- NTNU

Norwegian University of
Science and Technology

Department of Mathematical Sciences

Examination paper for
 TMA4145 Continuation exam - solutions

Academic contact during examination: Sigrid Grepstad
Phone: 41209825

Examination date: 10.08.2018
Examination time (from-to):
Permitted examination support material: D:No written or handwritten material. Calculator Casio fx-82ES PLUS, Citizen SR-270X, Hewlett Packard HP30S

Other information:

There are 5 problems on the exam and each problem counts for 20 points. All solutions should be stated in a precise and rigorous way, with any assumptions written down and arguments justified.

Language: English
Number of pages: 10
Number of pages enclosed: 0

Problem 1

a) (5 points)

Let A be an $m \times n$ matrix. State the singular value decomposition of A and describe all its building blocks.
b) (15 points)

Determine the singular value decomposition of

$$
A=\left(\begin{array}{ccc}
1 & 0 & -1 \\
-1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

and express the inverse of A in terms of its singular value decomposition.

Solution.

a) Given an $m \times n$-matrix A with rank r, the singular value decomposition states that we can find a unitary $m \times m$ matrix U , a unitary $n \times n$ matrix V and a diagonal $m \times n$ matrix Σ such that

$$
A=U \Sigma V^{*} .
$$

Σ has the singular values $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}$ of A (i.e. the square roots of the eigenvalues of either $A^{*} A$ or $\left.A A^{*}\right)$ in the first r entries of the diagonal and zeros elsewhere.
b) Recall that the singular values of A are the eigenvalues of $A^{*} A$, or equivalently of $A A^{*}$. We will use $A^{*} A$. First note that

$$
A^{*}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1 \\
-1 & 0 & 1
\end{array}\right)
$$

and then calculate that

$$
A^{*} A=\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right)
$$

Finding Σ

To find the eigenvalues $\lambda_{i}=\sigma_{i}^{2}$ of $A^{*} A$ we need to solve $\operatorname{det}(A-\lambda I)=0$ for λ. Written out, this equation is

$$
\lambda^{3}-6 \lambda^{2}+9 \lambda-4=0
$$

The roots of this polynomial are 4,1 and 1: by trial and error, one finds that 1 is a root. By dividing the polynomial $\lambda^{3}-6 \lambda^{2}+9 \lambda-4$ by $\lambda-1$ we get

$$
\frac{\lambda^{3}-6 \lambda^{2}+9 \lambda-4}{\lambda-1}=\lambda^{2}-5 \lambda+4
$$

and this quadratic polynomial has roots 1 and 4 , which one can find either by inspection or by using the quadratic formula. Therefore the singular values of A are $\sqrt{4}=2,1$ and 1 , so

$$
\Sigma=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Finding V : To find V, we need the eigenvectors of $A^{*} A$. We start with $\lambda=4$. The eigenvectors form the solution space for $A-4 I=0$, and solving this equation by row reduction gives us the normalized eigenvector

$$
v_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right) .
$$

A similar calculation for $\lambda=1$ leads to the orthonormal eigenvectors

$$
v_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \quad v_{3}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)
$$

The two eigenvectors you first find for $\lambda=1$ might not be orthogonal. In that case you will need to use the Gram-Schmidt method to produce an orthogonal pair of eigenvectors. In conclusion:

$$
V=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}}
\end{array}\right) .
$$

Finding U : The columns u_{1}, u_{2}, u_{3} of U are obtained by $u_{i}=\frac{1}{\sigma_{i}} A v_{i}$, where σ_{i} are the singular values of A. By calculating these matrix products we find that

$$
u_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right) \quad u_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \quad u_{3}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right) .
$$

Hence

$$
U=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\
-\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}}
\end{array}\right) .
$$

The singular value decomposition of A is

$$
A=U \Sigma V^{*}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\
-\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}}
\end{array}\right)\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}}
\end{array}\right) .
$$

Finally, we use this to express the inverse of A. We know that $A=U \Sigma V^{*}$, hence $A^{-1}=\left(V^{*}\right)^{-1} \Sigma^{-1} U^{-1}$. Luckily, the inverses of the the building blocks of the SVD are easy to find. U and V^{*} are unitary, so their inverses are U^{*} and $\left(V^{*}\right)^{*}=V . \Sigma$ is diagonal, so its inverse is obtained by taking the inverse of the diagonal elements. This means that
$A^{-1}=\left(V^{*}\right)^{-1} \Sigma^{-1} U^{-1}=V \Sigma^{-1} U^{*}=\left(\begin{array}{ccc}\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}}\end{array}\right)\left(\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}}\end{array}\right)$.

