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Disclaimer: I present one way to solve these problems although there are other
possible solutions.

Problem 1

a)

(1) Find the singular value decomposition for the matrix

11 -1
A:<1 1 —1)‘

Solution: Let us compute the singular values of A. Recall these are

the non-zero eigenvalues of the selfadjoint matrix AA* = (2 g)

2 2 =2

or AA=| 2 2 —2]. In the first case we get a 2 X 2-matrix and
-2 =2 2

in the second case we get a 3 x 3-matrix, so we use AA* for the com-

putation of the singular values. The eigenvalues of @ g) are 6 and

0. For those, who have decided to use A*A: the eigenvalues are 6,0, 0.
Hence o = v/6 is the only singular value of A, which fits very well with
the fact that A has rank one.

Consequently ¥ is given by

- (F 1Y)

Let us look at the eigenvectors of A*A. A little bit of computation
yields

1 1 1
1 1 1

1 Uy ,v13=—1|1

AL T EL 7 (s

The set {v1, v2,v3} is an orthonormal basis of R? and yield the columns
of V:

V1 =

D
V3 V2 V6
V=|+X =L L
V3 V2 6
=1L 0 Z
V3 V6



Page 2 of 10 TMA4145 Linear Methods

Now we get the columns of U, which is an orthonormal basis for R?, by

1 1 /1
= —A _ —
U1 o) U1 \/§ <1>

. 1
and choosing another vector orthogonal to vy, such as uy = % <_1>

and thus

Hence A =UXV* = (

S
sk
/~
=5
Sl
shslsl-
she o3l

The linear system:

x1+x2—:p3:1

$1+ZE2—SL’3:1

has infinitely many solutions. Determine the one with the minimal Eu-
clidean norm ||.|5.

The linear system

Il—i‘l’g—l‘g:l

$1+£L‘2—l’3:2

has no solution. Determine the least squares solution of the linear sys-
tem.

Hint: The pseudoinverse of the matrix related to the linear system
might be useful.

Solution: We first compute the pseudoinverse of A: The pseudoin-
verse in terms of the SVD is given by AT = VX TU*, which gives

1

I T 0 1 1
VB V3 B\ (6 1L 1
A= L 10 oo(f _@)zl 1

~% 75 ) \0 0) W22 -1 -1
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The system

[E1+CC'2—ZL‘3:]_

.131+SU2—£L’3:1

P . 1
has infinitely many solutions and we have learned that AT 1) =

1

1 | is the solution of minimal ||.||;-norm. The system
-1

W

[E1+$2—ZL‘3:1

.’131+ZE2—5L’3:2

1
has no solution, but A" (;) =11 1 | is the best approximation to a
-1

solution having minimal norm.

b) Given a n x n-matrix A of rank n. Prove that A has a polar decomposition
using the singular value decomposition of A. Hence, show that there exist

an n X n unitary matrix W and a positive definite n x n matrix P such that
A=WP.

Solution: The SVD decomposition gives us unitary n X n matrices U and
V' such that
A=UXV*=U0V*VEV™.

Note that UV™* is unitary as a product of two unitary matrices and VV* is
positive definite, since X is positive definite. Hence VX V* is the replacement
of the length of a complex number and UV™* the one for the phase factor.

Problem 2

a) Let T be the linear transformation T'(x) = Az on R? for the matrix

0 1/2 1/3
A=|1/4 0 1/5],
1/5 a O

where « is a real number.
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(1)

Determine the operator norm of 7" : (R?,||.||1) — (R3,]|.]]1). Note that
the result depends on the parameter «.

Solution: The operator norm of T'(z) = Az as a mapping on (R?, ||.||1)
is given by the maximal column sum of a matrix A. Let A = (aq|az|as)
be partioned into its columns. Then we have for the operator norm

3

Il = e lajls = ymax D ol

By definition of the operator norm we have

|IT|| = max ||Az|; = max [|z1a1 + - - + z303];-
llzfl1=1 lzfli=1

By the triangle inequality and the homogenity for the ||.||;-norm we get

max [[Azlly < max (jeaflars+ -+ fasflas]o)-

=]l =1 lzfl1=1
Let j be chosen such that max;<;<s||a;|}1 = ||a;||;. Then we get
max [[Az[y < max (Joi] + -+ [s])]a; |, = lla; -
l[#fl1=1 =]l =1

We denote by {e1, e, e3} the standard basis for R®. Then |a;|; =
| Aejll1 < maxg), =1 |[|Az|:. Let us combine our two inequalities:

llaglly < max {|Az{ly < flay];-
Jalli=1

Consequently, we have
3
7] = max > |al.

