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CHAPTER 1

Sets and functions

Basic definitions and theorems about sets and functions are the content of this
chapter and are presented in the setting of Naive Set Theory. These notions set the
stage for turning our intuition about collections of objects and relations between
these objects.

1.1. Sets

Definition 1.1.1. A set is a collection of distinct objects, its elements. If an
object x is an element of a set X, we denote it by x ∈ X. If x is not an element of
A, then we write x /∈ X.

A set is uniquely determined by its elements. Suppose X and Y are sets. Then
they are identical, X = Y , if they have the same elements. More formalized, X = Y
if and only if for all x ∈ X we have x ∈ Y , and for all y ∈ Y we have y ∈ X.

Definition 1.1.2. Suppose X and Y are sets. Then Y is a subset of X, denoted
by Y ⊂ X, if for all y ∈ Y we have y ∈ X.

If Y ⊆ X, one says that Y is contained in X. If Y ⊆ X and X 6= Y , then Y
is a proper subset of X and we use the notation Y ⊂ X. The most direct way to
prove that two sets X and Y are equal is to show that

x ∈ X ⇐⇒ x ∈ Y
for any element x. (Another way is to prove a double inclusion: if x ∈ X then
x ∈ Y , establishing that X ⊂ Y and if x ∈ Y , then x ∈ X, establishing that
Y ⊂ X.)

The empty set is a set with no elements, denoted by ∅.

Proposition 1.1.3. There is only one empty set.

Proof. Suppose E1 and E2 are two empty sets. Then for all elements x we
have that x /∈ E1 and x /∈ E2. Hence E1 = E2. �

Some familiar sets are given by the various number systems:

(1) N = {1, 2, 3, ...} the set of natural numbers, N0 = {0, 1, 2, 3, ...};
(2) Z = {...,−2,−1, 0, 1, 2, ...} the set of integerr;
(3) Q = {p/q : p, q ∈ Z} the set of rational numbers;
(4) R denotes the set of real numbers;
(5) C denotes the set of complex numbers.

For real numbers a, b with a < b < ∞ we denote by [a, b] the closed bounded
interval, and by (a, b) the open bounded interval. The length of these bounded
intervals is b− a.
Here are a few constructions related to sets.
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2 Chapter 1

Definition 1.1.4. Let X and Y be sets.

• The union of X and Y , denoted by X ∪ Y , is defined by

X ∪ Y = {z| z ∈ X or z ∈ Y }.

• The intersection of X and Y , denoted by X ∩ Y , is defined by

X ∩ Y = {z| z ∈ X and z ∈ Y }.

• . The difference set of X from Y , denoted by X\Y , is defined by

X\Y = {z ∈ X : z ∈ X and z 6= Y }.

If all sets are contained in one set X, then the difference set X\Y is called
the complement of Y and denoted by Y c.

• The Cartesian product of X and Y , denoted by X × Y , is the set

X × Y = {(x, y)|x ∈ X, y ∈ Y },

i.e the set of all ordered pairs (x, y), with x ∈ X and y ∈ Y . Recall an
ordered pair has the property that (x1, y1) = (x2, y2) if and only if x1 = x2
and y1 = y2.

• P(X) denotes the set of all subsets of X.

Here are some basic properties of sets.

Lemma 1.1. Let X,Y and Z be sets.

(1) X ∩ (Y ∪Z) = (X ∩ Y )∪ (X ∩Z) and X ∪ (Y ∩Z) = (X ∪ Y )∩ (X ∪Z)
(distribution law)

(2) (X ∪ Y )c = Xc ∩ Y c and (X ∩ Y )c = Xc ∪ Y c (de Morgan’s laws)
(3) X\(Y ∪ Z) = (X\Y ) ∩ (X\Z) and X\(Y ∩ Z) = (X\Y ) ∪ (X\Z)
(4) (Xc)c = X.

Proof. (1) Let us prove one of de Morgan’s relations. Let us use the
most direct approach. Keep in mind that x ∈ Ec ⇐⇒ x /∈ E. We then
have:

x ∈ (X ∪ Y )c ⇐⇒ x /∈ X ∪ Y ⇐⇒ x /∈ X and x /∈ Y
⇐⇒ x ∈ Xc and x ∈ Y c ⇐⇒ x ∈ Xc ∩ Y c.

This proves the identity.
(2)

x ∈ (Xc)c ⇐⇒ x /∈ Xc ⇐⇒ x ∈ X.
�

Note that if you have a statement involving ∪ and ∩. Then you get another
true statement if you interchange ∪ with ∩ and ∩ with ∪, as one can see in the
lemma. This is part of the field Boolean algebra.

1.2. Functions

Let X and Y be sets. A function with domain X and codomain Y , denoted
by f : X → Y , is a relation between the elements of X and Y satisfying the
properties: for all x ∈ X, there is a unique y ∈ Y such that (x, y) ∈ f , we denote
it by: f(x) = y.
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By definition, for each x ∈ X there is exactly one y ∈ Y such that f(x) = y.
We say that y the image of x under f . The graph G(f) of a function f is the subset
of X × Y defined by

G(f) = {(x, f(x))|x ∈ X}.
The range of a function f : X → Y , denoted by range(f), or f(X), is the set

of all y ∈ Y that are the image of some x ∈ X:

range(f) = {y ∈ Y | there existsx ∈ X such that f(x) = y}.

The pre-image of y ∈ Y is the subset of all x ∈ X that have y as their image. This
subset is often denoted by f−1(y):

f−1(y) = {x ∈ X| f(x) = y}.

Note that f−1(y) = ∅ if and only if y ∈ Y \ran(f).

Here are some simple examples of functions.

|x| =


x if x > 0,

0 if x = 0,

−x if x < 0.

Note that |x| = max{x,−x}. We define the positive, x+ and negative part, x− of
x ∈ R:

x+ = max{x, 0}, and x− = max−x, 0,
so we have x = x+ − x− and |x| = x+ + x−.

The following notions are central for the theory of functions.

Definition 1.2.1. Let f : X → Y be a function.

(1) We call f injective or one-to-one if f(x1) = f(x2) implies x1 = x2, i.e. no
two elements of the domain have the same image. Equivalently, if x1 6= x2,
then f(x1) 6= f(x2).

(2) We call f surjective or onto if ran(f) = Y , i.e. each y ∈ Y is the image of
at least one x ∈ X.

(3) We call f bijective if f is both injective and surjective.

Note that a bijective function matches up the elements of X with those of Y
so that in some sense these two sets have the same number of elements.

Let f : X → Y and g : Y → Z be two functions so that the range of f coincides
with the domain of g. Then we define the composition, denoted by g ◦ f , as the
function g ◦ f : X → Z, defined by x 7→ g(f(x)).

For every set X, we define the identity map, denoted by idX or id where id(x) = x
for all x ∈ X.

Lemma 1.2. Let f : X → Y and g : Y → Z be two bijections. Then g ◦ f is
also a bijection and (g ◦ f)−1 = f−1 ◦ g−1.

Lemma 1.3. Let f : X → Y be a function and let C,D ⊂ Y . Then

f−1(C ∪D) = f−1(C) ∪ f−1(D).
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Proof.

x ∈ f−1(C ∪D) ⇐⇒ f(x) ∈ C ∪D ⇐⇒ f(x) ∈ C or f(x) ∈ D
⇐⇒ x ∈ f−1(C) or x ∈ f−1(D) ⇐⇒ x ∈ f−1(C) ∪ f−1(D).

�

If one has a function f that maps elements in X to Y , then it is often desirable
to reverse this assignment. Let us introduce some notions to address this basic
problem.

Definition 1.2.2. Let f be a function from X to Y .

• The mapping f is said to be left invertible if there exists a function g :
Y → X such that g ◦ f = idX . We call g a left inverse of f and denote it
by f−1l .

• The mapping f is said to be right invertible if there exists a function
h : Y → X such that f ◦ h = idY . We call h a right inverse of f and
denote it by f−1r .

• The mapping f is said to be invertible if there exists a g : Y → X such
that g ◦ f = f ◦ g = id, the so-called inverse of f and denoted by f−1.

One may think of a left and right inverse in layman terms: (i) If you map an
element of the domain via a function to an element in the target space, then the
left inverse tells you how to go back to where you started from;(ii) If one wants to
get to a point in the target, then the right inverse tells you a possible place to start
in the domain. The inverse of a function has some important properties.

Lemma 1.4. Given an invertible function f : X → Y .

(1) The inverse function f−1 : Y → X is unique.
(2) The inverse function is also invertible and we have (f−1)−1 = f .

Proof. (1) Suppose there are two inverse functions gi : Y → X, i = 1, 2.
By assumption we have that f ◦ g1 = id and g2 ◦ f = id. Hence we have

g2(y) = g2(fg1(y)) = g2f(g1(y)) = g1(y) for all y ∈ Y,

i.e. g1 = g2.
(2) Exercise.

�

Let us give a description of left, right invertibility and invertibility in more
concrete terms.

Proposition 1.2.3. Given a function f : X → Y .

(1) f is left invertible if and only if it is injective.
(2) f is right invertible if and only if it is surjective.
(3) f is invertible if and only if it is injective and surjective, i.e. if f is

bijective.

Proof. (1) Let us assume that f is injective. Then f : x → ran(f) is
invertible with f−1 : ran(f) → X. Let g : Y → X be any extension of
this inverse. Then g ◦ f = idX .
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Suppose f is left invertible. Assume there are x1, x2 ∈ X such that
f(x1) = f(x2) = y. Then

x1 = f−1l (f(x1)) = f−1l (f(x2)) = x2,

i.e. f is injective.
(2) Let us assume that f is surjective. Pick an arbitrary element z ∈ Y , wich

is by assumption an element of ran(f). Hence z has at least one pre-image
in X and thus f−1(z) 6= ∅.Take y1 6= y2. Then the sets f−1({y1}) and
f−1({y2}) in X are disjoint. Let us pick from each set f−1({y}) an ele-
ment x and define x := h(y). Then h : Y → X and f ◦ h = idY .
Suppose that f is right invertible. Then we have for y ∈ Y that f(f−1r )(y) =
f(x) where we set x to be x = f−1r (y). In other words, y is in the range
of f .

(3) Follows from the other assertions.
�

A consequence of the characterizations of left and right invertibility is the
observation:

Remark 1.2.4. If f : X → Y is left invertible such that ran(f) 6= Y , then there
are many left inverses. However the restriction of any left inverse of f to ran(f) is
unique.
One the other hand if f : X → Y is right invertible such that f is surjective but
not injective, then f will have many right inverses.

Our study of linear mappings will provide ample examples of the aforemen-
tioned notions. Here we just give one example.

Example 1.2.5. Given the linear mapping T : R3 → R2 given by T = Ax with

A =

−3 −4
4 6
1 1

 .

Then the matrix

A−1l =
1

9

(
−11 −10 16

7 8 −11

)
induces a left inverse T−1l of T .
This left inverse is not unique, for example

1

2

(
0 −1 6
0 1 −4

)
also gives a left inverse. One can turn this example into one for right inverses as
well, see problem set 1.

1.3. Cardinality of sets

Bijective functions provide us with a way to compare the size of two sets. We
start with the case of finite sets.

Definition 1.3.1. Two sets X and Y have equal cardinality, if there is a
bijective map f : X → Y . If there is an injective map from X to Y , then we say
that the cardinality of X is less than or equal to the cardinality of Y .
A set X has n elements if there is a bijection between X and the set {0, 1, ..., n−1}.
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We denote the set {0, 1, ..., n− 1} by n. A set X is countable if there is a bijection
with N. In other words, X is countable if we can arrange its elements in an infinite
sequence {x1, x2, x3, ...} such that eqch element occurs exactly once in the sequence.

Remark 1.3.2. There is some more terminology that we will not use in the
course. A set X is called at most countable if there is an injection from X to N.

Examples 1.3.3. We give some examples based on the set of natural numbers.

(1) The set of squares X = {1, 4, 9, ..., n2, ...} is countable, since f : N → X
defined by f(n) = n2 is bijective.

(2) The set of odd numbers X = {1, 3, 5, ..., 2n − 1, ...} is countable, since
f : N→ X defined by f(n) = 2n− 1 is a bijection.

Let us state a characterization of countable sets.

Lemma 1.5. A set X is countable. ⇔ There exists a surjective map f : N→ X.