Problem 2 Let T be a bounded linear operator on a Hilbert space X and we denote the operator norm of T by $\|T\|$.
a) (10 points) Show that $\|T\|=\left\|T^{*}\right\|$, where T^{*} is the adjoint of T.
b) (10 points)

Show that $\left\|T^{*} T\right\|=\|T\|^{2}$.

Solution.

a) We start by showing that $\|T\| \leq\left\|T^{*}\right\|$. By the definition of the operator norm it will suffice to show that $\|T x\| \leq\left\|T^{*}\right\|\|x\|$ for any $x \in X$. Since we want to use the adjoint operator, we write the norm of $T x$ as an inner product, and find that

$$
\begin{aligned}
\|T x\|^{2} & =\langle T x, T x\rangle \\
& =\left\langle T^{*} T x, x\right\rangle \\
& \leq\left\|T^{*} T x\right\|\|x\| \\
& \leq\left\|T^{*}\right\|\|T x\|\|x\| .
\end{aligned}
$$

The first inequality is Cauchy-Schwarz, and the second inequality ($\left.\left\|T^{*} x\right\| \leq\left\|T^{*}\right\|\|x\|\right)$ follows from the definition of the operator norm of T^{*}. By dividing both sides of
the inequality by $\|T x\|$, we obtain $\|T x\| \leq\left\|T^{*}\right\|\|x\|$. Hence $\|T\| \leq\left\|T^{*}\right\|$. Since $\left(T^{*}\right)^{*}=T$, we also have that $\left\|T^{*}\right\| \leq\left\|\left(T^{*}\right)^{*}\right\|=\|T\|$, so $\left\|T^{*}\right\|=\|T\|$.
b) We know that $\|S T\| \leq\|S\|\|T\|$ for two operators S and T. In particular, $\left\|T^{*} T\right\| \leq\left\|T^{*}\right\|\|T\|=\|T\|^{2}$, where the last equality is part a). To show the opposite inequality we proceed as we did in part a):

$$
\begin{aligned}
\|T x\|^{2} & =\langle T x, T x\rangle \\
& =\left\langle T^{*} T x, x\right\rangle \\
& \leq\left\|T^{*} T x\right\|\|x\| \\
& \leq\left\|T^{*} T\right\|\|x\|^{2},
\end{aligned}
$$

where only the last step differs from part a). This shows that $\|T\|^{2} \leq\left\|T^{*} T\right\|$.

Problem 3

a) (10 points)
(1) Suppose $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ are normed spaces. Define for a linear transformation $T: X \rightarrow Y$ the operator norm of T .
(2) Let X be a vector space and let $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ be two norms on X. Define when the norms $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ are equivalent on X.
(3) Suppose $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a sequence in a normed space $\left(X,\|\cdot\|_{X}\right)$. Define the series $\sum_{n=1}^{\infty} x_{n}$ of $\left(x_{n}\right)_{n \in \mathbb{N}}$.
(4) Let M be a subset of an innerproduct space ($X,\langle.,$.$\rangle). Define the or-$ thogonal complement of M.
(5) Let T be a linear transformation on a finite-dimensional vector space X. Define the characteristic polynomial and the minimal polynomial of T.
b) (10 points)

Determine if the following statements are true or false and if the statement is not true, give a counterexample.
(1) A linear transformation T between the normed spaces $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ is continuous if and only if T is a bounded operator.
(2) Any linear transformation on a finite-dimensional vector space is unitarily equivalent to an upper-triangular matrix.
(3) Any Cauchy sequence in a normed space $\left(X,\|\cdot\|_{X}\right)$ converges to an element in X.
(4) Let X be an infinite-dimensional Hilbert space. Then any isometric linear operator on X is a unitary operator on X.
(5) The kernel of any bounded linear map on an infinite-dimensional normed space $\left(X,\|\cdot\|_{X}\right)$ is closed.

