal matrix with

Dii = σ2
i , i = 1, . . . , r,

and zeros elsewhere. It is clear from (7.2) that the (i, j)th entry of V ∗A∗AV is
the inner product of columns i and j in AV . Thus, the columns (AV )j of AV
are pairwise orthogonal. Moreover, for 1 ≤ j ≤ r, the length of (AV )j is σj . Let
Ur denote the (m × r) matrix with (AV )j/σj as its jth column. Complete Ur to
an (m ×m) unitary matrix U by finding an orthonormal basis for the orthogonal
complement of (the column space of) Ur, and using these basis vectors as the last
(m− r) columns in U . We then have

AV = UΣ ⇔ A = UΣV ∗.

�

Remark 7.5.3. Since only the first r diagonal entries of Σ are nonzero, we see
that the last (m− r) columns of U , and likewise the last (n− r) columns of V , are
superfluous. As a consequence, we have that a given matrix A has an SVD where
the diagonal matrix Σ is uniquely determined, but the unitary matrices U and V
are not.

Example 7.5.4. Let us determine the singular value decomposition of

A =

[
3 2 2
2 3 −2

]
.

The procedure for finding the SVD is as follows: We begin by determining the
positive eigenvalues of A∗A (or similarly AA∗). We have

A∗A =

3 2
2 3
2 −2

[3 2 2
2 3 −2

]
=

13 12 2
12 13 −2
2 −2 8


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The positive eigenvalues of this matrix are σ2
1 = 25 and σ2

2 = 9. The last eigenvalue
is σ2

3 = 0. Since A∗A is self-adjoint (or Hermitian), the eigenvectors corresponding
to σ2

1 , σ2
2 and σ2

3 are necessarily orthogonal. We find these eigenvectors, and choose
them to have length 1:

σ2
1 = 25:

A∗A− 25I =

13− 25 12 2
12 13− 25 −2
2 −2 8− 25

 ∼
0 0 0

0 0 1
1 −1 − 17

2

 ,

and solving for A∗A−25I = 0, we find that v1 =


√
2
2√
2
2
0

 is a normalized eigenvector.

σ2
2 = 9:

A∗A− 9I =

13− 9 12 2
12 13− 9 −2
2 −2 8− 9

 ∼
0 0 0

0 1 1
4

1 0 − 1
4

 ,

and solving forA∗A−9I = 0, we find that v2 =


√
2
6

−
√
2
6

2
√
2

3

 is a normalized eigenvector.

σ2
3 = 0:

A∗A =

13 12 2
12 13 −2
2 −2 8

 ∼
0 0 0

0 1 −2
1 0 2

 ,
and solving for A∗A = 0, we find that v3 =

 2
3
− 2

3
− 1

3

 is a normalized eigenvector.

We can now “build” all the matrices that enter into the SVD of the matrix A.
We get

V =
[
v1|v2|v3

]
=


√
2
2

√
2
6

2
3√

2
2 −

√
2
6 − 2

3

0 2
√
2

3 − 1
3

 ,
and

Σ =

[
σ1 0 0
0 σ2 0

]
=

[
5 0 0
0 3 0

]
.

Finally, we find that

U =
[
U1|U2

]
=
[
Av1
‖Av1‖ |

Av2
‖Av2‖

]
=

[√
2
2

√
2
2√

2
2 −

√
2
2

]
.
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With these choices of U , Σ and V , we have that A = UΣV ∗, or explicitly written
out:

A =

[
3 2 2
2 3 −2

]
=

[√
2
2

√
2
2√

2
2 −

√
2
2

] [
5 0 0
0 3 0

]
√
2
2

√
2
2 0√

2
6 −

√
2
6

2
√
2

3
2
3 − 2

3 − 1
3

 .
Let us now discuss some consequences and applications of the SVD Theorem.

Proposition 7.21. Let A ∈ Mm×n(C) have positive singular values σ1 ≥
· · · ≥ σr. Then the operator norm of A (that is, the norm of the bounded
linear operator associated with A) is

‖A‖ = σ1.

Proof. Let A = UΣV ∗ be the singular value decomposition of A, and let v1
be the first column vector of V . The vector v1 has length 1, and from the equation
AV = UΣ it is clear that ‖Av1‖ = σ1. It follows that

‖A‖ = sup
‖x‖=1

‖Ax‖ ≥ σ1.

Now let x ∈ Cn be any vector of length 1, and consider the equation Ax =
UΣV ∗x. Since V ∗ is unitary, it represents an isometry, and it follows that ‖V ∗x‖ =
1. Let us denote this vector by y := V ∗x. Moreover, we note that Σy is the vector
where the jth component of y is multiplied by σj . Thus, we have ‖Σy‖ ≤ σ1‖y‖.
Finally, since U is also unitary, we have

‖Ax‖ = ‖UΣy‖ = ‖Σy‖ ≤ σ1‖y‖ = σ1,

and it follows that ‖A‖ ≤ σ1. We thus conclude that ‖A‖ = σ1. �

Let us now see that the SVD of a matrix can be used to obtain so-called polar
decompositions. A polar decomposition factors a square matrix in a manner anal-
ogous to the factoring of a complex number as the product of a complex number
of length 1 and a nonnegative number (z = |z|e2πiϕ). In the case of matrices, the
complex number of length 1 is replaced by a unitary matrix, and the nonnegative
number is replaced by a positive semi-definite matrix.