Proof. (⇒) Suppose X is countable. Then there is a surjection f : N → X
which is in addition injective.

(⇐) Given a surjective map f : N→ X. We have to turn this map into an bijection
g. The idea is to omit the repeated values of f . We proceed in a recursive manner.
Define g(1) := f(1). Suppose we have chosen n distinct values g(1), g(2), ..., g(n).
We collect the set of natural numbers where the values of f are not already included
among the list {g(1), g(2), ..., g(n)}:

Xn := {k ∈ N : f(k) 6= g(j) for every j = 1, 2, ..., n}.
The set Xn can either be empty or not. Suppose Xn = ∅. Then g : {1, 2, ..., n} → X
is a bijection and thus X is finite. Otherwise, if Xn 6= ∅, then we denote by kn the
least integer in Xn and set gn+1 := f(kn). Note that by construction g(n+1) differs
from g(1), g(2), ..., g(n). We continue in this manner. If the process terminates,
then X is finite, or we go through all the values of f and obtain a surjection
g : N→ X. �

The assignment of the number of elements of {0, 1, ..., n − 1} with the set n
yields that for any set X, there is at most one natural number n such that X is
bijective with the set n.

Proposition 1.3.4. If there is a bijection between the sets n and m, then they
have the same number of elements.

Proof. We proceed by induction. For n = 0 the set n = {0, 1, ..., n − 1} is
the empty set, and thus the only set bijective with it is the empty set. Suppose
that n > 0 and that the result is true for n − 1. Hence there is a bijection f :
{0, 1, ..., n − 1} → {0, 1, ...,m − 1}. We assume that f(n − 1) = m − 1. Then the
restriction of f to the set {0, 1, ..., n − 2} gives a bijection to {0, 1, ...,m − 2}. By
the induction hypothesis we have n− 1 = m− 1. Let us now look at the case when
f(n− 1) 6= m− 1. We have that f(n− 1) = a for some a and f(b) = m− 1 and we

define a function f̃ by f̃(x) = f(x) if x 6= b, n− 1; f̃(k) = a and f̃(n− 1) = m− 1.

Then f̃ is a bijection and we conclude as before that n = m. �

We move on to sets that are bijective to the set of natural numbers N = {1, ...}.

Proposition 1.3.5. A set is at most countable it is finite or countable.
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Proof. Suppose f : X → N is an injective function. We construct a function
g : X → N as follows: g(x) = n if f(x) is the nth element in the image of f. �

Proposition 1.3.6. N× N is countable.

Proof. The argument starts out with decomposing N × N into finite sets
F0, F1, ..., where

Fk = {(i, j) ∈ N× N| i+ j = k}
and the cardinality of Fk is k+ 1. Now we arrange these sets: first writing the one
element of F0, then the two elements of F1 and so forth. Hence, we have established
the assertion. In other words, we have arranged N × N in a table:

(1, 1) (1, 2) (1, 3) (1, 4) · · ·
(2, 1) (2, 2) (2, 3) (2, 4) · · ·
(3, 1) (3, 2) (3, 3) (3, 4) · · ·
(4, 1) (4, 2) (4, 3) (4, 4) · · ·

...
...

...
...

. . .

and list the elements along sucessive (anti-)diagonals from bottom-left to top-right
as

(1, 1), (2, 1)(1, 2), (3, 1), (2, 2), (1, 3), ....

We define f : N → N × N by f(n) := nth pair in this order. Note that f is a
bijection. �

Here are some facts about countable sets.

Proposition 1.3.7. We have the following assertions:

(1) The Cartesian product of two countable sets is countable.
(2) The union of countably many countable sets is countable.

Proof. (1) We show that the Cartesian product of two countable sets is
countable which reduces to the statement that the set N ×N is countable
which we have shown in 1.3.6.

(2) Let X0, X1, ... be a countable family of countable sets. We denote the
elements of Xi by {x0i, x1i, ...} for i = 0, 1, ... and define a map by f(i, j) =
xij . Note that f : N × N → ∪∞i=0Xi and thus the union ∪∞i=0Xi. is
countable. The map f is not injective in general, because the Xi’s need
not to be disjoint. The proposition preceding this statement yields the
desired claim.

�

Proposition 1.3.8. The sets Z of integers and Q of rational numbers are
countable.

Proof. One of the problems of problem set 1. �

Bernstein and Schröder observed an elementary characterization of two sets
having the same cardinality, we state it without proof.

Theorem 1.6. Let X and Y be two sets. Suppose there are injective maps
f : X → Y and g : Y → X. Then there exists a bijection between X and Y .

We give some examples of a non-countable sets.
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Theorem 1.7 (Cantor). The set R of real numbers is not countable.

If a set is not countable, then one often calls it uncountable.

Proof. We argue by contradiction and assume that R is countable. Then a
subset of R is also countable. Thus the open interval (0, 1) is a countable set, i.e.

(0, 1) = {x0, x1, ...}.
Any ai ∈ (0, 1) has an infinite decimal expansion (possibly terminating, in which
case we let it continue forever with zeros):

ai = 0.ai0ai1..., aij ∈ {0, 1, ..., 9}.
We set bi to be

bi =

{
3 if aii 6= 3

1 if aii = 7.

By construction we have bi 6= aii and thus the number

a = 0.b1b2...

differs from ai. Note that a ∈ (0, 1) which is not included in the given enumeration
of (0, 1). Hence we have deduced a contradiction to the countability of (0, 1). The
number bi ∈ (0, 1) and differs from ai, since the ith place of ai and bi are by
construction not the same digit. �

Proposition 1.3.9. Let X be the set of all binary sequences: X = {(a1, a2, a3, ...) :
ai ∈ {0, 1}}. Then X is not countable.

Proof. We apply the method from the preceding theorem, aka diagonal ar-
gument.
Suppose X = {(x1, x2, x3, ...) : xi ∈ {0, 1}} is countable. Then we have

x1 = 010100....

x2 = 101111....

...

Then we define a sequence x /∈ X by moving down the diagonal and switching the
values from 0 to 1 or from 1 to 0. Hence X is uncountable. �

Proposition 1.3.10. The power set P(N) of the natural numbers N is uncount-
able.

Proof. Let C = ∪n∈N be a countable collection of subsets of N. Define X ⊂ N
by

X = {n ∈ N : n ∈ Xn}
. Claim: X 6= Xn for every n ∈ N. Since either n ∈ X and n /∈ Xn or n /∈ X and
n ∈ Xn.
Thus X /∈ C and so no countable collection of subsets of N includes all of the
subsets of N. �

We introduce two crucial notions: the infimum and supremum of a set. First
we provide some preliminaries.

Definition 1.3.11. Let A be a non-empty subset of R
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• If there exists M ∈ R such that a ≤M for all a ∈ A, then M is an upper
bound of A. We call A bounded above.

• If there exists m ∈ R such that m ≤ a for all a ∈ A, then m is a lower
bound of A.

• If there exist lower and upper bounds, then we say that A is bounded. We
call A bounded below.

Definition 1.3.12 (Infimum and Supremum). Let A be a subset of R.

• If m is a lower bound of A such that m ≥ m′ for every lower bound m′,
then m is called the infimum of A, denoted by m = inf A. Furthermore,
if inf A ∈ A, then we call it the minimum of A, minA.

• If M is an upper bound of A such that M ′ ≥M for every upper bound M ′,
then M is called the supremum of A, denoted by M = supA.Furthermore,
if supA ∈ A, then we call it the maximum of A, maxA.

Note that the infimum of a set A, as well as the supremum, are unique. The
elementary argument is left as an exercise.
If A ⊂ R is not bounded above, then we define supA =∞. Suppose that a subset
A of R is not bounded below, then we assign −∞ as its infimum.
We state a different formulation of the notions inf A and supA that is just a refor-
mulation of the definition.

Lemma 1.8. Let A be a subset of R.

• Suppose A is bounded above. Then M ∈ R is the supremum of A if and
only if the following two conditions are satisfied:
(1) For every a ∈ A we have a ≤M .
(2) Given ε > 0, there exists a ∈ A such that M − ε < a.

• Suppose A is bounded below. Then m ∈ R is the infimum of A if and only
if the following two conditions are satisfied:
(1) For every a ∈ A we have m ≤ a.
(2) Given ε > 0, there exists a ∈ A such that a < m+ ε.

Lemma 1.9. Suppose A is a bounded subset of A. Then inf A ≤ supA

For c ∈ R we define the dilate of a set A by cA := {b ∈ R : b = ca for a ∈ A}.

Lemma 1.10 (Properties). Suppose A is a subset of R.

(1) For c > 0 we have sup cA = c supA and inf cA = c inf A.
(2) For c < 0 we have sup cA = c inf A and inf cA = c supA.
(3) Suppose A is contained in a subset B. If supA and supB exist, then

supA ≤ supB. In words, making a set larger, increases its supremum.
(4) Suppose A is contained in a subset B. If inf A and inf B exist, then

inf A ≥ inf B. In words, making a set smaller increases its infimum.
(5) Suppose A ⊂ B are non-empty subsets of R such that x ≤ y for all x ∈ A

and y ∈ B. Then supA ≤ inf B.
(6) If A and B are non-empty subsets of R, then sup(A+B) = supA+ supB

and inf(A+B) = inf A+ inf B

Proof. (1) We prove that sup cA = c supA for positive c. Suppose
c > 0. Then cx ≤ M ⇔ x ≤ M/c. Hence M is an upper bound of cA
if and only if M/c is an upper bound of A. Consequently, we have the
desired result.
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(2) Without loss of generality we set c = −1. Let a ∈ A (we assume that
the set A is non-empty, otherwise there is nothing interesting here). Then
as a lower bound for A, inf A ≤ a. Moreover, as an upper bound for A,
a ≤ supA. Using transitivity, we conclude that inf A ≤ supA.

We now prove the second identity. Keep in mind that the supremum
of a set is its least upper bound, while the infimum is its greatest
lower bound.

For any a ∈ A, inf A ≤ a, so − inf A ≥ −a, showing that − inf A is
an upper bound for −A. Therefore, − inf A ≥ sup(−A), which implies

inf A ≤ − sup(−A) .

For any a ∈ A we have −a ∈ −A, so −a ≤ sup(−A), which im-
plies a ≥ − sup(−A). Therefore, − sup(−A) is a lower bound for A, so

− sup(−A) ≤ inf A .

The two boxed inequalities prove the identity inf A = − sup(−A).
(3) Since supB is an upper bound of B, it is also an upper bound of A, i.e.

supA ≤ supB.
(4) Analogously to (iii).
(5) Since x ≤ y for all x ∈ A and y ∈ B, y is an upper bound of A. Hence

supA is a lower bound of B and we have supA ≤ inf B.
(6) By definition A + B = {c : c = a + b for some a ∈ A, b ∈ B} and thus

A+B is bounded above if and only if A and B are bounded above. Hence
sup(A + B) < ∞ if and only if supA and supB are finite. Take a ∈ A
and b ∈ B, then a + b ≤ supA + supB. Thus supA + supB is an upper
bound of A+B:

sup(A+B) ≤ supA+ supB.

The reverse direction is a little bit more involved. Let ε > 0. Then there
exists a ∈ A and b ∈ B such that

a > supA− ε/2, b > supB − ε/2.

Thus we have a+ b > supA+supB−ε for every ε > 0, i.e. sup(A+B) ≥
supA+ supB.

The other statements are assigned as exercises. �

One reason for the relevance of the notions of supremum and infimum is in the
formulation of properties of functions.

Definition 1.3.13. Let f be a function with domain X and range Y ⊆ R.
Then

sup
X
f = sup{f(x) : x ∈ X}, inf

X
f = inf{f(x) : x ∈ X}.

If supX f is finite, then f is bounded from above on A, and if infX f is finite we call
f bounded from below. A function is bounded if both the supremum and infimum
are finite.

Lemma 1.11. Suppose that f, g : X → R and f ≤ g, i.e. f(x) ≤ g(x) for
all x ∈ X. If g is bounded from above, then supX f ≤ supA g. Assume that f is
bounded from below. Then infX f ≤ infX g.

Proof. Follows from the definitions. �
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The supremum and infimum of functions do not preserve strict inequalities.
Define f, g : [0, 1]→ R by f(x) = x and g(x) = x+ 1. Then we have f < g and

sup
[0,1]

f = 1, inf
[0,1]

f = 0, sup
[0,1]

g = 2, inf
[0,1]

g = 1.

