

TMA4145 Linear Methods Fall 2018

Exercise set 7:Solutions

Please justify your answers! The most important part is *how* you arrive at an answer, not the answer itself.

 $|1|$ Let c_f denote the space of real-valued sequences with only finitely many nonzero entries. Show that c_f is dense in $\ell^p(\mathbb{R})$ for any $1 \leq p < \infty$.

Solution. From the comment after the definition of dense subsets in the notes, we know how to show that c_f is a dense subset of ℓ^p : for every $x \in \ell^p$ and every $\epsilon > 0$, we need to find some $y \in c_f$ such that $d(x, y) = ||x - y||_{\ell^p} < \epsilon$. Assume that $x = (x_n)_{n \in \mathbb{N}} \in \ell^p$. It is intuitively clear that if we want to approximate $(x_n)_{n \in \mathbb{N}}$ by a finite sequence, this finite sequence should consist of the first *N* elements of $(x_n)_{n\in\mathbb{N}}$. We need to find an $N \in \mathbb{N}$ that works.

By definition of the space ℓ^p , we know that

$$
\sum_{n=1}^{\infty} |x_n|^p < \infty.
$$

As you know from earlier calculus classes, the tail of a convergent series approaches zero, i.e.

$$
\sum_{n=k}^{\infty} |x_n|^p \to 0 \text{ as } k \to \infty.
$$

This means that we can find some $N \in \mathbb{N}$ such that $\sum_{n=N+1}^{\infty} |x_n|^p < \epsilon^p$. Now let $y \in c_f$ be the sequence

$$
y = (x_1, x_2, \dots x_{N-1}, x_N, 0, 0, \dots).
$$

In words, *y* consists of the first *N* elements of *x*, and all the other elements are zero.

Then

$$
||x - y||_{\ell^p} = \left(\sum_{n=1}^{\infty} |x_n - y_n|^p\right)^{1/p}
$$

= $\left(\sum_{n=1}^N |x_n - x_n|^p + \sum_{n=N+1}^{\infty} |x_n - 0|^p\right)^{1/p}$
= $\left(\sum_{n=N+1}^{\infty} |x_n|^p\right)^{1/p}$
< $(\epsilon^p)^{1/p} = \epsilon.$

- 2 **a)** Illustrate with an example that in Banach's fixed point theorem, completeness of the space is essential and cannot be omitted.
	- **b)** It is also essential that *T* is a *contraction*; it is not enough that

$$
d(Tx, Ty) < d(x, y) \quad \text{when } x \neq y.
$$

To see this, consider $X = [1, \infty) \subset \mathbb{R}$ taken with the usual $|\cdot|$ norm, and

$$
T: X \to X \quad \text{defined by } x \to x + \frac{1}{x}.
$$

Show that $|Tx - Ty| < |x - y|$ when $x \neq y$, but the mapping has no fixed points.

Solution. a) Let $X = \mathbb{R} \setminus \{0\}$. Then *X* is not complete with respect to the usual norm given by the absolute value¹. Consider the mapping $T : X \to X$ given by $Tx = \frac{x}{2}$ $\frac{x}{2}$. Then X is a contraction:

$$
|Tx - Ty| = \left|\frac{x}{2} - \frac{y}{2}\right|
$$

$$
= \frac{1}{2}|x - y|;
$$

in the definition of contraction in the lecture notes, we can pick K to be any number in the open interval $(1/2, 1)$. However, *T* has no fixed point. A fixed point would satisfy $Tx = x$, which means that

$$
\frac{x}{2} = x.
$$

¹One way to see this is to note that *X* clearly is not a *closed* subset of the Banach space R. Hence theorem 3.12 says that X is not complete.

This happens if and only if $x = 0$, but 0 is not an element of X. **b)** Introducing the common denominator xy , we find for $x \neq y$ that

$$
|Tx - Ty| = \left| x + \frac{1}{x} - \left(y + \frac{1}{y} \right) \right|
$$

=
$$
\left| \frac{x^2y + y - y^2x - x}{xy} \right|
$$

=
$$
\left| \frac{x(xy - 1) - y(xy - 1)}{xy} \right|
$$

=
$$
\left| \frac{(x - y)(xy - 1)}{xy} \right|
$$

=
$$
|x - y| \frac{|xy - 1|}{|xy|}
$$

<
$$
|x - y|.
$$

To justify the last step, note that $x, y \in [1, \infty)$, so clearly $xy > 1$ whenever $x \neq y$. Therefore $|xy - 1| > |xy|$.

