

TMA4145 Linear Methods Fall 2017

Exercise set 5

Please justify your answers! The most important part is how you arrive at an answer, not the answer itself.

- **1** Let $(x_n)_{n \in \mathbb{N}}$ be a convergent sequence in a normed space $(X, \|.\|)$.
 - **a)** Show that $(x_n)_{n \in \mathbb{N}}$ is a bounded subset of X.
 - **b)** Show that $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence.
- 2 We denote by c_f the vector space of all sequences with only finitely many non-zero terms. Show that c_f is not a Banach space.
- **3** For each $n \in \mathbb{N}$, let

$$x^{(n)} := (1, \frac{1}{2}, \dots, \frac{1}{n}, 0, 0, \dots),$$

which we regard as an element of the space $\ell^p(\mathbb{R})$ (for any given $p \in [1, \infty]$).

- a) Find the limit of the sequence $(x^{(n)})_{n\geq 1}$ in $(\ell^{\infty}(\mathbb{R}), \|\cdot\|_{\infty})$. Prove your claim.
- **b)** Does $(x^{(n)})_{n\geq 1}$ have a limit in $(\ell^1(\mathbb{R}), \|\cdot\|_1)$? If the limit exists, find it and prove that it is the limit.
- c) Does $(x^{(n)})_{n\geq 1}$ have a limit in $(\ell^2(\mathbb{R}), \|\cdot\|_2)$? If the limit exists, find it and prove that it is the limit.
- 4 Let C[a, b] be the vector space of all continuous functions $f: [a, b] \to \mathbb{R}$. We will consider two norms on this space, $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$.
 - **a)** Prove that for all $f \in C[a, b]$ we have

$$\|f\|_{1} \le (b-a) \, \|f\|_{\infty} \, .$$

- **b)** Let (f_n) be a sequence in C[a, b]. Prove that if $f_n \to f$ with respect to $\|\cdot\|_{\infty}$ then $f_n \to f$ with respect to $\|\cdot\|_1$.
- c) Show that the reverse of the statement in b) is not always true.