Solution.

a)
(1) $\|T\|=\sup \left\{\frac{\|T x\|_{Y}}{\|x\|_{X}}: x \neq 0\right\}$. As we have seen in the lectures, there are some other, equivalent expressions too. These will of course also be acceptable answers.
(2) The norms are equivalent if there exist two positive constants C_{1}, C_{2} such that $C_{1}\|x\|_{a} \leq\|x\|_{b} \leq C_{2}\|x\|_{a}$ for any $x \in X$.
(3) The series $\sum_{n=1}^{\infty} x_{n}$ is the limit of the sequence of partial sums $\left(s_{N}\right)_{N \in \mathbb{N}}$, where $s_{N}=\sum_{n=1}^{N} x_{n}$, when this limit exists.
(4) The orthogonal complement of M is the set $M^{\perp}=\{x \in X:\langle x, y\rangle=$ 0 for any $y \in M\}$.
(5) Let A be a matrix representing T. The characteristic polynomial of T is the polynomial $p_{A}(z)=\operatorname{det}(z I-A)$, where I is the identity matrix ${ }^{1}$. The minimal polynomial m of T is the monic polynomial of smallest degree such that $m(T)=0$.
b)
(1) True.
(2) True.
(3) False. This is only true for Banach spaces. Let the normed space be the set $\mathbb{R} \backslash\{0\}$ of all the real numbers except the origin, with norm given by the absolute value. The sequence $(1 / n)_{n \in \mathbb{N}}$ is Cauchy, but does not converge to an element in our space (in \mathbb{R} it converges to 0 , which does not belong to our space).

[^0](4) False. We have seen that a linear operator $T: X \rightarrow X$ is an isometry if and only if $T^{*} T=I$, and by definition T is unitary if $T^{*} T=T T^{*}=I$. So we need to find an operator satisfying $T^{*} T=I$ and $T T^{*} \neq I$. Let T be the left-shift operator on the Hilbert space $\ell^{2}(\mathbb{N})$, i.e.
$$
T\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right)
$$

In the lectures we have seen that the adjoint of T is the right-shift operator

$$
T^{*}\left(x_{1}, x_{2}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right) .
$$

Clearly we have that $T^{*} T=I$, but

$$
T T^{*}\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{2}, x_{3}, \ldots\right)
$$

so $T T^{*} \neq I$.
Another approach would be to note that the left-shift operator clearly is an isometry, but not surjective. Since a unitary operator is invertible, it must in particular be surjective. Therefore the left-shift operator cannot be unitary.
(5) True.

Problem 4

a) (10 points)

Let $T:\left(C[1,3],\|\cdot\|_{\infty}\right) \rightarrow\left(C[1,3],\|\cdot\|_{\infty}\right)$ be given by $T f(x)=\int_{1}^{3} \alpha e^{-(x-y)} f(y) d y$ for some positive real number α.
(1) Show that T is a bounded operator.
(2) Determine the operator norm of T.
(3) Determine the set of α 's for which T is a contraction.
b) (10 points)
(1) Give an example of a linear operator on a normed space that is not bounded.
(2) Let T be a linear operator on $(X,\|\|$.$) that is not bounded. Show that$ then X has to be infinite-dimensional.

Solution.

a) Let us first note that we can simplify the expression for T a bit, since $T f(x)=$ $\alpha e^{-x} \int_{1}^{3} e^{y} f(y) d y$.
(1) We find for $f \in C[1,3]$ that

$$
\begin{aligned}
|T f(x)| & =\alpha e^{-x}\left|\int_{1}^{3} e^{y} f(y) d y\right| \\
& \leq \alpha e^{-x} \int_{1}^{3}\left|e^{y} f(y)\right| d y \\
& \leq \alpha e^{-x}\|f\|_{\infty} \int_{1}^{3} e^{y} d y \\
& =\alpha e^{-x}\|f\|_{\infty}\left(e^{3}-e\right)
\end{aligned}
$$