Hence we have sup[0,1] f > inf [0,1] g.

Lemma 1.12. Suppose f, g are bounded functions from X to R and c a positive
constant. Then

sup
X

(f + cg) ≤ sup
X
f + c sup

X
g inf

X
(f + cg) ≥ inf

X
f + c inf

X
g.

The proof is left as an exercise. Try to convice yourself that the inequalities
are in general strict, since the functions f and g may take values close to their
suprema/infima at different points in X.

Lemma 1.13. Suppose f, g are bounded functions from X to R. Then

| sup
X
f − sup

X
g| ≤ sup

X
|f − g|, | inf

X
f − inf

X
g| ≤ sup

X
|f − g|

Lemma 1.14. Suppose f, g are bounded functions from X to R such that

|f(x)− f(y)| ≤ |g(x)− g(y)| for all x, y ∈ X.
Then

sup
X
f − inf

X
f ≤ sup

X
g − inf

X
g.

Recall that a sequence (xn) of real numbers is an ordered list of numbers xn,
indexed by the natural numbers. In other words, (xn) is a function f from N to R
with f(n) = xn. A sequence is a function from N to R or C, so the properties of
the inf and sup for functions apply to sequences as well.
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Normed spaces and innerproduct spaces

In order to measure the length of a vector and to define a distance between
vectors we introduce the notion of a norm of a vector. Norms may be a tool to
specify properties of a class of vectors in a convenient form. We review basic aspects
of vector spaces before we define normed vector spaces.

2.1. Vector spaces

Vector spaces and linear mappings between them are a useful tool for engineers,
scientists and mathematicians, aka Linear Algebra.

Vector spaces formalize the notion of linear combinations of objects that might
be vectors in the plane, polynomials, smooth functions, sequences. Many problems
in engineering, mathematics and science are naturally formulated and solved in this
setting due to their linear nature. Vector spaces are ubiquitous for several reasons,
e.g. as linear approximation of a non-linear object, or as building blocks for more
complicated notions, such as vector bundles over topological spaces. We restrict
our discussion to complex and real vector spaces.

A set V is a vector space if it is possible to build linear combinations out of the
elements in V. More formally, on V we have the operations of addition of vectors
and multiplication by scalars. The scalars will be taken from a field F, which is
either the real numbers R or C. In various situations F might also be a finite field
or a field different from R and C. If it is necessary we will refer to these vector
spaces as real or complex vector spaces.

Developing an understanding of these vector spaces is one of the main objectives
of this course. The axioms for a vector space specify the properties that addition
of vectors and scalar multiplication.

Definition 2.1.1. A vector space over a field F is a set V together with the
operations of addition V × V → V and scalar multiplication F× V → V satisfying
the following properties:

(1) Commutativity: u+ v = v + u for all u, v ∈ V and (λµv) = λ(µv) for all
λ, µ ∈ F;

(2) Associativity: (u+ v) + w = u+ (v + w) for all u, v, w ∈ V ;
(3) Additive identity: There exists an element 0 ∈ V such that 0 + v = v for

all v ∈ V ;
(4) Additive inverse: For every v ∈ V , there exists an element w ∈ V such

that v + w = 0;
(5) Multiplicative identity: 1v = v for all v ∈ V ;

13
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(6) Distributivity: λ(u+v) = λu+λv and (λ+µ)u = λu+µu for all u, v ∈ V
and λ, µ ∈ F.

The elements of a vector space are called vectors. Given v1, ..., vn be in V and
λ1, ..., λn ∈ F we call the vector

v = λ1v1 + · · ·+ λnvn

a linear combination.

Our focus will be on three classes of examples.

Examples 2.1.2. We define some useful vector spaces.

• Spaces of n-tuples: The set of tuples (x1, ..., xn) of real and com-
plex numbers are vector spaces Rn and Cn with respect to component-
wise addition and scalar multiplication: (x1, ..., xn) + (y1, ..., yn) = (x1 +
y1, ..., xn + yn) and λ(x1, ..., xn) = (λx1, ..., λxn).

• The set of functions F(X,Y ) of a set X to a set Y : λf + µg(x) := (λf +
µg)(x) for all x ∈ X.

• The space of polynomials of degree at most n, denoted by Pn, where we
define the operations of multiplication and addition coefficient-wise: For
p(x) = a0 + a1x+ · · · anxn and q(x) = b0 + b1x+ · · · bnxn we define

(p+q)(x) = (a0+b0)+(a1+b1)x+· · · (an+bn)xn and (λp)(x) = λa0+λa1x+· · ·λanxn

for λ ∈ F.

The space of all polynomials P is the vector space of polynomials of arbi-
trary degrees.
• Sequence spaces: s denotes the set of sequences, c the set of all conver-

gent sequences, c0 the set of all convergent sequences tending to 0, cf the
set of all sequences with finitely many non-zero elements.
• Function spaces: The set of continuous functions C(I) on an interval

of R, popular choices for I are [0, 1] and R. We define addition and scalar
multiplication as follows: For f, g ∈ C(I) and λ ∈ F

(f + g)(x) = f(x) + g(x) and (λf)(x) = λf(x).

We denote by C(n)(I) the space of n-times continuously differentiable
functions on I and the space C∞(I) of smooth functions on I is the space
of functions with infinitely many continuous derivatives. More generally,
the set F(X) of functions from a set X to F is a vector space for the
operations defined above. Note that F({1, 2, ..., n}) is just Fn and hence
the first class of examples.
• Spaces of matrices: Denote by Mm×n(C) the space of complex m× n

matrices where we define addition and scalar multiplication entry-wise:
For A = (aij)i,j and B = (aij)i,j where i = 1, ...,m and j = 1, ...n we
define

A+B := (aij + bij)i,j and α(aij)ij = (αaij)ij , α ∈ F.

There are relations between the vector spaces in the aforementioned list. We
start with clarifying their inclusion properties.

Definition 2.1.3. A subset W of a vector space V is called a subspace if W is
a vector subspace with respect to addition and scalar multiplication of V .
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One way to express this more concretely is stated in the next lemma:

Lemma 2.1. A subset W of a vector space V is a subspace if and only if W
is closed under linear combinations: For any α, β ∈ F and w1, w2 ∈ W we have
α1w1 + α2w2 ∈W . Equivalently, we have that the subset W of a vector space V is
a subspace if and only if

(1) 0 ∈W ;
(2) w1 + w2 ∈W for any w1, w2 ∈W ;
(3) αw for any α ∈ F and any w ∈W .

Consequently, we have a way to decide when a subset of a vector space is not
a subspace.

Lemma 2.2. A subset W of a vector space V is a not a subspace if one of the
following conditions holds:

(1) 0 /∈W ;
(2) There are some w1, w2 ∈W such that w1 + w2 ∈W ;
(3) There is a vector w ∈W such that −w is not in = W .

This is the contrapositve of the preceding lemma.

Here are some examples of vector subspaces:

Pn ⊂ P ⊂ F , C∞(I) ⊂ C(n)(I) ⊂ C(I), cf ⊂ c0 ⊂ c ⊂ s
.

We define the linear span, spanS, of a subset S of a vector space V to be the
intersection of all subspaces of V containing S.

Linear transformations T between vector spaces V and W are mappings T that
respect linear transformations:

T (α1v1 + α2v2) = α1T (v1) + α2T (v2) for any v1, v2 ∈ V, α, β ∈ F.
We denote by L(V,W ) the set of all linear transformations between V and W and
it is a subset of the vector space of all functions f : V →W . Furthermore L(V,W )
is a vector space:

L(V,W ) ⊆ F(V,W ).

Example 2.1.4. Let D denote the differentiation operator Df = f ′. Then
D : C(1)(a, b)→ C(a, b) is a linear transformation.

Linear transformations have some useful properties.

Lemma 2.3. For any T ∈ L(V,W ) we have T (0) = 0.

Proof. We have that v + 0 = v for any v ∈ V ; in particular for v = 0:

T (0) = T (0 + 0) = T (0) + T (0)

and after subtracting T (0) we get T (0) = 0. �

The kernel of T ∈ L(V,W ) is the set

ker(T ) := {v ∈ V |Tv = 0},
i.e. ker(T ) = T−1(0).

Lemma 2.4. For a linear transformation T : V → W the kernel of T is a
subspace of V .
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Proof. Suppose v1, v2 ∈ ker(T ). Then for any scalars α1, α2 we have

T (αv1 + α2v2) = α1T (v1) + α2T (v2) = α1 · 0 + α2 · 0 = 0

and thus αv1 + α2v2 ∈ ker(T ). �

The range of T is a subspace of W , too.

Lemma 2.5. The range of a linear transformation T : V →W is a subspace of
W .

Proof. Exercise, see problem set 2. �

There is some natural operations for vector spaces.

Definition 2.1.5. Let V and W be subspaces of Z.

(1) The sum of V and W is defined by V + W := {z ∈ Z| z = v + w v ∈
V,w ∈W}.

(2) The intersection of V and W is defined by V ∩W := {z ∈ Z| z ∈ V ∩W}.

From the definitions we see that V + W and V ∩W are subspace of Z. We
introduce some more notions: If the sum of the subspaces V and W equals Z, then
we say that Z is the sum of V and W , i.e. V +W = Z. If in addition, the subspaces
are disjoint subsets, U ∩ V = {0}, then we refer to the sum of V and W as the
direct sum.

Lemma 2.6. Let I be an index set. Given vector spaces Vi for any i ∈ I. Then
∩i∈IVi is a vector space.

Proof. Exercise, see problem set 2. �

Definition 2.1.6. Let S be a nonempty subset of a vector space V . Then we
define the span of S, span(S), as the intersection of all subspaces of V that contain
S.

Lemma 2.7. Let S ⊂ V be a nonempty subset. Then

span(S) = {λ1 v1 + . . .+ λn vn : v1, . . . , vn ∈ S and λ1, . . . , λn ∈ F}.

By definition, span(S) is the intersection of all subspaces W of V that contain
the set S. From the preceding lemma, it follows that span(S) is a subspace of V ,
hence it is the smallest subspace of V that contains S.

Let us denote

W := {λ1 v1 + . . .+ λn vn : v1, . . . , vn ∈ S and λ1, . . . , λn ∈ F},

so W is the set of all linear combinations with elements in S.
Being a subspace of V , span(S) must contain all such linear combinations, so

we must have that

W ⊂ span(S).

All we have left to show is that W is a subspace of V . This is not hard to see,
since linear combinations of linear combinations are linear combinations as well.

Indeed, let a, b ∈ F and let w1, w2 ∈W , so

w1 = λ1 v1 + . . .+ λn vn with v1, . . . , vn ∈ S,
w2 = µ1 u1 + . . .+ µm um with u1, . . . , um ∈ S.
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Then

aw1 + bw2 = aλ1 v1 + . . .+ aλn vn + bµ1 u1 + . . .+ bµm um,

and since v1, . . . , vn, u1, . . . , um ∈ S, it follows that aw1 + bw2 ∈W .
Therefore, W is a subspace of V that contains S, so we must have

span(S) ⊂W.

Together with the previous inclusion, this proves the equality of the two sets.

2.2. Normed spaces

The norm on a general vector space generalizes the notion of the length of a
vector in R2 and R3.

Definition 2.2.1. A normed space is a vector space X together with a function
‖.‖ : X → R, the norm on X, such that for all x, y ∈ X and λ ∈ R:

(1) Positivity: 0 ≤ ‖x‖ <∞ and ‖x‖ = 0 if and only if x = 0;
(2) Homogeneity: ‖αx‖ = |α|‖x‖ for α ∈ F;
(3) Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

We denote this normed space by (X, ‖.‖)

A norm gives a way to measure the distance between two vectors by d(x, y) :=
‖x− y‖. We refer to d as the metric associated to the norm ‖.‖.

Proposition 2.2.2. Let (X, ‖.‖) be a normed space. Then d : X × X → R
defined by d(x, y) = ‖x− y‖ satisfies for all x, y, z ∈ X

(i) d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y (positivity);
(ii) d(x, y) = d(y, x) (symmetry);
(iii) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Proof. The properties (i)-(iii) are direct consequences of the axioms for a
norm. In particular, (i) follows from property (1) of a norm, (ii) is derived from
property (ii) of a norm for λ = −1 and (iii) is deduced from property (3) of a
norm. �

The metric d on X is also compatible with the linear structure of a vector
space:

• Translation invariance: d(x+ z, y + z) = d(x, y) for all x, y, z ∈ X;
• Symmetry: d(αx, αy) = |α|d(y, x) for all x, y ∈ X and α ∈ F.

