TMA4145 Linear
Methods
Fall 2018

Norwegian University of Science

and Technology . )
Department of Mathematical Exercise set 7:Solutions

Sciences

Please justify your answers! The most important part is how you arrive at an answer,
not the answer itself.

Let ¢; denote the space of real-valued sequences with only finitely many non-
zero entries. Show that ¢ is dense in #(R) for any 1 < p < oo.

Solution. From the comment after the definition of dense subsets in the notes,
we know how to show that c¢; is a dense subset of ¢?: for every x € ¢? and every
€ > 0, we need to find some y € ¢y such that d(z,y) = ||z — y[js» < e. Assume that
r = (Xy)nen € P, Tt is intuitively clear that if we want to approximate (x,),en by a
finite sequence, this finite sequence should consist of the first N elements of (x,,),en.
We need to find an N € N that works.

By definition of the space P, we know that

[e.9]

S |a, P < oo

n=1
As you know from earlier calculus classes, the tail of a convergent series approaches
zero, i.e.

o
D |zafP — 0 as k — oco.

n=~k

This means that we can find some N € N such that Y>>0° . [z,P < €. Now let
y € c¢f be the sequence

Yy = (I’l,IL'Q,...l’N_l,{L‘N,0,0,...).

In words, y consists of the first NV elements of x, and all the other elements are zero.
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a) Illustrate with an example that in Banach’s fixed point theorem, com-
pleteness of the space is essential and cannot be omitted.

b) It is also essential that T" is a contraction; it is not enough that
d(Tz,Ty) < d(z,y) when x #y.
To see this, consider X = [1,00) C R taken with the usual |- | norm, and
T: X—->X deﬁnedbyx—>x+;.
Show that |Tx —Ty| < |z — y| when x # y, but the mapping has no fixed

points.

Solution. a) Let X =R\ {0}. Then X is not complete with respect to the usual
norm given by the absolute value!. Consider the mapping 7' : X — X given by
Tx = 5. Then X is a contraction:

r Yy
Te—Tyl=|= -2
Tz =Tyl =5 -3
1
= glr—yl;

in the definition of contraction in the lecture notes, we can pick K to be any number
in the open interval (1/2,1). However, T" has no fixed point. A fixed point would
satisfy T'r = x, which means that

— = X.

2

1One way to see this is to note that X clearly is not a closed subset of the Banach space R.
Hence theorem 3.12 says that X is not complete.
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This happens if and only if z = 0, but 0 is not an element of X.
b) Introducing the common denominator zy, we find for x # y that

1 1
Tx —Ty| = x+—<y+>
x y

2?2y +y—yir—x
zy
oy —1) —y(oy — 1)
zy
_ | —y)(zy—1)
Ty
lzy — 1|
|zy|

=lz—y
<l|z -1y
To justify the last step, note that z,y € [1,00), so clearly xy > 1 whenever x # y.

Therefore |zy — 1] > |xy.
If T had a fixed point xg, xo would satisfy
1
Ty = To + —,
Zo

which clearly implies 9710 = 0, which is not possible.

Problem 1, exam 2007:
Let G : C[0,1] — C]0,1] be defined by

(Ga)(t) = /Ot sx(s)ds, 0<t<l.

a) Show that G is a contraction if C[0, 1] has the || - ||co-norm.
b) Define F : C]0,1] — C[0,1] by
t2
(Fzx)(t) = 3 (Gx)(t), 0<t<1.
Show that if zq(¢) = 0 for all ¢, then
n i1 tQk
(an0)<t):k§1(_1) - M? n:1727"‘
Hint: Induction.

c) Explain why F' has a unique fixed point z*, and find z* by iteration.
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Solution. a) To show that G is a contraction, we need to show that there is some
K € (0,1) such that?
1Gz = Gylloo < K[z =yl

For some z,y € C|[0,1] and t € [0, 1], we find that

|Gx(t) — Gy(t)| = ’/Ot sz(s) ds — /Ot sx(s) ds
[s s = uts) ds
< [ slals) — y(s)] ds

Now recall that by definition ||z — y||loc = supsep 1) [(s) —y(s)|. Since the supremum
is an upper bound, we get that

[2(s) —y(s)| < ||z — Y|l for any s € [0,1].
We insert this into our calculation:

t t
/0 slz(s) —y(s)| ds < ||z — Z/Hoo/o s ds

t2
~ o~ vl

1

< §Hx — Y|l for t € [0, 1].
In total, we have shown that

1

|G (t) = Gy(t)] < Sllz — yll for t € [0,1],
which implies that
1
16z = Gylloo < Sllw =yl

by the definition of the norm || - ||« as a supremum. If we pick any K € (1/2,1), we
have 0 < K < 1 and
|Gz = Gylloo < Kz = yllo,

hence G is a contraction.
b) By writing out the definition of G, we see that

t2

(Fr)() =& - /Ot sz(s) ds.

We want to show that

n t2k:
— § : k+1 —
(Fnl'o)(t) = k_l(—l) QTk!, n = 1,2,.... (].)
2Recall that the distance on a normed space is given by d(x,y) = ||z — y|.
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As the hint suggests, we proceed using induction. For the base case n = 1, the left
hand side of (1) is

(Fxo)(t *——/OdS——
The right hand side of (1) is, for n = 1,

1
Z )k o — (= 1)1+1ﬁ _ ﬁ
ok k! 2 2

Hence (1) is true for n = 1. For the induction step, assume that (1) holds for n = m
— we need to show that (1) then holds for n = m + 1. We will start with the left hand
side of (1) for n = m+ 1, and use the induction hypothesis to manipulate it into the
right hand side of the equation.

