- NTNU

Norwegian University of
Science and Technology

Department of Mathematical Sciences

Examination paper for TMA4145 Linear Methods-Solutions

Academic contact during examination: Franz Luef
Phone: 40614405

Examination date: 21.12.2017
Examination time (from-to): 09:00-13:00
Permitted examination support material: D:No written or handwritten material. Calculator Casio fx-82ES PLUS, Citizen SR-270X, Hewlett Packard HP30S

Other information:

There are 5 problems on the exam and each problem counts for 20 points. All solutions should be stated in a precise and rigorous way, with any assumptions written down and arguments justified, except Problem 3.

Language: English
Number of pages: 10
Number of pages enclosed: 0
Checked by:

```
Informasjon om trykking av eksamensoppgave
Originalen er:
1-sidig
```

```2-sidig sort/hvit \(\square \quad\) farger \(\square\) skal ha flervalgskjema
```

Disclaimer: I present one way to solve these problems although there are other possible solutions.

Problem 1

a) (1) Find the singular value decomposition for the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & -1 \\
1 & 1 & -1
\end{array}\right)
$$

Solution: Let us compute the singular values of A. Recall these are the non-zero eigenvalues of the selfadjoint matrix $A A^{*}=\left(\begin{array}{ll}3 & 3 \\ 3 & 3\end{array}\right)$ or $A^{*} A=\left(\begin{array}{ccc}2 & 2 & -2 \\ 2 & 2 & -2 \\ -2 & -2 & 2\end{array}\right)$. In the first case we get a 2×2-matrix and in the second case we get a 3×3-matrix, so we use $A A^{*}$ for the computation of the singular values. The eigenvalues of $\left(\begin{array}{ll}3 & 3 \\ 3 & 3\end{array}\right)$ are 6 and 0 . For those, who have decided to use $A^{*} A$: the eigenvalues are $6,0,0$. Hence $\sigma_{1}=\sqrt{6}$ is the only singular value of A, which fits very well with the fact that A has rank one.

Consequently Σ is given by

$$
\Sigma=\left(\begin{array}{ccc}
\sqrt{6} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Let us look at the eigenvectors of $A^{*} A$. A little bit of computation yields

$$
v_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right), v_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right), v_{3}=\frac{1}{\sqrt{6}}\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)
$$

The set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthonormal basis of \mathbb{R}^{3} and yield the columns of V :

$$
V=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{-1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}}
\end{array}\right) .
$$

Now we get the columns of U, which is an orthonormal basis for \mathbb{R}^{2}, by

$$
u_{1}=\frac{1}{\sigma_{1}} A v_{1}=\frac{1}{\sqrt{2}}\binom{1}{1}
$$

and choosing another vector orthogonal to v_{1}, such as $u_{2}=\frac{1}{\sqrt{2}}\binom{1}{-1}$ and thus

$$
U=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) .
$$

Hence $A=U \Sigma V^{*}=\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right)\left(\begin{array}{ccc}\sqrt{6} & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{ccc}\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}}\end{array}\right)$
(2) The linear system:

$$
\begin{aligned}
& x_{1}+x_{2}-x_{3}=1 \\
& x_{1}+x_{2}-x_{3}=1
\end{aligned}
$$

has infinitely many solutions. Determine the one with the minimal Euclidean norm $\|.\|_{2}$.

The linear system

$$
\begin{aligned}
& x_{1}+x_{2}-x_{3}=1 \\
& x_{1}+x_{2}-x_{3}=2
\end{aligned}
$$

has no solution. Determine the least squares solution of the linear system.

Hint: The pseudoinverse of the matrix related to the linear system might be useful.