The function d(x, y) = ‖x−y‖ on the vector space R is an example of a distance
function on R, aka as a metric.

The metric d on X gives us a way to generalize intervals in R to so-called balls.

Definition 2.2.3. For r > 0 and x ∈ X we define the open ball Br(x) of radius
r and center x as the set

Br(x) = {y ∈ X : ‖x− y‖ < r},

and the closed ball Br(x) of radius r and center x as

Br(x) = {y ∈ X : ‖x− y‖ ≤ r}.
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The translation invariance and the homogeneity imply that the ball Br(x) is
the image of the unit ball B1(0) centered at the origin under the (affine) mapping
f(y) = ry + x.

The balls Br(x) have another peculiar feature. Namely, these are convex subsets
of X.

Definition 2.2.4. Let X be a vector space.

• For two points x, y ∈ X the interval [x, y] is the set of points {z| z =
λx+ (1− λ)y 0 ≤ λ ≤ 1}.

• A subset E of X is called convex if for any two points x, y ∈ E the interval
[x, y] is also in E.

The notion of convexity is central to the theory of vector spaces and enters in
an intricate manner in functional analysis, numerical analysis, optimization, etc. .

Lemma 2.8. Let (X, ‖.‖) be a normed vector space. Then the unit ball B1(0) =
{x ∈ X| ‖x‖ ≤ 1} is a convex set.

Proof. For x, y ∈ B1(0) we have that ‖λx+(1−λ)y‖ ≤ |λ|‖x‖+|1−λ|‖y‖ = 1,
because ‖x‖, ‖y‖ are both less than or equal to 1. Thus λx+ (1− λ)y ∈ B1(0). �

The real numbers with the absolute value is a normed space (R, |.|) and the
open ball Br(x) is the open interval (x− r, x+ r) and Br(x) is the closed interval
[x− r, x+ r].

Lemma 2.9 (Reverse triangle inequality). Let (X, ‖.‖) be a normed space. Then
we have

|‖x‖ − ‖y‖| ≤ ‖x− y‖ for all x, y ∈ X.

Proof. See problem set 3. �

A fundamental class of normed spaces is Rn with the `p-norms.

Definition 2.2.5. For p ∈ [1,∞) we define the p-norm, denoted by ‖.‖p, on
Rn by assigning to x = (x1, ..., xn) ∈ Rn the number ‖x‖p:

‖x‖p = (|x1|p + |x2|p + · · · |xn|p)1/p

. For p =∞ we define the `∞-norm ‖.‖∞ on R by

‖x‖∞ = max |x1|, ..., |xn|.

The notation for ‖.‖∞ is justified by the fact that it is the limit of the ‖.‖p-
norms.

Lemma 2.10. For x ∈ Rn we have that

‖x‖∞ = lim
p→∞

‖x‖p.

Proof. Without loss of generality we assume that the largest component of
x, the ‖x‖∞, to be xn. For 1 ≤ p <∞ we have

‖x‖p = (|x1|p + |x2|p + · · · |xn|p)1/p = ‖x‖∞((
|x1|
‖x‖

)p +
|x2|
‖x‖

)p + · · ·+ 1)1/p,
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since |xi|
‖x‖ ) < 1 for i = 1, ..., n− 1 we have limp→∞

|x1|
‖x‖ )p = 0. Thus we have

lim
p→∞

‖x‖p = ‖x‖∞.

�

In the proof of the triangle inequality for the p-norms we have to rely on some
inequalities: Hölder’s inequality and Young’s inequality.

For p ∈ (1,∞) we define its conjugate q as the number such that

1

p
+

1

q
= 1.

If p = 1, then we define its conjugate q to be ∞ and vice versa for p = ∞ we set
q = 1.

Lemma 2.11 (Young’s inequality). For p ∈ (1,∞) and q its conjugate we have

ab ≤ ap

p
+
bq

q
,

for any non-negative real numbers a, b.

Proof. Consider the function f(x) = xp−1 and integrate this with respect to
x from zero to a. Now take the inverse function of f given by f−1(y) = yq−1, where
we used that 1/(p − 1) = q − 1 for conjugate exponents p and q. Let us integrate
f−1 from zero to b. Then the sum of these two integrals always exceeds the product
ab, see figure. Note that the two integrals are given by ap/p and bq/q. Hence we
have established Young’s inequality. �

A consequence of Young’s inequality is Hölder’s inequality.

Lemma 2.12. Suppose p ∈ (1,∞) and x = (x1, ..., xn) and y = (y1, ..., yn) are
vectors in Rn. Then

|
n∑
i=1

xiyi ≤
( n∑
i=1

|xi|p
)1/p( n∑

i=1

|yi|q
)1/q

.

Proof. Set ai = |xi|/(
∑n
i=1 |xi|p)1/p and bi = |yi|/(

∑n
i=1 |yi|q)1/q. Then we

have
∑
i a
p
i = 1 and

∑
i b
q
i = 1. By Young’s inequality

n∑
i=1

|xi||yi| ≤ (

n∑
i=1

|xi|p)1/p(
n∑
i=1

|yi|q)1/q.

�

The unit balls of (R2, ‖.‖1), (R2, ‖.‖2) and (R2, ‖.‖∞) indicate the different
nature of these norms.

Proof. Positivity and homogeneity are consequences of the corresponding
properties of the absolute value of a real number. The triangle inequality is the
non-trivial assertion that we split up in three cases p = 1, p = ∞ and p ∈ (1,∞).
Let x = (x1, ..., xn) and y = (y1, ..., yn) be points in Rn.

(1) For p = 1 we have

‖x+ y‖1 = |x1 + y1|+ · · ·+ |xn + yn| ≤ |x1|+ |y1|+ · · ·+ |xn|+ |yn| ≤ ‖x‖1 + ‖y‖1
.
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(2) For p =∞ the argument is similar:

‖x+ y‖∞ = max{|x1 + y1|, ..., |xn + yn|}
≤ max{|x1|+ |y1|, ..., |xn|+ |yn|}
≤ max{|x1|, ..., |xn|}+ max{|y1|, ..., |yn|} = ‖x‖∞ + ‖y‖∞.

(3) The general case p ∈ (1,∞): The triangle inequality follows from Hölder’s
inequality.

‖x+ y‖pp =

n∑
i=1

|xi + yi|p

≤
n∑
i=1

|xi + yi|p−1(|xi|+ |yi|)

≤
n∑
i=1

|xi + yi|)p−1|xi|+
n∑
i=1

|xi + yi|p−1|yi|

≤
( n∑
i=1

|xi + yi|p
)1/q(( n∑

i=1

|xi|p
)1/p

+
( n∑
i=1

|yi|p
)1/p)

= ‖x+ y‖1/qp (‖x‖p + ‖y‖p)

Dividing by ‖x + y‖1/qp and using 1 − 1/q = 1/p we obtain the triangle
inequality:

‖x+ y‖p ≤ ‖x‖p + ‖y‖p.
Thus the space Rn with the p-norm ‖.‖p is a normed space for p ∈ [1,∞].

�

The triangle inequality for p-norms on Rn is also known as Minkowski’s in-
equality:

(

n∑
i=1

|xi + yi|p)1/p ≤ (

n∑
i=1

|xi|p)1/p + (

n∑
i=1

|yi|p)1/p.

There are variations of the (Rn, ‖.‖p) with relevance in engineering, physics and
mathematics. (i) Replace the real scalars by complex scalars (Cn, ‖.‖p); (ii) Replace
Rn by the vector space of sequences s; (iii) Deal with complex-valued sequences,
(iv) Consider continuous functions and define norms in terms of integrals instead
of sums for sequences.

Before we present these classes of normed spaces, we show that the vector space of
m× n-matrices is a normed spaces, too.

Define a norm on Mm×n(F) by picking a norm on Fmn: For 1 ≤ p < ∞ we
define ‖A‖(p) = (

∑m
i=1

∑n
j=1 |aij |p)1/p or ‖A‖(∞) = max |aij | for A ∈ Mm×n(F).

The case p = 2 is of special interest and is known as the Frobenius norm.

Proposition 2.2.6. For 1 ≤ p ≤ ∞ we have that (Mm×n(F), ‖.‖p) is a normed
space.

The identification of Mm×n(F) with the vector space Fmn gives us this result.
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Proposition 2.2.7. Let Cn be the vector space of complex n-tuples z = (z1, ..., zn)T ,
zi ∈ C for i = 1, ..., n. For 1 ≤ p <∞ we define

‖z‖p = (

n∑
i=1

)|zi|p)1/p, z ∈ Cn

and for p = ∞ we have ‖z‖∞ := max |zi| : i = 1, ..., n. where zi ∈ C and |zi| =
(zizi)

1/2 denotes the modulus of zi. Then (Cn, ‖.‖)p is a normed space for 1 ≤ p ≤
∞. The proof of Rn goes through without any changes.

Proof. Young’s inequality is a statement about non-negative numbers which
in this case are modulus of complex numbers. Hence Young’s inequality is valid in
this case as well and consequently Hölder’s inequality. The later is the key to prove
the triangle inequality. �

Recall that s denotes the vector space of all sequences with values in R or C.
We define for 1 ≤ p < ∞ the space `p as the set of all sequences x = (x1, x2, ...)
satisfying

‖x‖p := (|x1|p + |x2|p + · · · )1/p <∞,
and `∞ denotes the space of all bounded sequences (s, ‖.‖∞) with

‖x‖∞ := sup
i∈N
|xi|,

where |.| denotes the absolute value of a real number or the modulus of a complex
number, respectively.

Lemma 2.13 (Hölder’s inequality). For 1 ≤ p ≤ ∞ and q its conjugate index
we have for x ∈ `p and y ∈ `q

∞∑
i=1

|xi||yi| ≤ (

∞∑
i=1

|xi|p)1/p(
∞∑
i=1

|yi|q)1/q.

Since Hölder’s inequality is true for all n ∈ N we deduce that the limits of the
partial sums in question also satisfy these inequalities. Hence we deduce the desired
inequality for sequences instead of n-tuples.

Proposition 2.2.8. For 1 ≤ p ≤ ∞ we have that `p is a normed vector space.

Proof. First we show that `p is a vector space for p ∈ [1,∞): For α ∈ F and
x ∈ `p we have αx ∈ `p. One has to work a little bit to see that for x, y ∈ `p also
x+ y ∈ `p:

‖x+ y‖pp =

∞∑
i=1

|xi + yi|p

≤ 2p
∞∑
i=1

max{|xi|, |yi|}p

= 2p
∞∑
i=1

|max{|xi|, |yi|}|p

≤ 2p(

∞∑
i=1

|xi|p +

∞∑
i=1

|yi|p) = 2p(‖x‖pp + ‖y‖pp) <∞.

The norm properties may be deduced as in the case of Fn since we have Hölder’s
inequality at our disposal. �
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For 1 ≤ p < ∞ the spaces (`p, ‖.‖p) are subspaces of the vector space of
sequences converging to zero, c0. In contrast (`∞, ‖.‖∞) is the space of bounded
sequences and is much larger than the other `p-spaces. We have the following
inclusions:

Lemma 2.14. For p1 < p2 the space `p1 is a proper subspace of `p2 , i.e.

`1 ⊂ `2 ⊂ `∞.

Proof. See problem set 4. �

For example (1/n)n is in `p for p ≥ 2, but not in `1.

We finish this section with normed spaces based on continuous functions.

Definition 2.2.9. For f ∈ C[a, b] we define its p-norm for 1 ≤ p <∞ by

‖f‖p = (

∫ b

a

|f(x)|pdx)1/p

and ‖f‖∞ = supx∈[a,b] |f(x)|. We denote by (C[a, b], ‖.‖p) the set of all functions

satisfying ‖f‖p <∞.

Lemma 2.15 (Hölder’s inequality). For 1 ≤ p ≤ ∞ and its conjugate exponent
q we have ∫ b

a

|f(x)||g(x)|dx ≤ ‖f‖p‖g‖q.

