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Disclaimer: I present one way to solve these problems although there are other
possible solutions.

Problem 1

a) (1) Find the singular value decomposition for the matrix

A =
(

1 1 −1
1 1 −1

)
.

Solution: Let us compute the singular values of A. Recall these are

the non-zero eigenvalues of the selfadjoint matrix A∗A =
(

3 3
3 3

)

or AA∗ =

 2 2 −2
2 2 −2
−2 −2 2

. In the first case we get a 2× 2-matrix and

in the second case we get a 3 × 3-matrix, so we use AA∗ for the com-

putation of the singular values. The eigenvalues of
(

3 3
3 3

)
are 6 and

0. For those, who have decided to use A∗A: the eigenvalues are 6, 0, 0.
Hence σ1 =

√
6 is the only singular value of A, which fits very well with

the fact that A has rank one.

Consequently Σ is given by

Σ =
(√

6 0 0
0 0 0

)
.

Let us look at the eigenvectors of A∗A. A little bit of computation
yields

v1 = 1√
3

 1
1
−1

 , v2 = 1√
2

 1
−1
0

 , v3 = 1√
6

1
1
2

 .
The set {v1, v2, v3} is an orthonormal basis of R3 and yield the columns
of V :

V =


1√
3

1√
2

1√
6

1√
3

1√
2

1√
6

− 1√
3 0 2√

6

 .
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Now we get the columns of U , which is an orthonormal basis for R2, by

u1 = 1
σ1
Av1 = 1√

2

(
1
1

)

and choosing another vector orthogonal to v1, such as u2 = 1√
2

(
1
−1

)
and thus

U =
( 1√

2
1√
2

1√
2 −

1√
2

)
.

Hence A = UσV ∗ =
( 1√

2
1√
2

1√
2 −

1√
2

)(√
6 0 0

0 0 0

)
1√
3

1√
3

1√
3

1√
2

1√
2 0

− 1√
6

1√
6

2√
6


(2) The linear system:

x1 + x2 − x3 = 1
x1 + x2 − x3 = 1

has infinitely many solutions. Determine the one with the minimal Eu-
clidean norm ‖.‖2.

The linear system

x1 + x2 − x3 = 1
x1 + x2 − x3 = 2

has no solution. Determine the least squares solution of the linear sy-
stem.

Hint: The pseudoinverse of the matrix related to the linear system
might be useful.

Solution: We first compute the pseudoinverse of A: The pseudoin-
verse in terms of the SVD is given by A+ = V Σ+U∗, which gives

UσV ∗ =


1√
3

1√
3

1√
3

1√
2

1√
2 0

− 1√
6

1√
6

2√
6




1√
6 0

0 0
0 0

( 1√
2

1√
2

1√
2 −

1√
2

)
= 1

6

 1 1
1 1
−1 −1

 .
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The system

x1 + x2 − x3 = 1
x1 + x2 − x3 = 1

has infinitely many solutions and we have learned that A+
(

1
1

)
=

1
3

 1
1
−1

 is the solution of minimal ‖.‖2-norm. The system

x1 + x2 − x3 = 1
x1 + x2 − x3 = 2

has no solution, but A+
(

1
2

)
= 1

2

 1
1
−1

 is the best approximation to a

solution having minimal norm.

b) Given a n× n-matrix A of rank n. Prove that A has a polar decomposition
using the singular value decomposition of A. Hence, show that there exist
an n×n unitary matrix W and a positive definite n×n matrix P such that
A = WP .

Solution: The SVD decomposition gives us unitary n × n matrices U and
V such that

A = UΣV ∗ = UV ∗V ΣV ∗.

Note that UV ∗ is unitary as a product of two unitary matrices and V ΣV ∗ is
positive definite, since Σ is positive definite. Hence V ΣV ∗ is the replacement
of the length of a complex number and UV ∗ the one for the phase factor.

Problem 2

a) Let T be the linear transformation T (x) = Ax on R3 for the matrix

A =

 0 1/2 1/3
1/4 0 1/5
1/5 α 0

 ,
where α is a real number.
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(1) Determine the operator norm of T : (R3, ‖.‖1) → (R3, ‖.‖1). Note that
the result depends on the parameter α.

