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Exercise set 7:Solutions

Please justify your answers! The most important part is how you arrive at an answer,
not the answer itself.

1 Let cf denote the space of real-valued sequences with only finitely many non-
zero entries. Show that cf is dense in `p(R) for any 1 ≤ p <∞.

Solution. From the comment after the definition of dense subsets in the notes,
we know how to show that cf is a dense subset of `p: for every x ∈ `p and every
ε > 0, we need to find some y ∈ cf such that d(x, y) = ‖x− y‖`p < ε. Assume that
x = (xn)n∈N ∈ `p. It is intuitively clear that if we want to approximate (xn)n∈N by a
finite sequence, this finite sequence should consist of the first N elements of (xn)n∈N.
We need to find an N ∈ N that works.
By definition of the space `p, we know that

∞∑
n=1
|xn|p <∞.

As you know from earlier calculus classes, the tail of a convergent series approaches
zero, i.e.

∞∑
n=k

|xn|p → 0 as k →∞.

This means that we can find some N ∈ N such that ∑∞n=N+1 |xn|p < εp. Now let
y ∈ cf be the sequence

y = (x1, x2, . . . xN−1, xN , 0, 0, . . . ).

In words, y consists of the first N elements of x, and all the other elements are zero.
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Then

‖x− y‖`p =
( ∞∑

n=1
|xn − yn|p

)1/p

=
 N∑

n=1
|xn − xn|p +

∞∑
n=N+1

|xn − 0|p
1/p

=
 ∞∑

n=N+1
|xn|p

1/p

< (εp)1/p = ε.

2 a) Illustrate with an example that in Banach’s fixed point theorem, com-
pleteness of the space is essential and cannot be omitted.

b) It is also essential that T is a contraction; it is not enough that

d(Tx, Ty) < d(x, y) when x 6= y.

To see this, consider X = [1,∞) ⊂ R taken with the usual | · | norm, and

T : X → X defined by x→ x+ 1
x
.

Show that |Tx− Ty| < |x− y| when x 6= y, but the mapping has no fixed
points.

Solution. a) Let X = R \ {0}. Then X is not complete with respect to the usual
norm given by the absolute value1. Consider the mapping T : X → X given by
Tx = x

2 . Then X is a contraction:

|Tx− Ty| =
∣∣∣∣x2 − y

2

∣∣∣∣
= 1

2 |x− y|;

in the definition of contraction in the lecture notes, we can pick K to be any number
in the open interval (1/2, 1). However, T has no fixed point. A fixed point would
satisfy Tx = x, which means that

x

2 = x.

1One way to see this is to note that X clearly is not a closed subset of the Banach space R.
Hence theorem 3.12 says that X is not complete.
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This happens if and only if x = 0, but 0 is not an element of X.
b) Introducing the common denominator xy, we find for x 6= y that

|Tx− Ty| =
∣∣∣∣∣x+ 1

x
−
(
y + 1

y

)∣∣∣∣∣
=
∣∣∣∣∣x2y + y − y2x− x

xy

∣∣∣∣∣
=
∣∣∣∣∣x(xy − 1)− y(xy − 1)

xy

∣∣∣∣∣
=
∣∣∣∣∣(x− y)(xy − 1)

xy

∣∣∣∣∣
= |x− y| |xy − 1|

|xy|
< |x− y|.

To justify the last step, note that x, y ∈ [1,∞), so clearly xy > 1 whenever x 6= y.
Therefore |xy − 1| > |xy|.
If T had a fixed point x0, x0 would satisfy

x0 = x0 + 1
x0
,

which clearly implies 1
x0

= 0, which is not possible.

3 Problem 1, exam 2007:
Let G : C[0, 1]→ C[0, 1] be defined by

(Gx)(t) =
∫ t

0
sx(s) ds, 0 ≤ t ≤ 1.

a) Show that G is a contraction if C[0, 1] has the ‖ · ‖∞-norm.

b) Define F : C[0, 1]→ C[0, 1] by

(Fx)(t) = t2

2 − (Gx)(t), 0 ≤ t ≤ 1.

Show that if x0(t) = 0 for all t, then

(F nx0)(t) =
n∑

k=1
(−1)k+1 t

2k

2kk! , n = 1, 2, . . .

Hint: Induction.

c) Explain why F has a unique fixed point x∗, and find x∗ by iteration.
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Solution. a) To show that G is a contraction, we need to show that there is some
K ∈ (0, 1) such that2

‖Gx−Gy‖∞ ≤ K‖x− y‖∞.

