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Exercise set 12

Please justify your answers! The most important part is how you arrive at an answer,
not the answer itself.

1 Let

z1 =
√

2
3

[
1
0

]
, z2 =

√
2
3

[
−1/2√

3/2

]
, z3 =

√
2
3

[
−1/2
−
√

3/2

]
.

Show that for every x ∈ R2 we have
a)

‖x‖2 =
3∑

i=1
|〈x, zi〉|2

b)

x =
3∑

i=1
〈x, zi〉zi

Remark. The vectors z1, z2, z3 span R2, but they are obviously not an or-
thonormal basis (they are not even linearly independent). Still, they satisfy a
generalization of Parseval’s identity and “act like” an orthonormal basis. Such
systems appear very naturally in applications (e.g. in signal analysis), and are
often called Parseval frames.

2 Let ‖ · ‖a and ‖ · ‖b be equivalent norms on a vector space X. Show that any
set U ⊂ X is open in (X, ‖ · ‖a) if and only if it is open in (X, ‖ · ‖b).

Remark. This is in fact a two-way implication; if any set U ⊂ X is open in
(X, ‖ · ‖a) if and only if it is open in (X, ‖ · ‖b), then necessarily the norms ‖ · ‖a

and ‖ · ‖b are equivalent on X.

3 Suppose that v1, . . . , vk are non-zero eigenvectors of an operator T correspond-
ing to distinct eigenvectors λ1, . . . , λk. Show that {v1, . . . vk} is a linearly
independent set.

4 Let T be the shift operator on `2 defined by T (x1, x2, ...) = (0, x1, x2, ...).
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1. Show that T has no eigenvalues.
2. Does T ∗ have any eigenvalues?

5 Let U be a n × n matrix with columns u1, ..., un. Show that the following
statements are equivalent:

1. U is unitary.
2. {u1, ..., un} is an orthonormal basis of Cn.

6 Given the matrix

A =

1 2
2 2
2 1

 .

a) Compute the singular value decomposition of A.

b) Use the result of a) to find:
1. Bases for the following vector spaces: ker(A), ker(A∗), ran(A), ran(A∗).
2. The pseudo-inverse of A.

3. Find the minimal norm solution of Ax = b for b =

1
2
3

.
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