Solution: The operator norm of T (x) = Ax as a mapping on (R3, ‖.‖1)
is given by the maximal column sum of a matrix A. Let A = (a1|a2|a3)
be partioned into its columns. Then we have for the operator norm

‖T‖ = max
1≤j≤3

|aj|1 = max
1≤j≤3

3∑
i=1
|aij|.

By definition of the operator norm we have

‖T‖ = max
‖x‖1=1

‖Ax‖1 = max
‖x‖1=1

‖x1a1 + · · ·+ x3a3‖1.

By the triangle inequality and the homogenity for the ‖.‖1-norm we get

max
‖x‖1=1

‖Ax‖1 ≤ max
‖x‖1=1

(|x1|‖a1‖1 + · · ·+ |x3|‖a3‖1).

Let j be chosen such that max1≤i≤3 ‖ai‖1 = ‖aj‖1. Then we get

max
‖x‖1=1

‖Ax‖1 ≤ max
‖x‖1=1

(|x1|+ · · ·+ |x3|)‖aj‖1 = ‖aj‖1.

We denote by {e1, e2, e3} the standard basis for R3. Then ‖aj‖1 =
‖Aej‖1 ≤ max‖x‖1=1 ‖Ax‖1. Let us combine our two inequalities:

‖aj‖1 ≤ max
‖x‖1=1

‖Ax‖1 ≤ ‖aj‖1.

Consequently, we have

‖T‖ = max
1≤j≤3

3∑
i=1
|aij|.

Now, we apply this statement to the given linear transformation:

‖

 0 1/2 1/3
1/4 0 1/5
1/5 α 0

 ‖ = max{9/20, 1/2 + |α|, 8/15}

. Hence for |α| ≤ 1/30 we have ‖T‖ = 8/15 and for |α| > 1/30 we have
‖T‖ = 1/2 + |α|.

(2) Determine those α’s such that T is a contraction on (R3, ‖.‖1).

Solution: By our computation in (1) we have that this is the case
for |α| < 1/2.
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b) Rewrite the linear system

3x1 − 3
2x2 − x3 = 1

−x1 + 4x2 − 4
5x3 = 2

−2
5x1 − 1

2x2 + 2x3 = 4

as a fixed point problem and show that one can use Banach’s fixed point the-
orem to prove the existence of a solution. Compute the first three iterations

x(1), x(2), x(3) for the starting point x0 =

1
0
0

.
Solution: The system of equations is equivalent to

x1 = 0 · x1 + 1
2x2 + 1

3x3 + 1
3

x2 = 1
4x1 + 0 · x2 + 1

5x3 + 1
2

x3 = 1
5x1 + 1

4x2 + 0 · x3 + 2

which we may write in matrix form asx1
x2
x3

 =

 0 1/2 1/3
1/4 0 1/5
1/5 α 0


x1
x2
x3

+

1/3
1/2
2


If we define

A =

 0 1/2 1/3
1/4 0 1/5
1/5 1/4 0

 and b =

1/3
1/2
2


our problem becomes solving x = Ax + b – a fixed point problem. In order to
apply Banach’s fixed point theorem, we need to have a contraction. In this case
we need that

‖Ax+ b− (Ay + b)‖ = ‖A(x− y)‖ ≤ K‖x− y‖

for any x, y ∈ R3 in some norm ‖.‖ on R3. Let us use the ‖.‖1 on R3. From the first
part of the problem, we know that the operator norm of the operator T : R3 → R3

given by Tx = Ax is the maximal column sum of the matrix A. In this case the
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maximal row sum appears in row 2 and equals 1/2+1/4 = 3/4. Hence ‖T‖ = 3/4.
But this means that

‖A(x− y)‖1 = ‖T (x− y)‖1 ≤ ‖T‖‖x− y‖1 = 3
4‖x− y‖1.