For some x, y ∈ C[0, 1] and t ∈ [0, 1], we find that

|Gx(t)−Gy(t)| =
∣∣∣∣∫ t

0
sx(s) ds−

∫ t

0
sx(s) ds

∣∣∣∣
=
∣∣∣∣∫ t

0
s (x(s)− y(s)) ds

∣∣∣∣
≤
∫ t

0
s|x(s)− y(s)| ds

Now recall that by definition ‖x− y‖∞ = sups∈[0,1] |x(s)− y(s)|. Since the supremum
is an upper bound, we get that

|x(s)− y(s)| ≤ ‖x− y‖∞ for any s ∈ [0, 1].

We insert this into our calculation:∫ t

0
s|x(s)− y(s)| ds ≤ ‖x− y‖∞

∫ t

0
s ds

= ‖x− y‖∞
t2

2
≤ 1

2‖x− y‖∞ for t ∈ [0, 1].

In total, we have shown that

|Gx(t)−Gy(t)| ≤ 1
2‖x− y‖∞ for t ∈ [0, 1],

which implies that
‖Gx−Gy‖∞ ≤

1
2‖x− y‖∞

by the definition of the norm ‖ · ‖∞ as a supremum. If we pick any K ∈ (1/2, 1), we
have 0 < K < 1 and

‖Gx−Gy‖∞ < K‖x− y‖∞,

hence G is a contraction.
b) By writing out the definition of G, we see that

(Fx)(t) = t2

2 −
∫ t

0
sx(s) ds.

We want to show that

(F nx0)(t) =
n∑

k=1
(−1)k+1 t

2k

2kk! , n = 1, 2, . . . . (1)

2Recall that the distance on a normed space is given by d(x, y) = ‖x− y‖.
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As the hint suggests, we proceed using induction. For the base case n = 1, the left
hand side of (1) is

(Fx0)(t) = t2

2 −
∫ t

0
0 ds = t2

2 .

The right hand side of (1) is, for n = 1,

1∑
k=1

(−1)k+1 t
2k

2kk! = (−1)1+1 t
2

2 = t2

2 .

Hence (1) is true for n = 1. For the induction step, assume that (1) holds for n = m
– we need to show that (1) then holds for n = m+ 1. We will start with the left hand
side of (1) for n = m+ 1, and use the induction hypothesis to manipulate it into the
right hand side of the equation.

(Fm+1x0)(t) = (F (Fmx0))(t)

= t2

2 −
∫ t

0
s(Fmx0)(s) ds

= t2

2 −
∫ t

0
s

m∑
k=1

(−1)k+1 s
2k

2kk! ds (induction hypothesis)

= t2

2 −
m∑

k=1

(−1)k+1

2kk!

∫ t

0
s2k+1 ds

= t2

2 −
m∑

k=1

(−1)k+1

2kk!
t2k+2

2k + 2

= t2

2 −
m∑

k=1

(−1)k+1

2k+1(k + 1)!t
2k+2 (using 2k + 2 = 2(k + 1))

= t2

2 +
m∑

k=1

(−1)k+2

2k+1(k + 1)!t
2k+2 (minus sign moved inside sum)

=
m∑

k=0

(−1)k+2

2k+1(k + 1)!t
2k+2.

Let us now introduce the new summing variable k′ := k + 1. The sum above then
becomes

m+1∑
k′=1

(−1)k′+1

2k′(k′)! t
2k′ .

But this is exactly the right hand side of (1) for n = m+ 1, hence we have shown
that (1) holds for n = m+ 1, and by induction for any n = 1, 2, . . . .
c) We know that C[0, 1] is a Banach space with the norm ‖ · ‖∞. Furthermore F is
a contraction, since

‖Fx− Fy‖∞ = ‖t
2

2 − (Gx)(t)−
(
t2

2 − (Gy)(t)
)
‖∞

= ‖Gx−Gy‖∞
< K‖x− y‖∞
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by a). Hence Banach’s fixed point theorem applies, and F has a unique fixed point
x∗. We know from the course notes (see corollary 3.19) that for any starting point
x0 ∈ C[0, 1], the sequence F nx0 will converge to x∗ as n→∞. Let us pick x0(t) = 0.
Then part b) shows that x∗ is given pointwise fo t ∈ [0, 1] by

lim
n→∞

F nx(t) = lim
n→∞

n∑
k=1

(−1)k+1 t
2k

2kk!

=
∞∑

k=1
(−1)k+1 t

2k

2kk!
= 1− e−t2/2,

where the last step follows from recognising the Taylor series for 1− e−t2/2.