Proof. We assume without loss of generality that ‖f‖p = 1 = ‖g‖q. By
Young’s inequality we have

|f(x)||g(x)| ≤ |f(x)|p/p+ |g(x)|q/q

and thus ∫ b

a

|f(x)||g(x)| ≤ 1

p

∫ b

a

|f(x)|pdx+
1

q

∫ n

a

|g(x)|qdx = ‖f‖p‖g‖q.

As in the case of Fn we are able to turn this inequality in the desired one. �

Proposition 2.2.10. The space (C[a, b], ‖.‖p) is a normed space for p ∈ [1,∞].

Proof. As for `p-spaces we deduce that the ‖.‖p is a vector space. The norm
part is based on the validity of Hölder’s inequality as above. �

We close with a way to construct a normed space out of given normed spaces.

Let {X1, ‖.‖X1
), ..., (X1, ‖.‖X1

)
}

be given normed spaces. Then the direct product

X1 × · · · ×Xn is a normed space for

‖(x1, ..., xn)‖ := ‖x1‖X1 + · · ·+ ‖xn‖Xn .
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2.3. Innerproduct spaces

In this section we consider innerproduct spaces and we start with the case of
real vector spaces and afterwards treat complex vector spaces.

For vectors in R3 we have the ‘dot product‘ aka ‘scalar product‘ that assigns
to a pair of vectors x = (x1, x2, x3) and y = (y1, y2, y3) the number

〈x, y〉 = x1y1 + x2y2 + x3y3.

Pythagoras’ theorem gives the length of x = (x1, x2, x3) as
√
x21 + x22 + x23. Note

that 〈x, x〉 =
√
x21 + x22 + x23. Innerproduct spaces are a generalization of these

basic facts from Euclidean geometry to general vector spaces.

Definition 2.3.1. Let X be a real vector space. An innerproduct on X is a
map 〈., .〉 : X ×X → R satisfying:

(1) (Linearity) For vectors x1, x2, y ∈ X and scalars α1, α2 ∈ R we have
〈α1x1 + α2x2, y〉 = α1 〈x1, y〉+ α2 〈x2, y〉.

(2) (Symmetry) For vectors x, y ∈ X we have 〈x, y〉 = 〈y, x〉.
(3) (Positive definiteness) For any x ∈ X we have 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if

and only if x = 0.

We call (X, 〈., .〉) an innerproduct space and define by ‖x‖ := 〈x, x〉1/2.

Here is a reformulation of the positive definiteness of innerproducts.

Lemma 2.16. Suppose X is an innerproduct space. If 〈x, y〉 = 0 for all y ∈ X,
then x = 0.

Proof. Since 〈x, y〉 = 0 holds for all y ∈ X, in particular for y = x and thus
〈x, x〉 = 0. Hence x = 0. �

Note that the symmetry and linearity in the first entry gives that 〈., .〉 is bilinear:
For vectors x, y1, y2 ∈ X and scalars α1, α2 ∈ R we have 〈x, α1y1 + α2y2〉 y =
α1 〈x, y1〉+ α2 〈x, y2〉.

Example 2.3.2. The family of p-norms on Rn, the space of sequences s and
on the space of continuous functions C[a, b] include for p = 2 important examples
of innerproduct spaces.

There is a link between innerproducts and the length of x. Namely 〈x, x〉1/2 is
the length ‖x‖ of x. The proof of this fact is based on a well-known inequality.

Proposition 2.3.3 (Cauchy-Schwarz). Suppose X is a real innerproduct space.
Then for all x, y ∈ X we have

| 〈x, y〉 | ≤ ‖x‖‖y‖.
We have | 〈x, y〉 | = ‖x‖‖y‖ if and only if x = αy for some α ∈ R.

Proof. For any t ∈ R and x, y ∈ X we have ‖x− ty‖ ≥ 0. More explicitly, we
have

‖x− ty‖ = 〈x− ty, x− ty〉 = 〈x, x〉 − t(〈y, x〉+ 〈x, y〉) + t2 〈y, y〉
= 〈x, x〉 − 2t 〈x, y〉+ t2 〈y, y〉

Suppose y 6= 0, otherwise there is nothing to show.
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Hence we have

t2 〈y, y〉 − 2t 〈x, y〉+ 〈x, x〉 = 〈y, y〉
(
t2 − 2t

〈x, y〉
〈y, y〉

+
〈x, x〉
〈y, y〉

)
= 〈y, y〉

((
t− 〈x, y〉
〈y, y〉

)2
− 〈x, y〉

2

〈y, y〉2
+
〈x, x〉
〈y, y〉

)

= 〈y, y〉

((
t− 〈x, y〉
〈y, y〉

)2
+
〈x, x〉 〈y, y〉 − 〈x, y〉2

〈y, y〉2

)

Hence we have 〈x, x〉 〈y, y〉 − 〈x, y〉2 ≥ 0, i.e.

| 〈x, y〉 | ≤ 〈x, x〉1/2 〈y, y〉1/2 .

The assertion about the equality follows from the proof of the Cauchy-Schwarz
inequality, since ‖x− ty‖ = 0 if and only if x = αy for some α ∈ R. �

As a consequence we deduce that innerproduct spaces (X, 〈., .〉) are normed

spaces for ‖x‖ = 〈x, x〉1/2.

Proposition 2.3.4. For (X, 〈., .〉) the expression ‖x‖ = 〈x, x〉1/2 defines a
norm on X.

Proof. Homogeneity follows from the linearity of the innerproduct. The tri-
angle inequality requires some work:

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2 〈x, y〉 ≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖,

so the right side is (‖x‖ + ‖y‖)2, where we applied Cauchy-Schwarz to bound the
innerproduct in terms of the norms of its elements. Thus we have ‖x + y‖ ≤
‖x‖+ ‖y‖. �

Example 2.3.5. (1) The sequence space `2 is an innerproduct space for
real-valued sequences (xi), (yi)

〈x, y〉 =

∞∑
i=1

xiyi.

The sequence space `2 was the first example of an innerproduct space,
studied by D. Hilbert in 1901 in his work on Fredholm operators.
Hölder’s inequality for p = 2 gives | 〈x, y〉 | ≤ ‖x‖2‖y‖2, which is the
Cauchy-Schwarz inequality in this case.

(2) The 2-norm ‖.‖2 for the space of continuous functions on the interval
C[a, b] is inducded from the innerproduct

〈f, g〉 =

∫ b

a

f(x)g(x)dx.

The Cauchy-Schwarz inequality for (C(R), 〈., .〉 is due to Karl H. A. Schwarz
in 1888.

The innerproduct 〈., .〉 and its associated norm ‖.‖ = 〈., .〉1/2 are related by the
polarization identity.
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Lemma 2.17 (Polarization identity). Let (X, 〈., .〉) be an innerproduct space

with norm ‖.‖ = 〈., .〉1/2. For a real innerproduct space we have 〈x, y〉 = 1
4 (‖x +

y‖2 − ‖x− y‖2) for all x, y ∈ X.

Proof. The arguments are based on the properties of innerproducts. ‖x +
(−1)ky‖2 = ‖x‖2 + ‖y‖2 + (−1)k 〈x, y〉 for k = 0, 1. Adding these two identities
yields the desired polarization identity. �

Jordan and von Neumann gave an elementary characterizations of norms that
arise from innerproducts.

Theorem 2.18 (Jordan-von Neumann). Suppose (X, ‖.‖) is a complex normed
space. If the norm satisfies the parallelogram identity

‖x− y‖2 + ‖x+ y‖2 = 2‖x‖2 + 2‖y‖2 forall x, y ∈ X,

then X is an innerproduct space for the innerproduct

〈x, y〉 =
1

4

4∑
k=1

ik‖x+ iky‖2.

Proof. One direction is just a computation like the one done for the polariza-
tion identity. The reverse direction is based on defining an innerproduct in terms
of the norms by turning the parallelogram identity into a definition and show that
this is indeed an innerproduct. In the course of the argument one takes advantange
of the paralellogram identity. �

Innerproduct spaces are the infinite-dimensional counterparts of (Rn, ‖.‖2) and
share many properties with these finite-dimensional spaces, in contrast to general
normed spaces such as C(I) with the sup-norm or `p for p 6= 2.

Example 2.3.6. The supremum norm of C[0, 1] does not come from an inner-
product. Use the polarization identity to show this fact.

We consider the case of complex innerproduct spaces that are of relevance in
quantum mechanics and signal analysis as well as mathematics.

For vectors in C2 we have the ‘dot product‘ aka ‘scalar product‘ that assigns
to a pair of vectors z = (z1, z2) and z′ = (z′1, z

′
2) the complex number

〈z, z′〉 = z1z1
′ + z2z2

′.

The reason for adding the complex conjugates to the definition of the real case is
to get the length of z = (z1, z2) ∈ C2:

‖z‖2 = 〈z, z〉 = z1z1 + z2z2 = |z1|2 + |z2|2.

Definition 2.3.7. Let X be a complex vector space. An innerproduct on X is
a map 〈., .〉 : X ×X → C satisfying:

(1) (Linearity) For vectors x1, x2, y ∈ X and scalars α1, α2 ∈ F we have
〈α1x1 + α2x2, y〉 = α1 〈x1, y〉+ α2 〈x2, y〉.

(2) (Conjugate Symmetry) For vectors x, y ∈ X we have 〈x, y〉 = 〈y, x〉.
(3) (Positive definiteness) For any x ∈ X we have 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if

and only if x = 0.

We call (X, 〈., .〉) an innerproduct space and define by ‖x‖ := 〈x, x〉1/2.
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Note that the conjugate symmetry and linearity in the first entry gives that
〈., .〉 is conjugate linear in the second entry: For vectors x, y1, y2 ∈ X and scalars
α1, α2 ∈ R we have 〈x, α1y1 + α2y2〉 y = α1 〈x, y1〉+ α2 〈x, y2〉.

Proposition 2.3.8 (Cauchy-Schwarz). Suppose X is a complex innerproduct
space. Then for all x, y ∈ X we have

| 〈x, y〉 | ≤ ‖x‖‖y‖.
We have | 〈x, y〉 | = ‖x‖‖y‖ if and only if x = αy for some α ∈ C.

Proof. Suppose x and y are non-zero vectors of X.

0 ≤〈x− y, x− y〉 = 〈x, x〉+ 〈y, y〉 − 〈y, x〉 − 〈x, y〉
= 〈x, x〉+ 〈y, y〉 − 2Re 〈x, y〉 ,

and we obtain an additive inequality:

Re 〈x, y〉 ≤ 1

2
〈x, x〉+

1

2
〈y, y〉 .

The normalization method turns this one into a multiplicative one: We set x̃ =
x/〈x, x〉1/2 and ỹ = y/〈y, y〉1/2 and plug x̃ and ỹ into the preceding inequality:

Re 〈x, y〉 ≤ 〈x, x〉1/2 〈y, y〉1/2 .
We want to have a bound on | 〈x, y〉 | based on the one on the real part of 〈x, y〉 via
pre-multiplication. By the later one means that one pre-multiplies by a well-chosen
complex number in order to guarantee that some quantity will be real. In our case
we use the polar decomposition of 〈x, y〉: 〈x, y〉 = | 〈x, y〉 |eiϕ for some ϕ ∈ [0, 2π).
We set x̃ := e−iϕx

| 〈x, y〉 | = Rex̃y ≤ 〈x̃, x̃〉1/2 〈y, y〉1/2 = 〈x, x〉1/2 〈y, y〉1/2 ,
which yields the complex Cauchy-Schwarz inequality. The case of equality is a
consequence of the argument. �

Example 2.3.9. (1) The space `2 of square-integrable complex-valued se-
quences (zi), (z

′
i) is an innerproduct space:

〈z, z′〉 =

∞∑
i=1

ziz′i.

Hölder’s inequality for p = 2 gives | 〈x, y〉 | ≤ ‖x‖2‖y‖2, which is the
Cauchy-Schwarz inequality in this case.

(2) The 2-norm ‖.‖2 for the space of continuous complex-valued functions on
the interval C[a, b] is induced from the innerproduct

〈f, g〉 =

∫ b

a

f(x)g(x)dx.

This innerproduct is of utmost importance in Schrödinger’s approach to
quantum mechanics and in signal analysis. In physics one often denotes
〈f, g〉 by 〈f |g〉 and they tend to have it conjugate linear in the first entry
and linear in the second.