Theorem 7.22 (Polar decomposition). For any square matrix A, there exists
a unitary matrix W and a positive semi-definite matrix P such that

A = WP.

Proof. By the singular value decomposition theorem, there exist unitary ma-
trices U and V and a diagonal matrix Σ with nonnegative diagonal entries such
that A = UΣV ∗. It follows that

A = UΣV ∗ = UV ∗V ΣV ∗ = WP,

where W = UV ∗ and P = V ΣV ∗. Since W is the product of unitary matrices, W
is unitary. Moreover, since Σ is positive semi-definite, so is the matrix P . �

Example 7.5.5. To find the polar decomposition of

A =

[
11 −5
−2 10

]
,
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we begin by finding the SVD of A = UΣV ∗. It can be shown that

v1 =
1√
2

(
1
−1

)
and v2 =

1√
2

(
1
1

)
are orthonormal eigenvectors of A∗A with corresponding eigenvalues σ2

1 = 200 and
σ2
2 = 50. Thus, we have

V =

[
1√
2

1√
2

−1√
2

1√
2

]
and Σ =

[
σ1 0
0 σ2

]
=

[
10
√

2 0

0 5
√

2

]
.

Next, we find the columns of U :

u1 =
1

σ1
Av1 =

1

5

(
4
−3

)
and u2 =

1

σ2
Av2 =

1

5

(
3
4

)
.

Thus,

U =

[
4
5

3
5−3

5
4
5

]
.

Therefore, in the notation of the polar decomposition theorem, we have

W = UV ∗ =

[
4
5

3
5−3

5
4
5

][ 1√
2

−1√
2

1√
2

1√
2

]
=

1

5
√

2

[
7 −1
1 7

]
,

and

P = V ΣV ∗ =

[
1√
2

1√
2

−1√
2

1√
2

] [
10
√

2 0

0 5
√

2

][ 1√
2

−1√
2

1√
2

1√
2

]
=

5√
2

[
3 −1
−1 3

]
.

Finally, let us illustrate one possible application of SVD’s to image processing.
Example 7.5.6. Suppose a satellite takes a picture, and wants to send it to earth.
The picture may contain 1000 × 1000 pixels - a million little squares each with a
definite color. We can code the colors, and send back 1000000 numbers. However,
it is more convenient if we can find the essential information, and send only this.

Suppose we know the SVD, and specifically the matrix of singular values Σ.
Typically, some of the σ’s are significant, whereas others are extremely small. If
we keep, say, 20 singular values, and discard the remaining 980, then we need only
send the corresponding 20 columns of U and V . Thus, if only 20 singular values
are kept, we send 20× 20 numbers rather than a million.

There is, of course, the additional cost of computing the SVD. This has become
quite efficient, but is still expensive for big matrices.

7.6. The pseudoinverse

Let V and W be finite-dimensional inner product spaces over the same field
F, and let T : V → W be a linear transformation. It is desirable to have a linear
transformation from W to V which captures some of the essence of an inverse of T
even if T is not invertible. A simple (but fruitful) approach to this problem is to
focus on the “part” of T that is invertible, namely the restriction of T to ker(T )⊥.
Let L : ker(T )⊥ → ran(T ) be the linear transformation defined by L(x) = T (x) for
all x ∈ ker(T )⊥. Then L is invertible, and we can use the inverse of L to construct a
linear transformation from W to V which restores some of the benefits of an inverse
of T .
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Definition 7.6.1. Let V and W be finite-dimensional inner product spaces
over the same field, and let T : V → W be a linear transformation. Let
L : ker(T )⊥ → ran(T ) be the linear transformation defined by L(x) = T (x)
for all x ∈ ker(T )⊥. The pseudoinverse of T , denoted T+, is defined as the
unique linear transformation from W to V such that

T+(y) =

{
L−1(y) for y ∈ ran(T )

0 for y ∈ ran(T )⊥
.

The pseudoinverse of a linear transformation T on a finite-dimensional inner prod-
uct space exists even if T is not invertible. Furthermore, if T is invertible, then
T+ = T−1, because ker(T )⊥ = V and L coincides with T .

Now let A ∈ Mm×n(C) be the matrix representation of the linear map T .
Then there exists a unique (n ×m) matrix B which represents the pseudoinverse
T+. We call B the pseudoinverse of A and denote it by B = A+. It turns out
that the pseudoinverse A+ can be computed with the aid of the singular value
decomposition of A.