4 Consider the integral equation

f(x) = sin x+ λ
∫ 3

0
e−(x−y)f(y)dy

for some scalar λ.
a) Determine for which λ there exists a continuous function f on [0, 3] that

solves this integral equation.

b) Pick one of the values of λ found in a). Use the method of iteration, as
described in Banach’s fixed point theorem, to find approximations f1 and
f2 to a potential solution by starting with f0(x) = 1 on [0, 3].

Solution. a) We will use theorem 3.20 in the lecture notes. Some of the conditions
for this theorem will always be satisfied:

• sin(x) is continuous on [0, 3] (this is g in the notation of 3.20)

• e−(x−y) is continuous on [0, 3]× [0, 3] (k in 3.20).

But we also need that |λ| < 1
3‖e−(x−y)‖∞ for the solution to exist, by the same theorem.

We easily find that
‖e−(x−y)‖∞ = sup

x,y∈[0,3]
|e−(x−y)| = e3.

(This is easy to see, since e−(x−y) = e−xey, so we just need to find the supremum of each
factor and multiply them.). We conclude that a solution exists for |λ| < 1

3e3 ≈ 0.017.
b) We pick λ = 1/100. With f0(x) = 1 for x ∈ [0, 3], we find by iteration that

f1(x) = sin(x) + 0.01
∫ 3

0
e−(x−y) dy = sin(x) + 0.01(e3 − 1)e−x.
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We insert this back into the iteration once again, to obtain

f2(x) = sin(x) + 0.01
∫ 3

0
e−(x−y)

(
sin(y) + 0.01(e3 − 1)e−y

)
dy

= sin(x) + 0.01
(

0.01(e3 + e−3 − 2) + 1
2e
−x(1 + e3 sin(3)− e3 cos(3))

)
= C + sin(x) +Ke−x

where C,K are constants that you may calculate. It is not difficult to see that the
function fn after n iterations will also be of the same form, namely

fn(x) = Cn + sin(x) +Kne
−x.

5 Apply Picard iteration to

x′(t) = 1 + x2, x(0) = 0.

Find x3 and the exact solution (notice that the equation is separable), and
show that the terms involving t, t2, . . . , t5 in x3(t) are the same as those of the
Taylor series of the exact solution.

Solution. In the notation of section 3.5.2 in the notes, we have that f(t, x) = 1 +x2,
t0 = 0 and x(t0) = x(0) = 0. By corollary 3.22 Picard iteration is therefore given by
x0 = x(0) = 0 and

xn+1(t) =
∫ t

0
f(s, xn(s)) ds.

Therefore

x1(t) =
∫ t

0
(1 + x0(s)2) ds

=
∫ t

0
1 ds = t.

x2(t) =
∫ t

0
(1 + x1(s)2) ds

=
∫ t

0
(1 + s2) ds = t+ t3

3 .
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x3(t) =
∫ t

0
(1 + x2(s)2) ds

=
∫ t

0

1 +
(
s+ s3

3

)2


=
∫ t

0

(
1 + s2 + s6

9 + 2s4

3

)
ds

= t+ t3

3 + 2t5
15 + t7

63 .

The exact solution is the function x(t) satisfying
dx

dt
= 1 + x2.

As you once learned in an elementary course, such equations can be solved by
separation of variables:

dx

1 + x2 = dt,

and by integrating both sides of this equation we find that

arctan x = t+ C

for some constant C, which means that x(t) = tan(t + C). Since x(0) = 0 we see
that C = 0, hence the solution is

x(t) = tan(t).

The Taylor series of tan centered at t = 0 is (you may look it up)

tan(t) = t+ t3

3 + 2t5
15 + 17t7

315 + . . .

We observe that the terms of order up to t5 agree with the solution we found using
Picard iteration.
Remark: We did not ask you to show that the conditions in Picard-Lindelöf
and Picard iteration were satisfied. Let us briefly indicate why they actually are
satisfied. Pick some rectangle R containing our initial value, for instance R =
[−10, 10]× [−10, 10]. Then f(t, x) = 1 + x2 is clearly continuous on R. To see that
the Lipschitz condition is satisfied, note that

|f(t, x)− f(t, y)| = |1 + x2 − (1 + y2)|
= |x2 − y2|
= |x+ y||x− y|.

When x, y ∈ [−10, 10], the expression |x+ y| is bounded from above by the constant
20. This means that

|f(t, x)− f(t, y)| = |x+ y||x− y|
≤ 20|x− y|,

so the Lipschitz condition is satisfied.
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