Please justify your answers! The most important part is how you arrive at an answer, not the answer itself.

1 Let X, Y and Z be sets.
a) Show that $X \cap(Y \cup Z)=(X \cap Y) \cup(X \cap Z)$.
b) Show that $X \backslash(Y \cup Z)=(X \backslash Y) \cap(X \backslash Z)$.

2 Define functions on \mathbb{R} with values in \mathbb{R} :
i) A function that is not left invertible;
ii) A function that is not right invertible.

Show that the given functions have their respective properties.

3 Given the linear mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $T=A x$ with

$$
A=\left(\begin{array}{cc}
-3 & -4 \\
4 & 6 \\
1 & 1
\end{array}\right)
$$

a) Show that the matrix

$$
A_{l}^{-1}=\frac{1}{9}\left(\begin{array}{ccc}
-11 & -10 & 16 \\
7 & 8 & -11
\end{array}\right)
$$

induces a left inverse T_{l}^{-1} of T.
This left inverse is not unique. Show that

$$
\frac{1}{2}\left(\begin{array}{ccc}
0 & -1 & 6 \\
0 & 1 & -4
\end{array}\right)
$$

gives another left inverse.
b) Turn this example into one for right inverses. Concretely, find a mapping $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ that is based on the mapping T and give a right inverse for this mapping.

4 Show that the Cartesian product of two (infinite) countable sets is countable.

5 Show that the sets \mathbb{Z} of integers and \mathbb{Q} of rational numbers are countable.