Theorem 7.23. Let A ∈ Mm×n(C) have rank r and singular value decom-
position A = UΣV ∗, where σ1 ≥ · · · ≥ σr are the positive singular values of
A. Let Σ+ be the (n×m) matrix

Σ+
ij =

{
1
σi

if i = j ≤ r
0 otherwise

.

Then A+ = V Σ+U∗.

We state this result without proof, and focus on its applications.
Let b ∈ Cm, and consider the system of linear equations

Ax = b.

We know that this system has either no solution, a unique solution, or infinitely
many solutions. It has a unique solution for every b ∈ Cm if and only if A is
invertible, in which case the solution is given by A−1b. Moreover, if A is invertible,
then A−1 = A+, so we could have written the solution as x = A+b. If, on the
other hand, the system Ax = b is underdetermined or inconsistent, then A+b still
exists. This raises the question: How is the vector A+b related to the system of
linear equations Ax = b? In order to answer this question, we need the following
lemma.

Lemma 7.24. Let V and W be finite-dimensional inner product spaces, and
let T : V →W be linear. Then

i) T+T is the orthogonal projection of V on ker(T )⊥.

ii) TT+ is the orthogonal projection of W on ran(T ).

Proof. As above, we define L : ker(T )⊥ → ran(T ) by L(x) = T (x) for
x ∈ ker(T )⊥. If x ∈ ker(T )⊥, then

T+T (x) = L−1L(x) = x,
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and if x ∈ ker(T ), then

T+T (x) = T+(0) = 0.

Consequently, T+T is the orthogonal projection of V on ker(T )⊥. This proves part
i). Part ii) is proved similarly. �

Theorem 7.25. Consider the system of linear equations Ax = b, where A ∈
Mm×n(C) and b ∈ Cm. If z = A+b, then z has the following properties.

i) If Ax = b is consistent, then z is the unique solution to the system
having minimum norm. That is, z is a solution to the system, and if
y is any other solution to the system, then ‖y‖ > ‖z‖.

ii) If Ax = b is inconsistent, then z is the unique best approximation to
a solution having minimum norm. That is

‖Az − b‖ ≤ ‖Ay − b‖ for any y ∈ Cn,
with equality if and only if Ay = Az. Moreover, if Ay = Az, then
‖z‖ ≤ ‖y‖ with equality if and only if z = y.

Proof. Let T be the linear map associated to the matrix A

i) Suppose that Ax = b is consistent, and let z = A+b. Observe that b ∈
ran(T ), and therefore

Az = AA+b = TT+b = b,

by Lemma 7.24ii). Thus, z is a solution to the system Ax = b. Now let y
be any solution to the system. Then

T+Ty = A+Ay = A+b = z.

Thus, z is the orthogonal projection of y on ker(T )⊥. By Theorem 5.5,
we have y = z + v with v ∈ ker(T ), and ‖y‖2 = ‖z‖2 + ‖v‖2. It follows
that ‖y‖ > ‖z‖ unless v = 0 and y = z.

ii) Suppose that Ax = b is inconsistent. By Lemma 7.24ii), we have that

Az = AA+b = TT+b

is the orthogonal projection of b on ran(T ). Therefore, by Theorem 5.5,
Az is the vector in ran(T ) nearest b. If Ay is any other vector in ran(T ),
then necessarily

‖Az − b‖ ≤ ‖Ay − b‖,
with equality if and only if Az = Ay. Finally, suppose that y is any vector
in Cn such that Az = Ay = c. Then

A+c = A+Az = A+AA+b = A+b = z,

where we have used that A+AA+ = A+ (this is easily checked by writing
out the SVD of A). Hence, we may apply part i) of this theorem to the
system Ax = c to conclude that ‖y‖ ≥ ‖z‖ with equality if and only if
y = z.

�



114 Chapter 7

Example 7.6.2. Let us find the minimal norm solution of

−x1 + 2x2 + 2x3 = b, for b ∈ R.
According to Theorem 7.25i), this is given by

z = A+b,

where A+ is the pseudoinverse of the (1× 3) matrix A =
[
−1 2 2

]
. The SVD of

A is A = UΣV ∗, where

U =
[
1
]

, Σ =
[
3 0 0

]
, V =


− 1

3
2√
5

2
3
√
5

2
3 0

√
5
3

2
3

1√
5

4
3
√
5

 .
The pseudoinverse of A is thus given by

A+ = V Σ+U∗ =


− 1

3
2√
5

2
3
√
5

2
3 0

√
5
3

2
3

1√
5

4
3
√
5




1
3

0
0

 [1] =


− 1

9

2
9

2
9 ,


and it follows that the minimal norm solution of Ax = b is

z = A+b =


− 1

9

2
9

2
9 ,

 b.
Any other solution of the system Ax = b is necessarily of the form

y = A+b+ v, v ∈ ker(A).
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