(F™xo)(t) = (F(F™x0))(t)

2t
-5 - /0 s(F™x0)(s) ds
t2 t 1 S . . .
=3 _/0 s> (-1 S ds (induction hypothesis)
k=1 '
_ S (M /t GZh+L g
2 = 2%k o
2 m (_1)k+1 t2k+2
B 5_,; 26kl 2k + 2
S G Y ~
E_th (using 2k +2 = 2(k + 1))
t2 m ( 1)
=3 + Z mt”€+2 (minus sign moved inside sum)

_Z ( 1>k+2 t2k+2
2k (k+1)0

Let us now introduce the new summing variable &’ := k + 1. The sum above then

becomes )
m+1 (_1)k +1 »

2 T

k'=1

But this is exactly the right hand side of (1) for n = m + 1, hence we have shown
that (1) holds for n = m + 1, and by induction for any n = 1,2, ....

c) We know that C0, 1] is a Banach space with the norm || - [|». Furthermore F' is
a contraction, since

I = Fulle = 15 = (G210~ (§ = ©00) I

2
= [1Gz = Gyl
< K|z = ylloo
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by a). Hence Banach’s fixed point theorem applies, and F' has a unique fixed point
x*. We know from the course notes (see corollary 3.19) that for any starting point
zo € C|0, 1], the sequence F"x( will converge to z* as n — oo. Let us pick zo(t) = 0.
Then part b) shows that z* is given pointwise fo t € [0, 1] by

n tQk
: m s _1\k+1
dim Fra(t) = Jim, 2L (=0 o0
o] tQk:
— -1 kE+1 %
2 U o
:1_e—t2/2

where the last step follows from recognising the Taylor series for 1 — /2.

Consider the integral equation

f(x) =sinx + A /03 e_(x_y)f(y)dy

for some scalar \.

a) Determine for which A there exists a continuous function f on [0, 3] that
solves this integral equation.

b) Pick one of the values of A found in a). Use the method of iteration, as
described in Banach’s fixed point theorem, to find approximations f; and
fa to a potential solution by starting with fo(z) =1 on [0, 3].

Solution. a) We will use theorem 3.20 in the lecture notes. Some of the conditions
for this theorem will always be satisfied:

e sin(z) is continuous on [0, 3] (this is ¢ in the notation of 3.20)

e ¢~ (@) is continuous on [0,3] x [0, 3] (k in 3.20).

But we also need that || <
We easily find that

3,(+ for the solution to exist, by the same theorem.
lle=@=9)loo

le”@ || = sup |e” @] = ¢
x,y€[0,3]

(This is easy to see, since e~ ¥ = e=%e¥ 50 we just need to find the supremum of each
factor and multiply them.). We conclude that a solution exists for |A| < 55 & 0.017.
b) We pick A = 1/100. With fy(z) =1 for x € [0, 3], we find by iteration that

3
fi(z) = sin(z) 4+ 0.01 / eV dy = sin(z) + 0.01(e? — 1)e 2.
Jo
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We insert this back into the iteration once again, to obtain

3
fo(z) = sin(x) + 0.01/ e~ (@) (sin(y) +0.01(e® — 1)e_y> dy
0
= sin(z) + 0.01 (0.01(63 +e?—2)+ ;ex(l + e?sin(3) — €? COS(S)))
=C +sin(z) + Ke ™

where C), K are constants that you may calculate. It is not difficult to see that the
function f,, after n iterations will also be of the same form, namely

fulx) = C, +sin(z) + K,e™™.

Apply Picard iteration to
d(t)=1+2% 2(0)=0.

Find x3 and the exact solution (notice that the equation is separable), and
show that the terms involving ¢, % ... ¢> in x3(t) are the same as those of the
Taylor series of the exact solution.

Solution. In the notation of section 3.5.2 in the notes, we have that f(t,z) = 1+ 22,
to = 0 and z(tg) = z(0) = 0. By corollary 3.22 Picard iteration is therefore given by

zo = 2(0) = 0 and t
tua(t) = [ fls,wals)) ds.

Therefore

ni(t) = [ (1 afs)) ds

t
:/ 1ds=t.
0

na(t) = [[(1+a(s)) ds
t3

¢
:/(1+82)ds:t+—.
0 3
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x3(t):/0t(1+x2(s)2) ds
:/Ot (1+<s+833>2)
—/ <1+s +SG+2;> ds

2 N t’
3 15 63
The exact solution is the function z(t) satisfying

dx
— =1 2,
It +x

As you once learned in an elementary course, such equations can be solved by
separation of variables:

dz
1+ 22
and by integrating both sides of this equation we find that

— dt,

arctanz =t + C

for some constant C, which means that x(t) = tan(t + C). Since z(0) = 0 we see
that C' = 0, hence the solution is

x(t) = tan(t).
The Taylor series of tan centered at ¢t = 0 is (you may look it up)

325 1T
tan(t):t+§+175+ﬁ

We observe that the terms of order up to t° agree with the solution we found using
Picard iteration.

Remark: We did not ask you to show that the conditions in Picard-Lindelof
and Picard iteration were satisfied. Let us briefly indicate why they actually are
satisfied. Pick some rectangle R containing our initial value, for instance R =
[—10,10] x [—10,10]. Then f(¢,z) = 1 + z? is clearly continuous on R. To see that
the Lipschitz condition is satisfied, note that

|f(t,x) = f(t,y)] =1+ 2° = (1+4%)]
=|z* =y’
= |z +yllz -yl

When z,y € [—10, 10], the expression |z + y| is bounded from above by the constant
20. This means that

[f(t,z) = f(t,y)| = |z + yllz -y

so the Lipschitz condition is satisfied.

September 28, 2018 Page 8 of 8