Since $e^{-x} \leq e^{-1}$ for $x \in[1,3]$, we get that

$$
\|T f\|_{\infty} \leq \alpha\left(e^{2}-1\right)\|f\|_{\infty}
$$

Thus T is bounded, with $\|T\| \leq \alpha\left(e^{2}-1\right)$.
(2) We will show that the operator norm of T is $\alpha\left(e^{2}-1\right)$. Let f be the constant function $f(x)=1$ for $x \in[1,3]$, and note that $\|f\|_{\infty}=1$. Then

$$
T f(x)=\alpha e^{-x} \int_{1}^{3} e^{y} d y=\alpha e^{-x}\left(e^{3}-e\right)
$$

hence $\|T f\|_{\infty}=\alpha\left(e^{2}-1\right)$. This shows ${ }^{2}$ that $\|T\| \geq \alpha\left(e^{2}-1\right)$, and combining this with part a) we get that $\|T\|=\alpha\left(e^{2}-1\right)$.
(3) T is a contraction when $\|T\|<1$. This happens when $\alpha\left(e^{2}-1\right)<1$, in other words when $\alpha \in\left(0, \frac{1}{e^{2}-1}\right)$.
b)
(1) One example is the differentiation operator $\frac{d}{d x}$ on the normed space $\left(C^{\infty}(0,1), \|\right.$. $\left.\|_{\infty}\right)$ where $C^{\infty}(0,1)$ is the space of functions on $(0,1)$ that are differentiable infinitely many times. $\frac{d}{d x}$ is a linear operator on $C^{\infty}(0,1)$, but is not bounded. For instance, if $f_{n}(x)=e^{i n x}$ for $n \in \mathbb{N}$, then

$$
\left\|f_{n}\right\|_{\infty}=1, \quad \frac{d}{d x} f_{n}(x)=\operatorname{in} f_{n}(x) \quad\left\|\frac{d}{d x} f_{n}\right\|_{\infty}=n .
$$

[^1]Hence

$$
\left\|\frac{d}{d x}\right\|=\sup _{f \neq 0} \frac{\left\|\frac{d f}{d x}\right\|_{\infty}}{\|f\|_{\infty}} \geq n
$$

for any $n \in \mathbb{N}$, showing that the operator is unbounded.
(2) We will prove the contrapositive, which in this case states that any linear operator on a finite-dimensional normed space is bounded. Assume therefore that $(X,\|\cdot\|)$ is a finite-dimensional normed space, and let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be a basis for X. If $x \in X$, then x has a unique basis expansion $x=\sum_{i=1}^{n} a_{i} e_{i}$ for a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of scalars. We define a new norm on X by

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|a_{i}\right| .
$$

Note that $\left\|e_{i}\right\|_{1}=1$ for $i=1,2, \ldots n$. Now define the matrix $\left(b_{i, j}\right)_{i, j=1}^{n}$ by the basis expansion $T e_{i}=\sum_{j=1}^{n} b_{i, j} e_{j}$. We will show that T is bounded with respect to the norm $\|\cdot\|_{1}$.

$$
\begin{aligned}
\|T x\|_{1} & =\left\|T \sum_{i=1}^{n} a_{i} e_{i}\right\|_{1} \\
& =\left\|\sum_{i=1}^{n} a_{i} T e_{i}\right\|_{1} \\
& =\left\|\sum_{i, j=1}^{n} a_{i} b_{i, j} e_{j}\right\|_{1} \\
& \leq \sum_{i, j=1}^{n}\left|a_{i}\right|\left|b_{i, j}\right|\left\|e_{j}\right\|_{1} \\
& \leq \sup _{i, j}\left|b_{i, j}\right| \sum_{i=1}^{n}\left|a_{i}\right| \\
& =\sup _{i, j}\left|b_{i, j}\right|\|x\|_{1} .
\end{aligned}
$$

Hence T is bounded with respect to the norm $\|\cdot\|_{1}$, with norm $\leq \sup _{i, j}\left|b_{i, j}\right|$. Since all norms on a finite-dimensional space are equivalent, we can find constants $C_{1}, C_{2}>0$ such that

$$
C_{1}\|y\| \leq\|y\|_{1} \leq C_{2}\|y\| \quad \text { for any } y \in X
$$

From this we get that

$$
C_{1}\|T x\| \leq\|T x\|_{1} \leq \sup _{i, j}\left|b_{i, j}\right|\|x\|_{1} \leq C_{2} \sup _{i, j} \mid b_{i, j}\|x\|,
$$

and if we divide both sides of this inequality by C_{1} we have $\|T x\| \leq \sup _{i, j}\left|b_{i, j}\right| \frac{C_{2}}{C_{1}}\|x\|$, hence T is bounded with respect to the norm $\|\cdot\|$.