By the same reasoning as for real innerproduct spaces X we deduce that ‖z‖ :=

〈z, z〉1/2 is a norm on X Innerproducts provide a generalization of the notion of
orthogonality of elements.
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Definition 2.3.10. Two elements x, y in an innerproduct space (X, 〈., , 〉) are
orthogonal to each other if 〈x, y〉 = 0

The theorem of Pythagoras is true for any innerproduct space (X, 〈., .〉).

Proposition 2.3.11 (Pythagoras’s Theorem). Let (X, 〈., .〉) be an innerproduct
space. For two orthogonal elements x, y ∈ X we have

‖x+ y‖2 = ‖x‖2 + ‖y‖2.

Proof. The argument is based on the fact that 〈x, x〉 is a norm. By assump-
tion we have 〈x, y〉 = 0

‖x+ y‖2 = ‖x‖2 + 2Re 〈x, y〉+ ‖y‖2 = ‖z‖2 + ‖y‖2.
�

As an example we consider some orthogonal vectors in (C([0, 1]), 〈., .〉. For
m 6= n we define the exponentials em(x) = e2πimx and en(x) = e2πinx. Then

〈em, en〉 =

∫ 1

0

e2πi(m−n)xdx = (2πi(m− n))−2(e2πi(m−n) − 1) = 0.

Note that 〈en, en〉 = 1 for any n ∈ Z. With the help of Kronecker’s delta function
we may express this as 〈em, en〉 = δm,n.

The theorem of Pythagoras is now at our disposal in any innerproduct spaces such
as `2.

Definition 2.3.12. A set of vectors {ei}i∈I in an innerproduct space (X, 〈., , 〉)
is called an orthogonal family if 〈ei, ej〉 = 0 for all i 6= j. In case that the orthogonal
family {ei}i∈I in X satisfies in addition ‖ei‖ = 1 for any i ∈ I, then we refer to it
as orthonormal family.

The exponentials {e2πnx}n∈Z is an orthonormal family in C[0, 1] with respect
to 〈., .〉 and is a system of utmost importance, e.g. it lies at the heart of Fourier
analysis or more generally harmonic analysis.
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Banach and Hilbert spaces

We extend the topological notions introduced for the real line to general normed
spaces and we focus on completeness in this section. Complete normed spaces
are nowadays called Banach spaces, after the numerous seminal contributions of
the Polish mathematician Stefan Banach to these objects. The class of complete
innerproduct spaces are named after David Hilbert, who introduced the sequence
space `2. His students made numerous contributions to the theory of innerproduct
spaces, e.g. Erhard Schmidt, Hermann Weyl, Otto Toeplitz,... .

3.1. Sequences in normed spaces

Norms on a vector space are the tool that provides us with a way to merge
linear algebra and analysis, which is known as functional analysis. We will discuss
some of the basic aspects of functional analysis in this course. We start with the
notion of convergent sequences and will work our way up to completeness.

Definition 3.1.1. Let (X, ‖.‖) be a normed space. A sequence (xn)n∈N in X
is said to converge to x ∈ X if for a given ε > 0 there exists a N such that
‖x− xn‖ < ε for n ≥ N . The vector x is called the limit of the sequence (xn)n∈N.

Suppose A is a subset of X. Given a convergent sequence (an)n∈N in A, mean-
ing all the an’s are elements of A. Then the limit of the sequence (an)n∈N is also
known as a limit point of A. We denote the union of A and all its limit points by
A.

This notion of convergence for sequences in normed spaces is a natural gen-
eralization of the one for real and complex numbers. Note that the elements of
the sequences are vectors in a normed space. For example, a sequence in `2 is a
sequence where the elements themselves are also sequences. A more geometric view
towards this notion of convergence is that for any ε > 0 there exists an N such that
(xN , xN+1, ...) lies in the ball, Bε(x), of radius ε around the limit x. Sometimes
(xN , xN+1, ...) is called the tail of the sequence (xn)n∈N. Hence convergence of
xn → x means that for arbitrary small balls around the limit x the tail of (xn)n∈N
lies in Bε(x).

Note that x ∈ A if there exists a sequence (an)n∈N in A such that an → x.

Lemma 3.1. Suppose the sequence (xn)n∈N in (X, ‖.‖) converges to a x ∈ X.
Then ∣∣∣ ‖xn‖ − ‖x‖ ∣∣∣→ 0.

29
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Proof. By assumption we have that for any ε > 0 there exists an N ∈ N such
that ‖xn − x‖ < ε for all n ≥ N . By the reverse triangle inequality we have that∣∣∣ ‖xn‖ − ‖x‖ ∣∣∣ ≤ ‖xn − x‖
but the right hand side goes to zero by the convergence of (xn) and thus we have
that ‖xn − x‖ → 0. �

The notion of convergence depends on the norm the vector space is equipped
with!

Example 3.1.2. Consider the sequence (fn)n∈N in C[0, 1] defined by fn(t) =
e−nt. Then we have that fn converges to 0 in (C[0, 1], ‖.‖1):

‖fn − 0‖1 =

∫ 1

0

e−ntdt =
1

n
(1− e−n)→ 0

as n→∞. Let us now discuss the convergence of (fn)n∈N in (C[0, 1], ‖.‖∞). Since
‖fm‖∞ = supt∈[0,1] |e−nt| = 1, so (fn)n∈N does not converge to the zero function

with respect to ‖.‖∞.

This example has a further feature.

Example 3.1.3. Let A be the set of positive functions in C[0, 1], i.e. A = {f ∈
C[0, 1] : f(t) > 0, t ∈ [0, 1]}. Then the convergence of (fn)n∈N in (C[0, 1], ‖.‖1) of
(e−nt)n∈N to zero, gives us a sequence in A with a limit not contained in A; the
zero function is the very example of a function attaining zero in [0, 1].

As for real sequences we have that limits of convergent sequences are unique.

Lemma 3.2. Let (xn)n∈N be a convergent sequence in the normed space (X, ‖.‖).
Then its limit is unique.

Proof. Suppose there exist two limits x, y of (xn)n∈N. Then for any ε > 0
there exist N1, N2 ∈ N such that for all n ≥ N1 ‖xn−x‖ ≤ ε/2 and for all n ≥ N−2
we have ‖xn − y‖ ≤ ε/2. Hence for all n ≥ maxN1, N2 we have

‖x− y‖ = ‖x− xn + xn − y‖ ≤ ‖x− xn‖+ ‖xn − y‖ ≤ ε/2 + ε/2 = ε.

�

A convergent sequence of real numbers is bounded, i.e. there exists a constant
M > 0 such that |an| ≤ M for all n ∈ N. Convergent sequences in normed spaces
are also bounded if one defines the boundedness of a subset of this space in an
analogous manner.

Definition 3.1.4. A subset A of (X, ‖.‖) is called bounded if A is contained
in some ball Br0(x0) for some radius r0 and point x0 ∈ X. In this case we define
the diameter of A, diam(A), to be the real number sup{‖x− y‖ : x, y ∈ X}.

Let us state some reformulations of the notion of boundedness of a set.

Lemma 3.3. For a subset A of a normed space X the following statements are
equivalent:

(1) A is bounded.
(2) There exists a constant M > 0 such that ‖x− y‖ ≤M for all x, y ∈ A.
(3) diam(A) <∞
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(4) For every x ∈ X there exists a radius r > 0 such that A ⊆ Br(x).
(5) There exists a m > 0 such that ‖x‖ ≤ m for all x ∈ A.

Proof. We show (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (i), and finally (v)⇒ (i).

If (i) holds, then for some x0 ∈ X and r0 > 0 we have A ⊂ Br0(x0):

‖x− y‖ ≤ ‖x− x0‖+ ‖x0 − y‖ ≤ 2r0 for all x, y ∈ A,
i.e. ‖x− y‖ ≤M = 2r0 for all x, y ∈ A.

If (ii) holds, then by the definition of supremum, as least upper bound, of the
set {‖x − y‖ : x, y ∈ A} is less than or equal to the finite constant M , i.e. the
diameter of A is finite.

If (iii) holds, then for all x, y ∈ A we have ‖x − y‖ ≤ diam(A) < ∞. Choose
an element a1 ∈ A. Then given any x ∈ X and a ∈ A we have ‖x − a‖ ≤
‖x − x1‖ + ‖x1 − a‖ ≤ d(x, a1) + diam(A) =: r and A ⊆ Br(x). Hence we have
shown that (iii)⇒ (iv).

The assertion (iv)⇒ (i) by definition of boundedness.

If (v) holds, then A ⊂ Bm(0). Thus we have A is contained in a ball of radius
m around the origin which is possible since in vector spaces we can translate its
elements by a given vector such that the set gets centered at the origin. �

Further results about boundedness are posed as problems on the next problem
set: (i) Any ball Br(x) ⊂ (X, ‖.‖) is bounded and diam(Br(x)) ≤ 2r. (ii) If A is a
bounded subset, then for any a ∈ A we have A ⊆ Bdiam(A)(a).

Lemma 3.4. A convergent sequence in a normed space X is bounded.

Proof. See problem set. �

The definition of convergence of a sequence has one flaw: Namely one needs
to have a candidate for the limit beforehand to actually set up the proof that the
sequence converges to this particular object. Cauchy has noted that it is much
more suitable to have a condition that only involves the sequence elements.

Definition 3.1.5. Let (xn)n∈N be a sequence in (X, ‖.‖). Then we call (xn)n∈N
a Cauchy sequence if for any ε > 0 there exists an N ∈ N such that for all
m,n ≥ N we have

‖xn − xm‖ < ε.

Lemma 3.5. Any Cauchy sequence in (X, ‖.‖) is bounded.

Proof. See problem set. �

Lemma 3.6. Every convergent sequence in (X, ‖.‖) is a Cauchy sequence.

Proof. Let xn → x in (X, ‖.‖). Then for any ε > 0 there exists an N ∈ N
such that ‖xn − x‖ < ε/2 for all n ≥ N . Hence for m,n ≥ N we have

‖xn − xm‖ ≤ ‖xn − x‖+ ‖x− xm‖ ≤ ε.
�
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Example 3.1.6. We define a sequence in (C[a, b], ‖.‖1) by a sequence of piece-
wise continuous functions fn:

fn(t) =


0 for a ≤ t ≤ a+b

2 ,

n(t− a+b
2 ) for a+b

2 < t ≤ a+b
2 + 1

n ,

1 for a+b
2 + 1

n ≤ t ≤ b.

(fn) is a Cauchy sequence in (C[.a, b], ‖.‖1).
For m > n the slope of fm is greater than of fn and thus the area of the function
fm−fn can be bounded by the triangle with sides 1 and 1/n, i.e. ‖fm−fn‖1 ≤ 1/2n.

There are Cauchy sequences in (C[a, b], ‖.‖1) that have no continuous limit
function.

Proposition 3.1.7. (C[a, b], ‖.‖1) is not complete.

Proof. The sequence (fn) defined by

fn(t) =


0 for a ≤ t ≤ a+b

2 ,

n(t− a+b
2 ) for a+b

2 < t ≤ a+b
2 + 1

n ,

1 for a+b
2 + 1

n ≤ t ≤ b.

is Cauchy sequence in (C[a, b], ‖.‖1) with discontinuous limit function:{
0 for a ≤ t ≤ a+b

2 ,

1 for a+b
2 ≤ t ≤ b.

Suppose fn → f in ‖.‖1 with f ∈ C[a, b]. Let us analyze the implications of
‖fn − f‖1 → 0 as n→∞.∫ b

a

|fn(t)− f(t)|dt =
[ ∫ a+b

2

a

+

∫ a+b
2 +

1
n

a+b
2

+

∫ b

a+b
2 +

1
n

]
|fn(t)− f(t)|dt

breaks up into three integrals:

(1)
∫ a+b

2
a

|fn(t)− f(t)|dt→ 0 only if f = 0 on [a, a+b2 ];

(2)
∫ a+b

2 +
1
n

a+b
2

|fn(t) − f(t)|dt → 0. Since fn is continuous for all n ∈ N and f

is continuous on [a, b] we have∫ a+b
2 +

1
n

a+b
2

|fn(t)− f(t)|dt ≤ ( max
t∈[0,1]

|f(t)|+ 1)
1

n
→ 0

as n→∞. Hence this imposes no condition on the limit function f .
(3) By the continuity of f we have that∫ b

a+b
2 +

1
n

|fn(t)− f(t)|dt =

∫ b

a+b
2 +

1
n

|1− f(t)|dt→
∫ b

a+b
2

|1− f(t)|dt,

as n → ∞. Hence this limit is zero, we must have 1 − f(t) = 0, i.e.
f(t) = 1 for all t ∈ [a+b2 , b].

