Please justify your answers! The most important part is how you arrive at an answer, not the answer itself.

1 Let X be a Hilbert space and $T: X \rightarrow X$ a bounded linear operator. Suppose x and x^{\prime} are two elements in X. Show that if

$$
\langle x, y\rangle=\left\langle x^{\prime}, y\right\rangle \quad \text { for all } y \in X
$$

then $x=x^{\prime}$.

2 Define on $C[0,1]$ the inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(t) \overline{g(t)} d t
$$

Show that $(C[0,1],\langle\cdot, \cdot\rangle)$ is an inner product space, but that it is not complete with respect to the norm

$$
\|f\|_{2}=\left(\int_{0}^{1}|f(t)|^{2} d t\right)^{1 / 2}
$$

induced by the inner product.

3 Let X_{1} and X_{2} be two Hilbert spaces and $T \in B\left(X_{1}, X_{2}\right)$.
a) Show that there exists $T^{*} \in B\left(X_{2}, X_{1}\right)$ such that $\langle T x, y\rangle_{X_{2}}=\left\langle x, T^{*} y\right\rangle_{X_{1}}$ for any $x \in X_{1}, y \in X_{2}$.
(Note: We treated the case $X_{1}=X_{2}$ in class.)
b) Prove that $\operatorname{ker} T=\operatorname{ker} T^{*} T$.

4 Let $T: X \rightarrow X$ be a bounded linear operator on a Hilbert space X. Show that

$$
\left\|T T^{*}\right\|=\left\|T^{*} T\right\|=\|T\|^{2} .
$$

5 Consider the multiplication operator T_{a} on $\left(\ell^{2},\langle\cdot, \cdot\rangle\right)$ given by

$$
T_{a} x=\left(a_{j} x_{j}\right)_{j \in \mathbb{N}}
$$

for a fixed sequence $a=\left(a_{j}\right)_{j \in \mathbb{N}} \in \ell^{\infty}$.
a) Determine the adjoint operator T_{a}^{*}.
b) Is T_{a} a normal operator? Under which condition(s) on the sequence a is T_{a} unitary; self-adjoint?

6 Let M be a closed subspace of a Hilbert space X, which by the projection theorem is given by the direct sum

$$
X=M \oplus M^{\perp}
$$

Show that the projection onto M is self-adjoint.