Solution: We first compute the pseudoinverse of A : The pseudoinverse in terms of the SVD is given by $A^{+}=V \Sigma^{+} U^{*}$, which gives

$$
A^{+}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{6}} & 0 \\
0 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)=\frac{1}{6}\left(\begin{array}{cc}
1 & 1 \\
1 & 1 \\
-1 & -1
\end{array}\right) .
$$

The system

$$
\begin{aligned}
& x_{1}+x_{2}-x_{3}=1 \\
& x_{1}+x_{2}-x_{3}=1
\end{aligned}
$$

has infinitely many solutions and we have learned that $A^{+}\binom{1}{1}=$ $\frac{1}{3}\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$ is the solution of minimal $\|\cdot\|_{2}$-norm. The system

$$
\begin{aligned}
& x_{1}+x_{2}-x_{3}=1 \\
& x_{1}+x_{2}-x_{3}=2
\end{aligned}
$$

has no solution, but $A^{+}\binom{1}{2}=\frac{1}{2}\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$ is the best approximation to a solution having minimal norm.
b) Given a $n \times n$-matrix A of rank n. Prove that A has a polar decomposition using the singular value decomposition of A. Hence, show that there exist an $n \times n$ unitary matrix W and a positive definite $n \times n$ matrix P such that $A=W P$.

Solution: The SVD decomposition gives us unitary $n \times n$ matrices U and V such that

$$
A=U \Sigma V^{*}=U V^{*} V \Sigma V^{*}
$$

Note that $U V^{*}$ is unitary as a product of two unitary matrices and $V \Sigma V^{*}$ is positive definite, since Σ is positive definite. Hence $V \Sigma V^{*}$ is the replacement of the length of a complex number and $U V^{*}$ the one for the phase factor.

Problem 2

a) Let T be the linear transformation $T(x)=A x$ on \mathbb{R}^{3} for the matrix

$$
A=\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 3 \\
1 / 4 & 0 & 1 / 5 \\
1 / 5 & \alpha & 0
\end{array}\right)
$$

where α is a real number.
(1) Determine the operator norm of $T:\left(\mathbb{R}^{3},\|\cdot\|_{1}\right) \rightarrow\left(\mathbb{R}^{3},\|\cdot\|_{1}\right)$. Note that the result depends on the parameter α.

Solution: The operator norm of $T(x)=A x$ as a mapping on $\left(\mathbb{R}^{3},\|\cdot\|_{1}\right)$ is given by the maximal column sum of a matrix A. Let $A=\left(a_{1}\left|a_{2}\right| a_{3}\right)$ be partioned into its columns. Then we have for the operator norm

$$
\|T\|=\max _{1 \leq j \leq 3}\left|a_{j}\right|_{1}=\max _{1 \leq j \leq 3} \sum_{i=1}^{3}\left|a_{i j}\right| .
$$

By definition of the operator norm we have

$$
\|T\|=\max _{\|x\|_{1}=1}\|A x\|_{1}=\max _{\|x\|_{1}=1}\left\|x_{1} a_{1}+\cdots+x_{3} a_{3}\right\|_{1} .
$$

By the triangle inequality and the homogenity for the $\|.\|_{1}$-norm we get

$$
\max _{\|x\|_{1}=1}\|A x\|_{1} \leq \max _{\|x\|_{1}=1}\left(\left|x_{1}\right|\left\|a_{1}\right\|_{1}+\cdots+\left|x_{3}\right|\left\|a_{3}\right\|_{1}\right) .
$$

Let j be chosen such that $\max _{1 \leq i \leq 3}\left\|a_{i}\right\|_{1}=\left\|a_{j}\right\|_{1}$. Then we get

$$
\max _{\|x\|_{1}=1}\|A x\|_{1} \leq \max _{\|x\|_{1}=1}\left(\left|x_{1}\right|+\cdots+\left|x_{3}\right|\right)\left\|a_{j}\right\|_{1}=\left\|a_{j}\right\|_{1} .
$$

We denote by $\left\{e_{1}, e_{2}, e_{3}\right\}$ the standard basis for \mathbb{R}^{3}. Then $\left\|a_{j}\right\|_{1}=$ $\left\|A e_{j}\right\|_{1} \leq \max _{\|x\|_{1}=1}\|A x\|_{1}$. Let us combine our two inequalities:

$$
\left\|a_{j}\right\|_{1} \leq \max _{\|x\|_{1}=1}\|A x\|_{1} \leq\left\|a_{j}\right\|_{1} .
$$