In summary, the limit function f on [a, b] has a jump discontinuity at a+b
2 . �
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3.2. Completeness

The difference between the the normed space (Q, |.|) and the real numbers
(R, |.|) viewed as normed space is that not all Cauchy sequences in Q converge to
a rational number but that is the case for R. Cauchy established that any Cauchy
sequence in R converges and its limit is again a real number. In order to show
this we assume a property of the set of real numbers without proof, a so-called
axiom. Namely, R is supposed to have the least upper bound property: Any
non-empty subset S that is bounded from above has a supremum supS
and supS is a real number.

For example the set {a ∈ Q : a <
√

3} is bounded above by
√

3, but
√

3 is not
a rational number. We include the proof of this important fact.

Proposition 3.2.1. The equation

x2 − 3 = 0

has no solutions in Q.

Proof. We assume by contradiction that there is a rational number r such
that r2 − 3 = 0.

We represent r as a reduced fraction. That is, we write r = p
q where p, q are

integers, q 6= 0 and gcd(p, q) = 1. We then have:

r2 − 3 = 0 =⇒ r2 = 3 =⇒ p2

q2
= 3 =⇒ p2 = 3 q2.

The last identity says that p2 is a multiple of 3. Then p itself must be a multiple
of 3 as well (why?), which means that p = 3m for some integer m.

Substituting this into the identity p2 = 3q2 we get 9m2 = 3q2, which implies
3m2 = q2, and so q2 must be a multiple of 3. But then q must also be a multiple
of 3.

Let us step back and look at what we have: we started of with a completely re-
duced fraction r = p

q , assumed that r2−3 = 0, which through a series of derivations

led to the conclusion that both p and q must be multiples of 3. This contradicts
the fraction p

q being reduced.

Therefore, the equation x2−3 = 0 cannot have any rational number as solution.
�

Theorem 3.7. A sequence of real numbers (an)n∈N converges if and only if for
any ε > 0 there exists an index N such that for all m,n ∈ N we have |am−an| < ε.

Proof. The statement about convergent sequences satisfying the Cauchy prop-
erty is one of the problems of problem set 5. The other implication is much more
intricate. Suppose we have a Cauchy sequence (an)∞n=1. Then we claim it converges
to a real number. The argument is elementary but a little bit involved. Let A be
the set of elements of our sequence (an), A = {a1, a2, ...}. Then A is a bounded
subset of R: there exists an M > 0 such that an ∈ [−M,M ] for n = 1, 2, ... . Take
ε = 1 in the Cauchy condition: Then there exists an integer N1 such that for all
m,n ≥ N1 such that |an − aN1

| < 1 and thus the set {a1, a2, ..., aN1
, aN1+1} is

bounded by a constant M .
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Now we consider the set

S := {s ∈ [−M,M ] : there exist infinitely many n ∈ N for which an ≥ s},
in other words we collect all the numbers s in [−M,M ] such that an ≥ s infinitely
often. Definitely −M ∈ S and S is bounded above by M . Thus by the least upper
bound property of R there exists a real number a such that a = supS.

Claim: an → a as n→∞.
For any ε > 0 the Cauchy condition provides an N2 s.t. for all m,n ≥ N2:

|am − an| < ε/2.

All elements of S are less than or equal to a, so the larger number a+ ε/2 does not
belong to S, and hence only finitely many often does an exceed a + ε/2. That is
for some N3 ≥ N2 we have for all n ≥ N3 that

an ≥ a+ ε/2.

Since a is a least upper bound for S, the smaller number a− ε/2 cannot also be an
upper bound for S. Hence, there is some s ∈ S such that s ≥ a−ε/2. Consequently,
we have infinitely many sequence elements such that

a− ε/2 < s ≤ an.
In particular, there exists an N ≥ N3 such that

aN > a− ε/2
. Since N ≥ N3 we have aN ≤ a+ ε/2 and so aN ∈ (a− ε/2, a+ ε/2). Now recall
that N ≥ N2 which yields that

|an − a| ≤ |an − aN |+ |aN − a| < ε

for all n ≥ N , i.e. an → a as n→∞.
�

The property of R that any Cauchy sequence converges in R is a favorable
property that we would like to have for general normed spaces.

Definition 3.2.2. A normed space (X, ‖.‖) is called complete if every Cauchy
sequence (xk) in X has a limit x belonging to X. Moreover, a complete normed
space is referred to as Banach space and a complete innerproduct space is known
as Hilbert space.

Let us start with an elementary observation that is a straightforward conse-
quence of the definitions.

Theorem 3.8. (Rn, ‖.‖∞) is a Banach space.

The completeness of the normed space (R, |.|) has numerous ramifications.

Proof. The ‖.‖∞-convergence of (xn)n∈N implies the coordinate wise conver-
gence. Since any Cauchy sequence in (Rn, ‖.‖∞) gives Cauchy sequences in each
coordinate. Since R is complete we deduce that all these coordinate Cauchy se-
quences converge in R. Thus we have that (Rn, ‖.‖∞) is complete. �

Theorem 3.9. The space of absolutely summable sequences is a Banach space
with respect to ‖.‖1-norm; i.e. (`1, ‖.‖1) is a Banach space.
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Proof. The argument is split into three steps.
Step 1: Find a candidate for the limit. Let (xn)n be a Cauchy sequence in `1. We

denote the n-th element of the sequence by xn = (x
(n)
1 , x

(n)
2 , ...).

Note that |x(m)
1 −x(n)1 | ≤ ‖xm−xn‖1, so the first coordinates (x

(n)
1 )n are a Cauchy

sequence of real numbers and hence converge to some real number z1. Similarly,

the other coordinates converge: zj = limn→∞ x
(n)
j . Hence our candidate for the

limit of (xn) is the sequence z = (z1, z2, ...).
Step 2: Show that z is in `1. We have that

N∑
j=1

|zj | =
N∑
j=1

lim
n
|x(n)j | = lim

n

N∑
j=1

|x(n)j |,

where the interchange of the limit with the sum of a finite number of real numbers
is no problem. Since Cauchy sequences are bounded, there is a constant C > 0
such that ‖xn‖1 < C for all n. Thus for any N

N∑
j=1

|x(n)j | ≤
∞∑
j=1

|x(n)j | = ‖xn‖1 < C.

Letting n→∞ we find that

N∑
j=1

|zj | ≤ ‖xn‖1 < C

for arbitrary N . Hence we have z ∈ `1.
Step 3: Show the convergence. We want to prove that ‖xn − z‖1 → 0 for n→∞.
Given ε > 0, pick N1 so that if m,n > N1 then ‖xm − xn‖1 < ε. Hence for any
fixed N and m,n > N1, we find

N∑
j=1

|x(m)
j − x(n)j | ≤

∞∑
j=1

|x(m)
j − x(n)j | = ‖xn − xm‖ < ε.

Fix n > N1 and N , let m→∞ to obtain

N∑
j=1

|x(n)j − zj | = lim
n→∞

|x(n)j − x(m)
j | ≤ ε.

Since this is true for all N we have demonstrated that

‖xn − z‖1 < ε.

That is our desired conclusion. �

Theorem 3.10. The space of bounded sequences is a Banach space with respect
to ‖.‖∞-norm; i.e. (`∞, ‖.‖∞) is a Banach space.

Proof. The argument is once more split into three steps.
Step 1: Find a candidate for the limit. Let (xn)n be a Cauchy sequence in `∞. We

denote the n-th element of the sequence by xn = (x
(n)
1 , x

(n)
2 , ...).

Note that |x(m)
k − x

(n)
k | ≤ ‖xm − xn‖∞ for all k and all m,n > N , so the k-th

coordinates (x
(n)
k )n are a Cauchy sequence of real numbers and hence converge to

some real number zk. Similarly, the other coordinates converge: zk = limm→∞ x
(n)
k .
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Hence our candidate for the limit of (xn) is the sequence z = (z1, z2, ...).
Step 2: Show that z is in `∞. We have that

sup{|zj | : j = 1, ..., N} = sup{lim
n
|x(n)j |j = 1, ..., N} = lim

n
{sup |x(n)j |j = 1, ..., N},

where the interchange of the limit with the sum of a finite number of real numbers
is no problem. Since Cauchy sequences are bounded, there is a constant C > 0
such that ‖xn‖∞ < C for all n. Thus for any N

lim
n
{sup |x(n)j |j = 1, ..., N}| ≤ ‖xn‖∞ < C.

Thus we find that ‖xn‖∞ < C, i.e. we have z ∈ `∞.
Step 3: Show the convergence. We want to prove that ‖xn − z‖∞ → 0 for n→∞.
Given ε > 0, pick N1 so that if m,n > N1 then

|x(k)m − x(k)n | ≤ ‖zk − x(k)n ‖∞ < ε

for all k. Taking limits as m→∞ we have

|zk − x(k)n | ≤ ε
Taking supremum in k, we obtain

sup
k
|zk − x(k)n | ≤ ε

for all n > N1, i.e. ‖xn − z‖∞ ≤ ε for all n > N . Consequently we have that xn
converges to z in (`∞, ‖.‖∞).

�

Reasoning similar to the one for `1 gives us that all `p-spaces are Banach spaces
for ‖.‖p when 1 ≤ p <∞.

Theorem 3.11. Let [a, b] be a bounded interval of real numbers. Then the
normed space C[a, b] with respect to the sup-norm ‖.‖∞ is a Banach space.

The situation is different for the function spaces (C[a, b], ‖.‖p), as we have seen
before for p = 1 this is not a complete space and this is also true for 1 ≤ p <
∞. In contrast (C[a, b], ‖.‖∞) is a complete space. Before we are able to proof
this statement we have to discuss different notions of convergence for sequences of
functions and properties of continuous functions.

Lemma 3.12. For f, g ∈ C[a, b] we have that sup{|f(x) − g(x)|x ∈ [a, b]} is
finite, and there is a y ∈ [a, b] such that d∞(f, g) = |f(y) − g(y)| = max{|f(x) −
g(x)|x ∈ [a, b]}.

Proof. We show that d(x) = |f(x)− g(x)| is continuous on [a, b] and thus by
the Extreme Value Theorem the assertion follows. The continuity of d is deduced
from

|d(x)− d(y)| ≤ ||f(x)− g(x)| − |f(y)− g(y)|| ≤ |f(x)− f(y)|+ |g(y)− g(x)|.
Since f and g are continuous at x there is for any given ε > 0 a δ > 0 such that
|f(x)− f(y)| < ε/2 and |g(x)− g(y)| < ε/2 for |x− y| < δ. Hence

|d(x)− d(y)| ≤ |f(x)− f(y)|+ |g(y)− g(x)| < ε/2 + ε/2 = ε

for all y ∈ [a, b] with |x− y| < δ. Consequently d is continuous. �
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Remark 3.2.3. Observe that the ‖f−g‖∞-norm measures the distance between
the functions f and g by looking at the point in a[a, b] they are the furthest apart.

Definition 3.2.4. Let (fn) be a sequence of functions on a set X.

• We say that (fn) converges pointwise to a limit function f if for a given
ε > 0 and x ∈ X there exists an N so that

|fn(x)− f(x)| < ε for all n ≥ N.
• We say that (fn) converges uniformly to a limit function f if for a given
ε > 0 there exists an N so that

|fn(x)− f(x)| < ε for all n ≥ N
holds for all x ∈ X.

There is a substantial difference between these two definitions. In pointwise
convergence, one might have to choose a different N for each point x ∈ X. In the
case of uniform convergence there is an N that holds for all x ∈ X. Note that
uniform convergence implies pointwise convergence. If one draws the graphs of a
uniformly convergent sequence, then one realizes that the definition amounts for a
given ε > 0 to have a N so that the graphs of all the fn for n ≥ N , lie in an ε-band
about the graph of f . In other words, the fn’s get uniformly close to f . Hence
uniform convergence means that the maximal distance between f and fn goes to
zero. We prove this assertion in the next proposition.