<j<
1S53

Now, we apply this statement to the given linear transformation:

0 1/2 1/3
1114 0 1/5]] = max{9/20,1/2 + |a,8/15}
/5 a 0

. Hence for |a| < 1/30 we have ||T']| = 8/15 and for |a| > 1/30 we have
1T =1/2+ |af.

Determine those a’s such that T is a contraction on (R3, [|.||1).

Solution: By our computation in (1) we have that this is the case
for |a| < 1/2.
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b) Rewrite the linear system

3ZE1—%[E2—ZL’3:1

—11 + 4x9 — %373 =2

—%1‘1 — %ZBQ =+ 21‘3 = 4
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as a fixed point problem and show that one can use Banach’s fixed point the-
orem to prove the existence of a solution. Compute the first three iterations

1
W 2@ 20 for the starting point 2o = | 0 |.

0

Solution: The system of equations is equivalent to

1 1 1
xle-x1+§x2+§x3+§
! +0 + ! + L
Ty = 4$1 T2 5303 5
_ 1 + = +0 +2
T3 = 51‘1 4ZL‘2 T3
which we may write in matrix form as

2| = (1/4 0 1/5| |aa| + |1/2

T3 1/5  « 0 T3

If we define
0o 1/2 1/3

A=|1/4 0 1/5| andb= |1/2

1/5 1/4 0

our problem becomes solving x = Ax + b — a fixed point problem. In order to
apply Banach’s fixed point theorem, we need to have a contraction. In this case

we need that

[Az +b — (Ay + b)[| = [|A(z —y)[| < K[z = y]]

for any z,y € R? in some norm .|| on R3. Let us use the ||.||; on R3. From the first
part of the problem, we know that the operator norm of the operator 7' : R? — R3
given by Tx = Az is the maximal column sum of the matrix A. In this case the
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maximal row sum appears in row 2 and equals 1/2+1/4 = 3/4. Hence | T|| = 3/4.
But this means that

3
1AG =)l = 1T =)l < [ Tllz =yl = llz =yl

Hence we have a contraction with K = %. By Banach’s fixed point theorem we

may choose any xy € R?, and the iteration procedure z,, = Ax,_; + b will always
converge to a solution x of x = Ax + b. Let us for instance pick

1
Tog = 0f.
0
Then the first few iterations give
1/3 1.3694 1.717183
x1=|3/4], zo={1.0233|, 23 = | 1.36568
11/5 2.6166 2.59705

Problem 3

a) (1) Suppose (X, ||.||x) and (Y, ||.|ly) are normed spaces. Define the notions
of a continuous and of a Lipschitz continuous function f: X — Y.

Solution: (i) We discussed several definitions and we just state the
one in terms of € —§: We say that f: X — Y is continuous if or each
ro € X and each € > 0 there is a § > 0 such that

[ = zollx <0 = |[f(x) = f(zo)lly <e

(ii)) A function f : X — Y is called Lipschitz continuous if there
exists a finite constant L such that

1f(z) = f(@)ly < Llle—a'[x  forall z,2" € X.

(2) Let X be a vector space and T a linear map between the vector spaces
T : X — X. Define the notion of a T-invariant subspace of X.

Solution: A subspace M of X is called T-invariant if for any x € M
we have also that Tx € M.
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(3)

Let (X, ||.||) be a normed space. Define the notion of a dense subset of
X and define when X is separable.

Solution: (i) A subset A of (X, ||.||) is said to be dense in X if for each
x € X and each € > 0 there exists a vector y € A such that ||z —y| < e.

(ii) A normed space X is called separable, if it contains a coutable
dense subset.

Let X be a vector space and T : X — X a linear transformation. Define
the notion of a generalized eigenspace for an eigenvalue A\ of T" and the
minimal polynomial of a n X n-matrix A.

Solution: (i) A generalized eigenspace of )\ is ker(T — \I)* for
some k > 1.

The minimal polynomial of A is the among all annihiliating poly-
nomials of A the one with the smallest degree.

Define the notions of a Cauchy sequence and of completeness for normed
space.

Solution: (i) Let (x,)nen be a sequence in (X, |.||). Then we call
(2n)nen @ Cauchy sequence if for any € > 0 there exists an N € N
such that for all m,n > N we have

|zn — zm|| < e.

(ii) A normed space (X, ||.||) is complete if every Cauchy sequence
in X converges to an element in X.

b) Determine if the following statements are true or false and if the statement
is not true, give a counterexample.

(1)

(2)

Any linear map on a normed space is bounded.