If T had a fixed point x_0 , x_0 would satisfy

$$
x_0 = x_0 + \frac{1}{x_0},
$$

which clearly implies $\frac{1}{x_0} = 0$, which is not possible.

3 Problem 1, exam 2007:

Let $G : C[0,1] \to C[0,1]$ be defined by

$$
(Gx)(t) = \int_0^t sx(s) \, ds, \quad 0 \le t \le 1.
$$

- **a**) Show that *G* is a contraction if $C[0,1]$ has the $\|\cdot\|_{\infty}$ -norm.
- **b**) Define $F : C[0, 1] \to C[0, 1]$ by

$$
(Fx)(t) = \frac{t^2}{2} - (Gx)(t), \quad 0 \le t \le 1.
$$

Show that if $x_0(t) = 0$ for all *t*, then

$$
(F^{n}x_{0})(t) = \sum_{k=1}^{n} (-1)^{k+1} \frac{t^{2k}}{2^{k}k!}, \quad n = 1, 2, ...
$$

Hint: Induction.

c) Explain why F has a unique fixed point x^* , and find x^* by iteration.

Solution. a) To show that *G* is a contraction, we need to show that there is some $K \in (0,1)$ such that²

$$
||Gx - Gy||_{\infty} \le K||x - y||_{\infty}.
$$

For some $x, y \in C[0, 1]$ and $t \in [0, 1]$, we find that

$$
|Gx(t) - Gy(t)| = \left| \int_0^t sx(s) \ ds - \int_0^t sx(s) \ ds \right|
$$

$$
= \left| \int_0^t s \left(x(s) - y(s) \right) \ ds \right|
$$

$$
\leq \int_0^t s |x(s) - y(s)| \ ds
$$

Now recall that by definition $||x - y||_{\infty} = \sup_{s \in [0,1]} |x(s) - y(s)|$. Since the supremum is an upper bound, we get that

$$
|x(s) - y(s)| \le ||x - y||_{\infty}
$$
 for any $s \in [0, 1]$.

We insert this into our calculation:

$$
\int_0^t s|x(s) - y(s)| ds \le ||x - y||_{\infty} \int_0^t s ds
$$

= $||x - y||_{\infty} \frac{t^2}{2}$
 $\le \frac{1}{2} ||x - y||_{\infty}$ for $t \in [0, 1]$.

In total, we have shown that

$$
|Gx(t) - Gy(t)| \le \frac{1}{2} ||x - y||_{\infty} \text{ for } t \in [0, 1],
$$

which implies that

$$
||Gx - Gy||_{\infty} \le \frac{1}{2}||x - y||_{\infty}
$$

by the definition of the norm $\|\cdot\|_{\infty}$ as a supremum. If we pick any $K \in (1/2, 1)$, we have $0 < K < 1$ and

$$
||Gx - Gy||_{\infty} < K||x - y||_{\infty},
$$

hence *G* is a contraction.

b) By writing out the definition of *G*, we see that

$$
(Fx)(t) = \frac{t^2}{2} - \int_0^t sx(s) \, ds.
$$

We want to show that

$$
(F^{n}x_{0})(t) = \sum_{k=1}^{n} (-1)^{k+1} \frac{t^{2k}}{2^{k}k!}, \quad n = 1, 2, \dots
$$
 (1)

²Recall that the distance on a normed space is given by $d(x, y) = ||x - y||$.

As the hint suggests, we proceed using induction. For the base case $n = 1$, the left hand side of (1) is

$$
(Fx_0)(t) = \frac{t^2}{2} - \int_0^t 0 \, ds = \frac{t^2}{2}.
$$

The right hand side of (1) is, for $n = 1$,

$$
\sum_{k=1}^{1} (-1)^{k+1} \frac{t^{2k}}{2^k k!} = (-1)^{1+1} \frac{t^2}{2} = \frac{t^2}{2}.
$$

Hence (1) is true for $n = 1$. For the induction step, assume that (1) holds for $n = m$ – we need to show that (1) then holds for $n = m + 1$. We will start with the left hand side of (1) for $n = m + 1$, and use the induction hypothesis to manipulate it into the right hand side of the equation.