Consequently, we have

$$
\|T\|=\max _{1 \leq j \leq 3} \sum_{i=1}^{3}\left|a_{i j}\right| .
$$

Now, we apply this statement to the given linear transformation:

$$
\left\|\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 3 \\
1 / 4 & 0 & 1 / 5 \\
1 / 5 & \alpha & 0
\end{array}\right)\right\|=\max \{9 / 20,1 / 2+|\alpha|, 8 / 15\}
$$

. Hence for $|\alpha| \leq 1 / 30$ we have $\|T\|=8 / 15$ and for $|\alpha|>1 / 30$ we have $\|T\|=1 / 2+|\alpha|$.
(2) Determine those α 's such that T is a contraction on $\left(\mathbb{R}^{3},\|\cdot\|_{1}\right)$.

Solution: By our computation in (1) we have that this is the case for $|\alpha|<1 / 2$.
b) Rewrite the linear system

$$
\begin{aligned}
3 x_{1}-\frac{3}{2} x_{2}-x_{3} & =1 \\
-x_{1}+4 x_{2}-\frac{4}{5} x_{3} & =2 \\
-\frac{2}{5} x_{1}-\frac{1}{2} x_{2}+2 x_{3} & =4
\end{aligned}
$$

as a fixed point problem and show that one can use Banach's fixed point theorem to prove the existence of a solution. Compute the first three iterations $x^{(1)}, x^{(2)}, x^{(3)}$ for the starting point $x_{0}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.

Solution: The system of equations is equivalent to

$$
\begin{aligned}
& x_{1}=0 \cdot x_{1}+\frac{1}{2} x_{2}+\frac{1}{3} x_{3}+\frac{1}{3} \\
& x_{2}=\frac{1}{4} x_{1}+0 \cdot x_{2}+\frac{1}{5} x_{3}+\frac{1}{2} \\
& x_{3}=\frac{1}{5} x_{1}+\frac{1}{4} x_{2}+0 \cdot x_{3}+2
\end{aligned}
$$

which we may write in matrix form as

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 / 2 & 1 / 3 \\
1 / 4 & 0 & 1 / 5 \\
1 / 5 & \alpha & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{c}
1 / 3 \\
1 / 2 \\
2
\end{array}\right]
$$

If we define

$$
A=\left[\begin{array}{ccc}
0 & 1 / 2 & 1 / 3 \\
1 / 4 & 0 & 1 / 5 \\
1 / 5 & 1 / 4 & 0
\end{array}\right] \text { and } b=\left[\begin{array}{c}
1 / 3 \\
1 / 2 \\
2
\end{array}\right]
$$

our problem becomes solving $x=A x+b$ - a fixed point problem. In order to apply Banach's fixed point theorem, we need to have a contraction. In this case we need that

$$
\|A x+b-(A y+b)\|=\|A(x-y)\| \leq K\|x-y\|
$$

for any $x, y \in \mathbb{R}^{3}$ in some norm $\|$.$\| on \mathbb{R}^{3}$. Let us use the $\|.\|_{1}$ on \mathbb{R}^{3}. From the first part of the problem, we know that the operator norm of the operator $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $T x=A x$ is the maximal column sum of the matrix A. In this case the
maximal row sum appears in row 2 and equals $1 / 2+1 / 4=3 / 4$. Hence $\|T\|=3 / 4$. But this means that

$$
\|A(x-y)\|_{1}=\|T(x-y)\|_{1} \leq\|T\|\|x-y\|_{1}=\frac{3}{4}\|x-y\|_{1} .
$$

Hence we have a contraction with $K=\frac{3}{4}$. By Banach's fixed point theorem we may choose any $x_{0} \in \mathbb{R}^{3}$, and the iteration procedure $x_{n}=A x_{n-1}+b$ will always converge to a solution x of $x=A x+b$. Let us for instance pick

$$
x_{0}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] .
$$

Then the first few iterations give

$$
x_{1}=\left[\begin{array}{c}
1 / 3 \\
3 / 4 \\
11 / 5
\end{array}\right], x_{2}=\left[\begin{array}{l}
1.3694 \\
1.0233 \\
2.6166
\end{array}\right], x_{3}=\left[\begin{array}{c}
1.717183 \\
1.36568 \\
2.59705
\end{array}\right] .
$$

Problem 3

a) (1) Suppose $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ are normed spaces. Define the notions of a continuous and of a Lipschitz continuous function $f: X \rightarrow Y$.