Solution: No. For example, the multiplication operator Tz = (x1, 2x9, 33, ...

is unbounded on ¢ for p € [1,00]. Another well-known example is the
differentiation operator Tf = f" on (C|0, 1], |.|/c0)-

Any linear transformation on a finite-dimensional complex vector space
has a non-trivial invariant subspace.

)
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Solution: Yes.

(3) The set of sequences with finitely many non-zero elements is dense in
the space of bounded sequences /.

Solution: No. For example, take the constant sequence (1,1,1,...)
cannot approximated arbitrarily closed by elements from cy.

(4) The orthogonal complement of any subset of an innerproduct space is
closed.

Solution: Yes.

(5) The range of any bounded linear map on an infinite-dimensional vector
space is closed.

Solution: No. Example: The operator T : (2 — (% defined by

T(x1,29,...) = (21, %, %2, ...) does not have closed range.

Problem 4 For a = (a,)neny € (°° we define the linear operator T, : (2 — (2
by T,(xy, 19, ...) = (a121,0, azxs, 0, ...) for (z,) € (%

(1) Show that T, is bounded on 2.
Solution: ||T,z||3 = |a121|* + |aszs]? + - - - < ||(a2n—1)nen||% ||7]|3 and hence

[Tozll2 < [[(a2n—1)nen|loollZ|l2-
Here (ag,,—1)nen is the odd part of the sequence a, i.e. the sequence (ay, as, as, ...).

(2) Determine the operator norm of Tj,.
Solution: ||7,]] < ||(a2n—1)nen||s, because

ITall = sup |[Tazlla < sup ([[(azn-1)nenllool|zll2) = ll(a2n—1)nenlloo-
zll2=1 llzfl2=1

Hence |[(a2;,—1)nen||so is an upper bound for {||T,x||2 : ||z]l2 = 1}. Now we
show that it is the least upper bound for {||T,x||2 : ||x|l2 = 1}. Namely, for
every € > 0 there exists some ¢ € ¢? with ||z¢]|, = 1 such that

[Tar"|l2 > [l27]l2 — &
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For every € > 0 there exists a index k. such that |agk. 1] > [[(a2n-1)|lcc — €
(which follows from the definition of the supremum of the sequence (ag,—1))
and take 2 = (0,...,0,1,0,...) where the 1 is in the (2k. — 1)th component.
Then T,z. = |agk.—1] > |(a2n-1)||lc — €. Hence we have ||T,|| = ||(a2n-1)]|co-

(3) Show that the range of T}, is closed.

Solution: The range of T}, is {z € ¢* : (21,0, 13,0, ...)}. There are (at least)
two strategies: (i) show directly that {z € ¢%: (z1,0,23,0,...)} is closed; or
(ii) note that {z € % : (x1,0,23,0,...)} is the kernel of a the operator P
given by Px = (0,25,0,124,0,...): P is linear and bounded: ||Pzx|s < ||z]2
and we have ker(P) = range(T},).

(4) Determine the orthogonal complement of ker(T},).

Solution: ker(T},) is the subspace {z € ¢* : (0,29,0,74,0,...)}. By defi-
nition

ker(T,)t ={y € ®: (y,x) =0 forall z € ker(T,)},

i.e. we have

ker(T,)" ={y € *: > 2075 = 0 forall z € (*}.

i=1

The expression 352, 29;7a; = 0 for all z € (2 if and only if y = (y1,0,v3,0,9s, ...).
Consequently, ker(T,)* = {z € 2: 2 = (11,0, 23,0, z5,...) }.

(5) Determine for which sequences a € £ the operator T, satisfies T = T,,.

Solution: T2x = (a}r,0,a3x3,0,...) and thus T? = T, is equivalent to
a? = a; for all ¢ = 1,2,3,..., which holds only for ay_; € {0,1} for all

(2

i=1,2,3,...

Problem 5 Let {e,}nen be an orthonormal system in a Hilbert space X and
(n)nen a sequence of complex numbers.

Show that the series 3,cn ane, converges in X if and only if (o, )nen € €2
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Solution: For any finite orthonormal system {e, ..., e,} we have

for any scalars ay, ..., a;,. Hence the partial sums s, = Y-7_; apey satisty (s,), for

n>m
n

[E SMH2 = Z |ak|2-
k=m+1
Hence (s,,) is a Cauchy sequence in X if and only if (||, ||?), is a Cauchy sequence
in R. Since X and R are both complete, these two sequences converge or divergence
simultaneously. In the case of convergence, we take the limit n — oo and obtain
the desired claim.



