Please justify your answers! The most important part is how you arrive at an answer, not the answer itself.

1 Let

$$
z_{1}=\sqrt{\frac{2}{3}}\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad z_{2}=\sqrt{\frac{2}{3}}\left[\begin{array}{l}
-1 / 2 \\
\sqrt{3} / 2
\end{array}\right], \quad z_{3}=\sqrt{\frac{2}{3}}\left[\begin{array}{c}
-1 / 2 \\
-\sqrt{3} / 2
\end{array}\right] .
$$

Show that for every $x \in \mathbb{R}^{2}$ we have
a)

$$
\|x\|^{2}=\sum_{i=1}^{3}\left|\left\langle x, z_{i}\right\rangle\right|^{2}
$$

b)

$$
x=\sum_{i=1}^{3}\left\langle x, z_{i}\right\rangle z_{i}
$$

Remark. The vectors z_{1}, z_{2}, z_{3} span \mathbb{R}^{2}, but they are obviously not an orthonormal basis (they are not even linearly independent). Still, they satisfy a generalization of Parseval's identity and "act like" an orthonormal basis. Such systems appear very naturally in applications (e.g. in signal analysis), and are often called Parseval frames.

2 Let $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ be equivalent norms on a vector space X. Show that any set $U \subset X$ is open in $\left(X,\|\cdot\|_{a}\right)$ if and only if it is open in $\left(X,\|\cdot\|_{b}\right)$.
Remark. This is in fact a two-way implication; if any set $U \subset X$ is open in $\left(X,\|\cdot\|_{a}\right)$ if and only if it is open in $\left(X,\|\cdot\|_{b}\right)$, then necessarily the norms $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ are equivalent on X.

3 Suppose that v_{1}, \ldots, v_{k} are non-zero eigenvectors of an operator T corresponding to distinct eigenvectors $\lambda_{1}, \ldots, \lambda_{k}$. Show that $\left\{v_{1}, \ldots v_{k}\right\}$ is a linearly independent set.

4 Let T be the shift operator on ℓ^{2} defined by $T\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right)$.

1. Show that T has no eigenvalues.
2. Does T^{*} have any eigenvalues?

5 Let U be a $n \times n$ matrix with columns u_{1}, \ldots, u_{n}. Show that the following statements are equivalent:

1. U is unitary.
2. $\left\{u_{1}, \ldots, u_{n}\right\}$ is an orthonormal basis of \mathbb{C}^{n}.

6 Given the matrix

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 2 \\
2 & 1
\end{array}\right)
$$

a) Compute the singular value decomposition of A.
b) Use the result of a) to find:

1. Bases for the following vector spaces: $\operatorname{ker}(A), \operatorname{ker}\left(A^{*}\right), \operatorname{ran}(A), \operatorname{ran}\left(A^{*}\right)$.
2. The pseudo-inverse of A.
3. Find the minimal norm solution of $A x=b$ for $b=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$.