Solution: (i) We discussed several definitions and we just state the one in terms of $\epsilon-\delta$: We say that $f: X \rightarrow Y$ is continuous if or each $x_{0} \in X$ and each $\varepsilon>0$ there is a $\delta>0$ such that

$$
\left\|x-x_{0}\right\|_{X}<\delta \Rightarrow\left\|f(x)-f\left(x_{0}\right)\right\|_{Y}<\varepsilon .
$$

(ii) A function $f: X \rightarrow Y$ is called Lipschitz continuous if there exists a finite constant L such that

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\|_{Y} \leq L\left\|x-x^{\prime}\right\|_{X} \quad \text { for all } x, x^{\prime} \in X
$$

(2) Let X be a vector space and T a linear map between the vector spaces $T: X \rightarrow X$. Define the notion of a T-invariant subspace of X.

Solution: A subspace M of X is called \mathbf{T}-invariant if for any $x \in M$ we have also that $T x \in M$.
(3) Let $(X,\|\cdot\|)$ be a normed space. Define the notion of a dense subset of X and define when X is separable.

Solution: (i) A subset A of $(X,\|\cdot\|)$ is said to be dense in X if for each $x \in X$ and each $\varepsilon>0$ there exists a vector $y \in A$ such that $\|x-y\|<\varepsilon$.
(ii) A normed space X is called separable, if it contains a coutable dense subset.
(4) Let X be a vector space and $T: X \rightarrow X$ a linear transformation. Define the notion of a generalized eigenspace for an eigenvalue λ of T and the minimal polynomial of a $n \times n$-matrix A.

Solution: (i) A generalized eigenspace of λ is $\operatorname{ker}(T-\lambda I)^{k}$ for some $k>1$.

The minimal polynomial of A is the among all annihiliating polynomials of A the one with the smallest degree.
(5) Define the notions of a Cauchy sequence and of completeness for normed space.

Solution: (i) Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $(X,\|\cdot\|)$. Then we call $\left(x_{n}\right)_{n \in \mathbb{N}}$ a Cauchy sequence if for any $\varepsilon>0$ there exists an $N \in \mathbb{N}$ such that for all $m, n \geq N$ we have

$$
\left\|x_{n}-x_{m}\right\|<\varepsilon .
$$

(ii) A normed space $(X,\|\cdot\|)$ is complete if every Cauchy sequence in X converges to an element in X.
b) Determine if the following statements are true or false and if the statement is not true, give a counterexample.
(1) Any linear map on a normed space is bounded.

Solution: No. For example, the multiplication operator $T x=\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)$ is unbounded on ℓ^{p} for $p \in[1, \infty]$. Another well-known example is the differentiation operator $T f=f^{\prime}$ on $\left(C[0,1],\|\cdot\|_{\infty}\right)$.
(2) Any linear transformation on a finite-dimensional complex vector space has a non-trivial invariant subspace.

Solution: Yes.
(3) The set of sequences with finitely many non-zero elements is dense in the space of bounded sequences ℓ^{∞}.

Solution: No. For example, take the constant sequence ($1,1,1, \ldots$) cannot approximated arbitrarily closed by elements from c_{f}.
(4) The orthogonal complement of any subset of an innerproduct space is closed.

Solution: Yes.

(5) The range of any bounded linear map on an infinite-dimensional vector space is closed.

Solution: No. Example: The operator $T: \ell^{2} \rightarrow \ell^{2}$ defined by $T\left(x_{1}, x_{2}, \ldots\right)=\left(x_{1}, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \ldots\right)$ does not have closed range.