$$
(F^{m+1}x_0)(t) = (F(F^m x_0))(t)
$$

\n
$$
= \frac{t^2}{2} - \int_0^t s(F^m x_0)(s) ds
$$

\n
$$
= \frac{t^2}{2} - \int_0^t s \sum_{k=1}^m (-1)^{k+1} \frac{s^{2k}}{2^k k!} ds
$$
 (induction hypothesis)
\n
$$
= \frac{t^2}{2} - \sum_{k=1}^m \frac{(-1)^{k+1}}{2^k k!} \int_0^t s^{2k+1} ds
$$

\n
$$
= \frac{t^2}{2} - \sum_{k=1}^m \frac{(-1)^{k+1}}{2^k k!} \frac{t^{2k+2}}{2k+2}
$$

\n
$$
= \frac{t^2}{2} - \sum_{k=1}^m \frac{(-1)^{k+1}}{2^{k+1}(k+1)!} t^{2k+2}
$$
 (using $2k + 2 = 2(k + 1)$)
\n
$$
= \frac{t^2}{2} + \sum_{k=1}^m \frac{(-1)^{k+2}}{2^{k+1}(k+1)!} t^{2k+2}
$$
 (minus sign moved inside sum)
\n
$$
= \sum_{k=0}^m \frac{(-1)^{k+2}}{2^{k+1}(k+1)!} t^{2k+2}.
$$

Let us now introduce the new summing variable $k' := k + 1$. The sum above then becomes

$$
\sum_{k'=1}^{m+1} \frac{(-1)^{k'+1}}{2^{k'}(k')!} t^{2k'}.
$$

But this is exactly the right hand side of (1) for $n = m + 1$, hence we have shown that (1) holds for $n = m + 1$, and by induction for any $n = 1, 2, \ldots$.

c) We know that $C[0,1]$ is a Banach space with the norm $\|\cdot\|_{\infty}$. Furthermore *F* is a contraction, since

$$
||Fx - Fy||_{\infty} = ||\frac{t^2}{2} - (Gx)(t) - (\frac{t^2}{2} - (Gy)(t))||_{\infty}
$$

= $||Gx - Gy||_{\infty}$
< $K||x - y||_{\infty}$

by a). Hence Banach's fixed point theorem applies, and *F* has a unique fixed point *x*^{*}. We know from the course notes (see corollary 3.19) that for any starting point $x_0 \in C[0,1]$, the sequence $F^n x_0$ will converge to x^* as $n \to \infty$. Let us pick $x_0(t) = 0$. Then part b) shows that x^* is given pointwise fo $t \in [0, 1]$ by

$$
\lim_{n \to \infty} F^n x(t) = \lim_{n \to \infty} \sum_{k=1}^n (-1)^{k+1} \frac{t^{2k}}{2^k k!}
$$

$$
= \sum_{k=1}^\infty (-1)^{k+1} \frac{t^{2k}}{2^k k!}
$$

$$
= 1 - e^{-t^2/2},
$$

where the last step follows from recognising the Taylor series for $1 - e^{-t^2/2}$.

4 Consider the integral equation

$$
f(x) = \sin x + \lambda \int_0^3 e^{-(x-y)} f(y) dy
$$

for some scalar *λ*.

- **a)** Determine for which λ there exists a continuous function f on [0, 3] that solves this integral equation.
- **b)** Pick one of the values of λ found in **a**). Use the method of iteration, as described in Banach's fixed point theorem, to find approximations f_1 and f_2 to a potential solution by starting with $f_0(x) = 1$ on [0*,* 3].

Solution. a) We will use theorem 3.20 in the lecture notes. Some of the conditions for this theorem will always be satisfied:

- $\sin(x)$ is continuous on [0,3] (this is *q* in the notation of 3.20)
- $e^{-(x-y)}$ is continuous on $[0,3] \times [0,3]$ (*k* in 3.20).