Problem 5 (20 points)
Let $M_{e}=\left\{f \in L^{2}[-2,2]: f(-x)=f(x)\right\}$ be the subspace of even functions of $L^{2}[-2,2]$ and $M_{o}=\left\{f \in L^{2}[-2,2]: f(-x)=-f(x)\right\}$ be the subspace of odd functions of $L^{2}[-2,2]$.
(1) Show that M_{e} is closed.
(2) Determine the orthogonal complement of M_{o}.
(3) Find the projection onto M_{o}^{\perp}.
(4) Show that $M_{o} \cap M_{o}^{\perp}=\{0\}$.

Solution. Note: there are some minor technicalities related to this problem. Elements of $L^{2}[-2,2]$ are actually not functions, but equivalence classes of functions. Since this was not covered in the course, the students' solutions were not required to comment on this.
(1) The easiest way to prove this, is to use the result from (2), namely that the orthogonal complement of M_{o} is M_{e}. We know that orthogonal complements are always closed.
(2) We claim the $M_{e}^{\perp}=M_{o}$. If $f \in M_{e}$ and $g \in M_{o}$, then

$$
\langle f, g\rangle=\int_{-2}^{2} f(t) \overline{g(t)} d t=0
$$

since the integrand $f \bar{g}$ is an odd function and we integrate from -2 to 2 . This shows that $M_{o} \subset M_{e}^{\perp}$. Now assume that $f \in M_{e}^{\perp}$, and recall that any function can be written as a sum of an odd and an even function:

$$
f(x)=\frac{f(x)+f(-x)}{2}+\frac{f(x)-f(-x)}{2}:=f_{e}(x)+f_{o}(x) .
$$

Since $f_{e} \in M_{e}$ and $f \in M_{e}^{\perp}$, we find, using the fact that $\left\langle f_{e}, f_{o}\right\rangle=0$ by $M_{o} \subset M_{e}^{\perp}$, that

$$
0=\left\langle f, f_{e}\right\rangle=\left\langle f_{e}+f_{o}, f_{e}\right\rangle=\left\langle f_{e}, f_{e}\right\rangle=\left\|f_{e}\right\|^{2},
$$

hence $f_{e}=0$. Thus $f=f_{e}+f_{o}=f_{o}$, and we see that $f \in M_{o}$. This proves that $M_{e}^{\perp} \subset M_{o}$, so $M_{e}^{\perp}=M_{o}$.
(3) The projection $P f$ of a function f onto the closed subspace $M_{e}=M_{o}^{\perp}$ is given by writing f as a sum $f=f_{e}+f_{o}$ with $f_{e} \in M_{e}$ and $f_{o} \in M_{e}^{\perp}$, and selecting $P f=f_{e}$. We saw in part (2) that we can write

$$
f(x)=\frac{f(x)+f(-x)}{2}+\frac{f(x)-f(-x)}{2}:=f_{e}(x)+f_{o}(x)
$$

hence $\operatorname{Pf}(x)=f_{e}(x)=\frac{f(x)+f(-x)}{2}$.
(4) Assume that $f \in M_{o} \cap M_{o}^{\perp}$. Since f belongs to both M_{o} and the orthogonal complement of $M_{o},\|f\|=\langle f, f\rangle=0$, hence $f=0$. We have used that $f \in M_{o} \cap M_{o}^{\perp}$ to get that $\langle f, f\rangle=0$.

[^0]: ${ }^{1}$ Of course, the characteristic polynomial is independent of which matrix representation we choose.

[^1]: ${ }^{2}$ By definition, $\|T\|$ is an upper bound for $\left\{\frac{\|T f\|_{\infty}}{\|f\|_{\infty}}: f \neq 0\right\}$. Since we have found an f with $\|f\|_{\infty}=1$ and $\|T f\|_{\infty}=\alpha\left(e^{2}-1\right)$, we must in particular have that $\|T\|$ is greater than $\frac{\alpha\left(e^{2}-1\right)}{1}$.