Problem 4 For $a=\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty}$ we define the linear operator $T_{a}: \ell^{2} \rightarrow \ell^{2}$ by $T_{a}\left(x_{1}, x_{2}, \ldots\right)=\left(a_{1} x_{1}, 0, a_{3} x_{3}, 0, \ldots\right)$ for $\left(x_{n}\right) \in \ell^{2}$.
(1) Show that T_{a} is bounded on ℓ^{2}.

Solution: $\left\|T_{a} x\right\|_{2}^{2}=\left|a_{1} x_{1}\right|^{2}+\left|a_{3} x_{3}\right|^{2}+\cdots \leq\left\|\left(a_{2 n-1}\right)_{n \in \mathbb{N}}\right\|_{\infty}^{2}\|x\|_{2}^{2}$ and hence

$$
\left\|T_{a} x\right\|_{2} \leq\left\|\left(a_{2 n-1}\right)_{n \in \mathbb{N}}\right\|_{\infty}\|x\|_{2} .
$$

Here $\left(a_{2 n-1}\right)_{n \in \mathbb{N}}$ is the odd part of the sequence a, i.e. the sequence $\left(a_{1}, a_{3}, a_{5}, \ldots\right)$.
(2) Determine the operator norm of T_{a}.

Solution: $\left\|T_{a}\right\| \leq\left\|\left(a_{2 n-1}\right)_{n \in \mathbb{N}}\right\|_{\infty}$, because

$$
\left\|T_{a}\right\|=\sup _{\|x\|_{2}=1}\left\|T_{a} x\right\|_{2} \leq \sup _{\|x\|_{2}=1}\left(\left\|\left(a_{2 n-1}\right)_{n \in \mathbb{N}}\right\|_{\infty}\|x\|_{2}\right)=\left\|\left(a_{2 n-1}\right)_{n \in \mathbb{N}}\right\|_{\infty} .
$$

Hence $\left\|\left(a_{2 n-1}\right)_{n \in \mathbb{N}}\right\|_{\infty}$ is an upper bound for $\left\{\left\|T_{a} x\right\|_{2}:\|x\|_{2}=1\right\}$. Now we show that it is the least upper bound for $\left\{\left\|T_{a} x\right\|_{2}:\|x\|_{2}=1\right\}$. Namely, for every $\varepsilon>0$ there exists some $x^{\varepsilon} \in \ell^{2}$ with $\left\|x^{\varepsilon}\right\|_{2}=1$ such that

$$
\left\|T_{a} x^{\varepsilon}\right\|_{2}>\left\|x^{\varepsilon}\right\|_{2}-\varepsilon .
$$

For every $\varepsilon>0$ there exists a index k_{ε} such that $\left|a_{2 k_{\varepsilon}-1}\right|>\left\|\left(a_{2 n-1}\right)\right\|_{\infty}-\varepsilon$ (which follows from the definition of the supremum of the sequence $\left(a_{2 n-1}\right)$) and take $x^{\varepsilon}=(0, \ldots, 0,1,0, \ldots)$ where the 1 is in the $\left(2 k_{\varepsilon}-1\right)$ th component. Then $T_{a} x_{\varepsilon}=\left|a_{2 k_{\varepsilon}-1}\right|>\mid\left(a_{2 n-1}\right) \|_{\infty}-\varepsilon$. Hence we have $\left\|T_{a}\right\|=\left\|\left(a_{2 n-1}\right)\right\|_{\infty}$.
(3) Show that the range of T_{a} is closed.