But we also need that $|\lambda| < \frac{1}{3\ln e^{-(x+\lambda)}}$ $\frac{1}{3||e^{-(x-y)}||_{\infty}}$ for the solution to exist, by the same theorem. We easily find that

$$
||e^{-(x-y)}||_{\infty} = \sup_{x,y \in [0,3]} |e^{-(x-y)}| = e^{3}.
$$

(This is easy to see, since $e^{-(x-y)} = e^{-x}e^y$, so we just need to find the supremum of each factor and multiply them.). We conclude that a solution exists for $|\lambda| < \frac{1}{2e}$ $\frac{1}{3e^3} \approx 0.017$. **b)** We pick $\lambda = 1/100$. With $f_0(x) = 1$ for $x \in [0,3]$, we find by iteration that

$$
f_1(x) = \sin(x) + 0.01 \int_0^3 e^{-(x-y)} dy = \sin(x) + 0.01(e^3 - 1)e^{-x}.
$$

We insert this back into the iteration once again, to obtain

$$
f_2(x) = \sin(x) + 0.01 \int_0^3 e^{-(x-y)} \left(\sin(y) + 0.01(e^3 - 1)e^{-y} \right) dy
$$

= $\sin(x) + 0.01 \left(0.01(e^3 + e^{-3} - 2) + \frac{1}{2} e^{-x} (1 + e^3 \sin(3) - e^3 \cos(3)) \right)$
= $C + \sin(x) + Ke^{-x}$

where *C*, *K* are constants that you may calculate. It is not difficult to see that the function f_n after *n* iterations will also be of the same form, namely

$$
f_n(x) = C_n + \sin(x) + K_n e^{-x}.
$$

5 Apply Picard iteration to

$$
x'(t) = 1 + x^2, \quad x(0) = 0.
$$

Find *x*³ and the exact solution (notice that the equation is separable), and show that the terms involving t, t^2, \ldots, t^5 in $x_3(t)$ are the same as those of the Taylor series of the exact solution.

Solution. In the notation of section 3.5.2 in the notes, we have that $f(t, x) = 1 + x^2$, $t_0 = 0$ and $x(t_0) = x(0) = 0$. By corollary 3.22 Picard iteration is therefore given by $x_0 = x(0) = 0$ and

$$
x_{n+1}(t) = \int_0^t f(s, x_n(s)) \ ds.
$$

Therefore

$$
x_1(t) = \int_0^t (1 + x_0(s)^2) ds
$$

=
$$
\int_0^t 1 ds = t.
$$

$$
x_2(t) = \int_0^t (1 + x_1(s)^2) ds
$$

=
$$
\int_0^t (1 + s^2) ds = t + \frac{t^3}{3}.
$$

$$
x_3(t) = \int_0^t (1 + x_2(s)^2) ds
$$

=
$$
\int_0^t \left(1 + \left(s + \frac{s^3}{3}\right)^2\right)
$$

=
$$
\int_0^t \left(1 + s^2 + \frac{s^6}{9} + \frac{2s^4}{3}\right) ds
$$

=
$$
t + \frac{t^3}{3} + \frac{2t^5}{15} + \frac{t^7}{63}.
$$

The exact solution is the function $x(t)$ satisfying

$$
\frac{dx}{dt} = 1 + x^2.
$$

As you once learned in an elementary course, such equations can be solved by separation of variables:

$$
\frac{dx}{1+x^2} = dt,
$$

and by integrating both sides of this equation we find that

$$
\arctan x = t + C
$$

for some constant *C*, which means that $x(t) = \tan(t + C)$. Since $x(0) = 0$ we see that $C = 0$, hence the solution is

$$
x(t) = \tan(t).
$$

The Taylor series of tan centered at $t = 0$ is (you may look it up)

$$
\tan(t) = t + \frac{t^3}{3} + \frac{2t^5}{15} + \frac{17t^7}{315} + \dots
$$

We observe that the terms of order up to t^5 agree with the solution we found using Picard iteration.

Remark: We did not ask you to show that the conditions in Picard-Lindelöf and Picard iteration were satisfied. Let us briefly indicate why they actually are satisfied. Pick some rectangle R containing our initial value, for instance $R =$ $[-10, 10] \times [-10, 10]$. Then $f(t, x) = 1 + x^2$ is clearly continuous on *R*. To see that the Lipschitz condition is satisfied, note that

$$
|f(t, x) - f(t, y)| = |1 + x2 - (1 + y2)|
$$

= |x² - y²|
= |x + y||x - y|.

When $x, y \in [-10, 10]$, the expression $|x + y|$ is bounded from above by the constant 20*.* This means that

$$
|f(t, x) - f(t, y)| = |x + y||x - y|
$$

\n
$$
\leq 20|x - y|,
$$

so the Lipschitz condition is satisfied.