Hence we have a contraction with K = 3
4 . By Banach’s fixed point theorem we

may choose any x0 ∈ R3, and the iteration procedure xn = Axn−1 + b will always
converge to a solution x of x = Ax+ b. Let us for instance pick

x0 =

1
0
0

 .
Then the first few iterations give

x1 =

 1/3
3/4
11/5

 , x2 =

1.3694
1.0233
2.6166

 , x3 =

1.717183
1.36568
2.59705

 .

Problem 3

a) (1) Suppose (X, ‖.‖X) and (Y, ‖.‖Y ) are normed spaces. Define the notions
of a continuous and of a Lipschitz continuous function f : X → Y .

Solution: (i) We discussed several definitions and we just state the
one in terms of ε− δ: We say that f : X → Y is continuous if or each
x0 ∈ X and each ε > 0 there is a δ > 0 such that

‖x− x0‖X < δ ⇒ ‖f(x)− f(x0)‖Y < ε.

(ii) A function f : X → Y is called Lipschitz continuous if there
exists a finite constant L such that

‖f(x)− f(x′)‖Y ≤ L ‖x− x′‖X for all x, x′ ∈ X.

(2) Let X be a vector space and T a linear map between the vector spaces
T : X → X. Define the notion of a T-invariant subspace of X.

Solution: A subspace M of X is called T-invariant if for any x ∈M
we have also that Tx ∈M .
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(3) Let (X, ‖.‖) be a normed space. Define the notion of a dense subset of
X and define when X is separable.

Solution: (i) A subset A of (X, ‖.‖) is said to be dense in X if for each
x ∈ X and each ε > 0 there exists a vector y ∈ A such that ‖x−y‖ < ε.

(ii) A normed space X is called separable, if it contains a coutable
dense subset.

(4) Let X be a vector space and T : X → X a linear transformation. Define
the notion of a generalized eigenspace for an eigenvalue λ of T and the
minimal polynomial of a n× n-matrix A.

Solution: (i) A generalized eigenspace of λ is ker(T − λI)k for
some k > 1.

The minimal polynomial of A is the among all annihiliating poly-
nomials of A the one with the smallest degree.

(5) Define the notions of a Cauchy sequence and of completeness for normed
space.

Solution: (i) Let (xn)n∈N be a sequence in (X, ‖.‖). Then we call
(xn)n∈N a Cauchy sequence if for any ε > 0 there exists an N ∈ N
such that for all m,n ≥ N we have

‖xn − xm‖ < ε.

(ii) A normed space (X, ‖.‖) is complete if every Cauchy sequence
in X converges to an element in X.

b) Determine if the following statements are true or false and if the statement
is not true, give a counterexample.

(1) Any linear map on a normed space is bounded.

Solution: No. For example, the multiplication operator Tx = (x1, 2x2, 3x3, ...)
is unbounded on `p for p ∈ [1,∞]. Another well-known example is the
differentiation operator Tf = f ′ on (C[0, 1], ‖.‖∞).

(2) Any linear transformation on a finite-dimensional complex vector space
has a non-trivial invariant subspace.
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Solution: Yes.
(3) The set of sequences with finitely many non-zero elements is dense in

the space of bounded sequences `∞.

Solution: No. For example, take the constant sequence (1, 1, 1, ...)
cannot approximated arbitrarily closed by elements from cf .

(4) The orthogonal complement of any subset of an innerproduct space is
closed.

Solution: Yes.
(5) The range of any bounded linear map on an infinite-dimensional vector

space is closed.

Solution: No. Example: The operator T : `2 → `2 defined by
T (x1, x2, ...) = (x1,

x2
2 ,

x3
3 , ...) does not have closed range.

Problem 4 For a = (an)n∈N ∈ `∞ we define the linear operator Ta : `2 → `2

by Ta(x1, x2, ...) = (a1x1, 0, a3x3, 0, ...) for (xn) ∈ `2.

(1) Show that Ta is bounded on `2.

Solution: ‖Tax‖2
2 = |a1x1|2 + |a3x3|2 + · · · ≤ ‖(a2n−1)n∈N‖2

∞‖x‖2
2 and hence

‖Tax‖2 ≤ ‖(a2n−1)n∈N‖∞‖x‖2.