Solution: The range of T_{a} is $\left\{x \in \ell^{2}:\left(x_{1}, 0, x_{3}, 0, \ldots\right)\right\}$. There are (at least) two strategies: (i) show directly that $\left\{x \in \ell^{2}:\left(x_{1}, 0, x_{3}, 0, \ldots\right)\right\}$ is closed; or (ii) note that $\left\{x \in \ell^{2}:\left(x_{1}, 0, x_{3}, 0, \ldots\right)\right\}$ is the kernel of a the operator P given by $P x=\left(0, x_{2}, 0, x_{4}, 0, \ldots\right): P$ is linear and bounded: $\|P x\|_{2} \leq\|x\|_{2}$ and we have $\operatorname{ker}(P)=\operatorname{range}\left(T_{a}\right)$.
(4) Determine the orthogonal complement of $\operatorname{ker}\left(T_{a}\right)$.

Solution: $\operatorname{ker}\left(T_{a}\right)$ is the subspace $\left\{x \in \ell^{2}:\left(0, x_{2}, 0, x_{4}, 0, \ldots\right)\right\}$. By definition

$$
\operatorname{ker}\left(T_{a}\right)^{\perp}=\left\{y \in \ell^{2}:\langle y, x\rangle=0 \text { for all } x \in \operatorname{ker}\left(T_{a}\right)\right\}
$$

i.e. we have

$$
\operatorname{ker}\left(T_{a}\right)^{\perp}=\left\{y \in \ell^{2}: \sum_{i=1}^{\infty} x_{2 i} \overline{y_{2 i}}=0 \text { for all } x \in \ell^{2}\right\}
$$

The expression $\sum_{i=1}^{\infty} x_{2 i} \overline{y_{2 i}}=0$ for all $x \in \ell^{2}$ if and only if $y=\left(y_{1}, 0, y_{3}, 0, y_{5}, \ldots\right)$. Consequently, $\operatorname{ker}\left(T_{a}\right)^{\perp}=\left\{x \in \ell^{2}: x=\left(x_{1}, 0, x_{3}, 0, x_{5}, \ldots\right)\right\}$.
(5) Determine for which sequences $a \in \ell^{\infty}$ the operator T_{a} satisfies $T_{a}^{2}=T_{a}$.

Solution: $T_{a}^{2} x=\left(a_{1}^{2} x_{1}, 0, a_{3}^{2} x_{3}, 0, \ldots\right)$ and thus $T_{a}^{2}=T_{a}$ is equivalent to $a_{i}^{2}=a_{i}$ for all $i=1,2,3, \ldots$, which holds only for $a_{2 i-1} \in\{0,1\}$ for all $i=1,2,3, \ldots$.

Problem 5 Let $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ be an orthonormal system in a Hilbert space X and $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ a sequence of complex numbers.

Show that the series $\sum_{n \in \mathbb{N}} \alpha_{n} e_{n}$ converges in X if and only if $\left(\alpha_{n}\right)_{n \in \mathbb{N}} \in \ell^{2}$.

Solution: For any finite orthonormal system $\left\{e_{1}, \ldots, e_{n}\right\}$ we have

$$
\begin{aligned}
\left\|\sum_{j=1}^{n} \alpha_{j} e_{j}\right\|^{2} & =\left\langle\sum_{j=1}^{n} \alpha_{j} e_{j}, \sum_{j=1}^{n} \alpha_{j} e_{j}\right\rangle \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \overline{\alpha_{j}}\left\langle e_{i}, e_{j}\right\rangle \\
& =\sum_{j=1}^{n}\left|\alpha_{j}\right|^{2} .
\end{aligned}
$$

for any scalars $\alpha_{1}, \ldots, \alpha_{n}$. Hence the partial sums $s_{n}=\sum_{k=1}^{n} \alpha_{k} e_{k}$ satisfy $\left(s_{n}\right)_{n}$ for $n>m$

$$
\left\|s_{n}-s_{m}\right\|^{2}=\sum_{k=m+1}^{n}\left|\alpha_{k}\right|^{2}
$$

Hence $\left(s_{n}\right)$ is a Cauchy sequence in X if and only if $\left(\left\|\alpha_{n}\right\|^{2}\right)_{n}$ is a Cauchy sequence in \mathbb{R}. Since X and \mathbb{R} are both complete, these two sequences converge or divergence simultaneously. In the case of convergence, we take the limit $n \rightarrow \infty$ and obtain the desired claim.