Here (a2n−1)n∈N is the odd part of the sequence a, i.e. the sequence (a1, a3, a5, ...).

(2) Determine the operator norm of Ta.

Solution: ‖Ta‖ ≤ ‖(a2n−1)n∈N‖∞, because

‖Ta‖ = sup
‖x‖2=1

‖Tax‖2 ≤ sup
‖x‖2=1

(‖(a2n−1)n∈N‖∞‖x‖2) = ‖(a2n−1)n∈N‖∞.

Hence ‖(a2n−1)n∈N‖∞ is an upper bound for {‖Tax‖2 : ‖x‖2 = 1}. Now we
show that it is the least upper bound for {‖Tax‖2 : ‖x‖2 = 1}. Namely, for
every ε > 0 there exists some xε ∈ `2 with ‖xε‖2 = 1 such that

‖Tax
ε‖2 > ‖xε‖2 − ε.
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For every ε > 0 there exists a index kε such that |a2kε−1| > ‖(a2n−1)‖∞ − ε
(which follows from the definition of the supremum of the sequence (a2n−1))
and take xε = (0, ..., 0, 1, 0, ...) where the 1 is in the (2kε − 1)th component.
Then Taxε = |a2kε−1| > |(a2n−1)‖∞ − ε. Hence we have ‖Ta‖ = ‖(a2n−1)‖∞.

(3) Show that the range of Ta is closed.

Solution: The range of Ta is {x ∈ `2 : (x1, 0, x3, 0, ...)}. There are (at
least) two strategies: (i) show directly that {x ∈ `2 : (x1, 0, x3, 0, ...)} is clo-
sed; or (ii) note that {x ∈ `2 : (x1, 0, x3, 0, ...)} is the kernel of a the operator
P given by Px = (0, x2, 0, x4, 0, ...): P is linear and bounded: ‖Px‖2 ≤ ‖x‖2
and we have ker(P ) = range(Ta).

(4) Determine the orthogonal complement of ker(Ta).

Solution: The ker(Ta) is the subspace {x ∈ `2 : (0, x2, 0, x4, 0, ...)}. By
definition

ker(Ta)⊥ = {y ∈ `2 : 〈y, x〉 = 0 for all x ∈ ker(Ta)},

i.e. we have

ker(Ta)⊥ = {y ∈ `2 :
∞∑

i=1
a2i−1x2i−1yi = 0 for all x ∈ `2}.

The expression ∑∞
i=1 a2i−1x2i−1yi = 0 for all x ∈ `2 if and only if y =

(0, y2, 0, y4, ...). Consequently, ker(Ta)⊥ = {x ∈ `2 : (0, x2, 0, x4, 0, ...)}.

(5) Determine for which sequences a ∈ `∞ the operator Ta satisfies T 2
a = Ta.

Solution: T 2
ax = (a2

1x1, 0, a2
3x3, 0, ...) and thus T 2

a = Ta is equivalent to
a2

i = ai for all i = 1, 2, 3, ..., which holds only for a2i−1 ∈ −1, 1 for all
i = 1, 2, 3, ....

Problem 5 Let {en}n∈N be an orthonormal system in a Hilbert space X and
(αn)n∈N a sequence of complex numbers.

Show that the series ∑n∈N αnen converges in X if and only if (αn)n∈N ∈ `2.
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Solution: For any finite orthonormal system {e1, ..., en} we have

‖
n∑

j=1
αjej‖2 = 〈

n∑
j=1

αjej,
n∑

j=1
αjej〉

=
n∑

i=1

n∑
j=1

αiαj〈ei, ej〉

=
n∑

j=1
|αj|2.

for any scalars α1, ..., αn. Hence the partial sums sn = ∑n
k=1 αkek satisfy (sn)n for

n > m

‖sn − sm‖2 =
n∑

k=m+1
|αk|2.

Hence (sn) is a Cauchy sequence in X if and only if (‖αn‖2)n is a Cauchy sequence
in R. SinceX and R are both complete, these two sequences converge or divergence
simultaneously. In the case of convergence, we take the limit n → ∞ and obtain
the desired claim.