Proposition 3.2.5. Let (fn) be a sequence of continuous functions on [a, b].
Then the following are equivalent:

(1) (fn) converges uniformly to f .
(2) ‖fn − f‖∞ = sup{|fn(x)− f(x)| : x ∈ [a, b]} → 0 as n→∞.

Proof. Assertion (i) ⇒ (ii): Assume that (fn) converges uniformly to f .
Then for any ε > 0 there exists a N such that |fn(x) − f(x)| < ε for all x ∈ [a, b]
and all n > N . Hence sup{|fn(x)− f(x)| : x ∈ [a, b]} ≤ ε for all n > N . Since this
holds for all ε > 0, we have demonstrated that sup{|fn(x)− f(x)| : x ∈ [a, b]} → 0
for n→∞.
Assertion (ii)⇒ (i): Assume that sup{|fn(x)− f(x)| : x ∈ [a, b]} → 0 for n→∞.
Given an ε > 0, there is a N such that sup{|fn(x) − f(x)| : x ∈ [a, b]} < ε for all
n > N . Thus we have |fn(x) − f(x)| < ε for all x ∈ [a, b] and all n > N , i.e. (fn)
converges uniformly to f . �

A reformulation of this result is that a sequence converges in (C[a, b], ‖.‖∞) to
f is equivalent to the uniform convergence of (fn) to f .

Proposition 3.2.6. A sequence (fn) converges to f in in (C[a, b], ‖.‖∞) if and
only if (fn) converges uniformly to f .

Uniform convergence has an important property.

Theorem 3.13. Let (fn) be a uniformly convergent sequence in C[a, b] with
limit f . Then the limit function f is continuous on [a, b].

Proof. Let y ∈ I and ε > 0 be given. By the uniform convergence of fn → f ,
there exists an N such that n ≥ N implies that

|fn(x)− f(x)| ≤ ε/3 for all x ∈ I.
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The continuity of fN implies that there exists a δ > 0 such that

|fN (x)− f(y)| ≤ ε/3 for |x− y| ≤ δ.

We want to show that f is continuous. For all x such that |x− y| < δ we have that

|f(x)− f(y)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (y)|+ |fN (y)− f(y)|
< ε/3 + ε/3 + ε/3 = ε.

�

Theorem 3.14. (C[a, b], ‖.‖∞)) is a Banach space.

Proof. Convergence of a sequence in (C[a, b], ‖.‖∞) to f ∈ C[a, b] is equiva-
lent to uniform convergence of the sequence to f .

Assume that (fn) is a Cauchy sequence in (C[a, b], ‖.‖∞). Then we have to show
that there exists a function f ∈ C[a, b] that has (fn) as its limit.
Fix x ∈ [a, b] and note that |fn(x)− fm(x)| ≤ ‖fn − fm‖∞. Since (fn) is a Cauchy
sequence (fn(x)) is a Cauchy sequence in R. Since R is complete, (fn(x)) converges
to a point f(x) in R. In other words, fn → f pointwise.
Next we show that f ∈ C[a, b]. Since (fn) is a Cauchy sequence, we have for
any ε > 0 a N such that ‖fn − fm‖ < ε/2 for all m,n > N . Hence we have
|fn(x)− fm(x)| < ε/2 for all x ∈ [a, b] and for all m,n > N . Letting m→∞ yields
for all x ∈ [a, b] and all n > N :

|fn(x)− f(x)| = lim
m→∞

|fn(x)− fm(x)| ≤ ε/2 < ε.

Consequently, fn → f converges uniformly. Now by the preceding proposition
f is a continuous function on [a, b]. In other words, we have established that
(C[a, b], ‖.‖∞) is a Banach space. �

3.3. Banach’s Fixed Point Theorem

In 1922 Banach established a theorem on the convergence of iterations of con-
tractions that has become a powerful tool in applied and pure mathematics aka
Contraction Mapping Theorem. Before we state Banach’s fixed point theorem we
define continuous functions between normed spaces. A natural and far-reaching
generalization of the notion of continuous functions defined on R.We will have
much more to say about continuous functions in the next chapter.

Definition 3.3.1. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be two normed spaces, let
A ⊂ X and let f : A→ Y be a function.

(1) We say that f is continuous at a point a ∈ A if for all ε > 0 there is δ > 0
such that for all x ∈ A with ‖x− a‖X < δ we have ‖f(x)− f(a)‖Y < ε.

(2) We say that f is continuous on A if it is continuous at each point of A.
(3) We say that f is uniformly continuous on A if, for all ε > 0, there

exists a δ > 0 such that ‖x− y‖X < δ implies ‖f(x)− f(a)‖Y < ε for all
x, y ∈ A.

A class of continuous functions on normed spaces is given by functions satisfy-
ing: There exists a finite constant L such that

‖f(x)− f(x′)‖ ≤ L ‖x− x′‖ for all x, x′ ∈ A.
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One calls such functions Lipschitz continuous, after the German mathemati-
cian R. Lipschitz, and often one refers to L as Lipschitz constant. On Problem
set 6 you will show that any Lipschitz continuous function is continuous.

We have come across Lipschitz continuous functions in our discussion of normed
spaces. Namely, the reverse triangle inequality shows that a norm ‖, ‖ : X → R on
a vector space X is Lipschitz continuous with constant 1.

Here is a useful criterion for continuity of a function.

Proposition 3.3.2. Let f : A→ Y be a function, where A ⊂ X and X,Y are
normed spaces. Let a ∈ A. Then the following two statements are equivalent.

(i) f is continuous at a.
(ii) For every sequence (xn) ⊂ A, if xn → a then f(xn)→ f(a).

Proof. i) ⇒ (ii): We assume that f is continuous at a.
Let (xn) ⊂ A be a sequence such that xn → a. We prove that f(xn)→ f(a).
Let ε > 0. Since f is continuous at a, there is δ > 0 such that if ‖x − a‖ < δ

then ‖f(x)− f(a)‖ < ε.
Since xn → a, there is N ∈ N such that for all n ≥ N we have ‖xn − a‖ < δ.

From the above, if n ≥ N we must then have ‖f(xn)− f(a)‖ < ε.
As ε was arbitrary, this proves that f(xn)→ f(a).
(i) ⇐ (ii): We assume by contradiction that f is not continuous at a. Let us

write down carefully what that means.
Firstly, we recall the definition of continuity. f is continuous at the point a ∈ A

means:
for all ε > 0 there is δ > 0 such that for all x ∈ A with ‖x − a‖ < δ we have
‖f(x)− f(a)‖ < ε.

Next, we formulate the negation of this statement.
The function f is not continuous the point a ∈ A means:

there is ε0 > 0 such that for all δ > 0 there is an element of A, which we denote by
xδ, such that ‖xδ − a‖ < δ but ‖f(xδ)− f(a)‖ ≥ ε0.

For every n ≥ 1, we may choose δ = 1
n . Then for some element of A, which we

denote by xn, we have that ‖xn − a‖ < 1
n but ‖f(xn)− f(a)‖ ≥ ε0.

We have thus obtained a sequence (xn) ⊂ A such that ‖xn − a‖ < 1
n → 0, so

xn → a. However, since ‖f(xn)− f(a)‖ ≥ ε0, the sequence f(xn) 6→ f(a), which is
a contradiction.

Hence f must be continuous at a. �

Suppose we have a continuous function f on a normed space X. Take a point
x0 in X and build the sequence of iterates

x0, x1 = f(x0), x2 = f(x1) = f2(x0), ..., xn+1 = f(xn).

The existence of the limit of this sequence x = limn xn = limn f
n(x0) is the

basic question that underlies Banach’s fixed point theorem. The limit x of the
iterates (xn) is a fixed point of the continuous map f :

f(x) = f(lim
n
xn) = lim

n
f(xn) = lim

n
xn+1 = limxn = x.
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A mapping f on a normed space X is called a contraction if there exists a 0 <
K < 1 such that

‖f(x)− f(y)‖ ≤ K‖x− y‖ x, y ∈ X,

a contraction is a Lipschitz continuous function with Lipschitz constant L < 1.
Recall that ‖x− y‖ = d(x, y) is the distance between x and y.

Theorem 3.15 (Banach’s Fixed Point). Let X be a Banach space X. Any
contraction f : X → X has a unique fixed point x̃ and the fixed point is the limit
of every sequence generated from an arbitrary nonzero point x0 ∈ X by iteration
(xn)n, where xn+1 = f(xn) for n ≥ 1.

Proof. Let x0 ∈ X be arbitrary. Define xn+1 = f(xn) for n = 1, 2, ... . By
the contractivity of T we have

‖xn − xn−1‖ = ‖f(xn−1)− f(xn−2)‖ ≤ K‖xn−1 − xn−2‖

and iterations yields

‖xn − xn−1‖ ≤ Kn−1‖x1 − x0‖.

The existence of a fixed point is based on the completeness of X. Hence we proceed
to show that (xn)n is a Cauchy sequence. Let m,n be greater than N and we
choose m ≥ n. Then by the preceding inequality and the triangle inequality we
have

‖xm − xn‖ ≤ ‖xm − xm−1‖+ ‖xm−1 − xm−2‖+ · · ·+ ‖xn+1 − xn‖
≤ (Km−1 +Km−2 + · · ·Kn)‖x1 − x0‖
≤ (KN +KN+1 + · · · )‖x1 − x0‖
= KN (1−K)−1‖x1 − x0‖.

Since 0 ≤ K < 1, limN K
N = 0 and thus (xn) is a Cauchy sequence. Consequently,

(xn) converges to a point x̃ by the completeness of X. Furthermore x̃ is a fixed
point by the contractivity of T .
Uniqueness: Suppose there is another fixed point ỹ of f . Then ‖x̃− ỹ‖ = ‖f(x̃)−
f(ỹ)‖ ≤ K‖x̃ − ỹ‖ and ‖x̃ − ỹ‖ > 0. Thus we deduce that K ≥ 1 which is a
contradiction to f being a contraction. �

Lipschitz maps with constant 1 are not eligible in this fixed point theorem.
Since the map f(x) = x+ 1 on [0, 1] has no fixed point, but the map f(x) = x on
[0, 1] has infinitely many fixed points.

Corollary 3.3.3. Under the assumption in Banach’s fixed point theorem we
have the following estimates about the rate of convergence of the iterates (xn) to-
wards the fixed point x̃:

(1)

‖xn − x̃‖ ≤
Kn

1−K
‖x0 − f(x0)‖,

tells us, in terms of the distance between x0 and f(x0) how many times
we need to iterate f starting from x0 to be certain that we are within a
specified distance from the fixed point.
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(2)

‖xn − x̃‖ ≤ K‖xn−1 − x̃‖,
is called an a priori estimate, meaning that it gives us an upper bound on
how long we need to compute to reach the fixed point.

(3)

‖xn − x̃‖ ≤
K

1−K
‖xn−1 − xn‖,

tells us, after each computation, how much closer we are to the fixed point
in terms of the previous two iterations. This kind of estimate, called an a
posteriori estimate, is very important because if two successive iterations
are nearly equal, guarantees that we are very close to the fixed point.

Proof. From the proof we have that for m > n

(3.1) ‖xm − xn‖ ≤
Kn

1−K
‖x0 − x1‖ =

Kn

1−K
‖x0 − f(x0)‖.

The right side is independent of m and so m→∞ gives

(3.2) ‖xn − x̃‖ ≤
Kn

1−K
‖x0 − f(x0)‖.

The second inequality comes along like that: Since x̃ is the unique fixed point of f :

‖xn − x̃‖ = ‖f(xn)− f(x̃)‖ ≤ K‖xn−1 − x̃‖.

Applying the triangle inequality to ‖xn−1 − x̃‖ gives the third inequality:

‖xn − x̃‖ ≤ K(‖xn−1 − xn‖+ ‖xn − x̃‖),

which gives

(3.3) ‖xn − x̃‖ ≤
K

1−K
‖xn−1 − xn‖.

�

Recall that we defined for a the closure A of A as the union of A and the set
of limit points of A.

Definition 3.3.4. A subset A of (X, ‖.‖) is called closed if A = A.

For example {y ∈ X : ‖x − y‖ ≤ r} is a closed subset of X. We will discuss
properties of closed sets in the next chapter.

Here is a variant of Banach’s fixed point theorem:

Theorem 3.16. Let A be a closed subset of a Banach space X. If f : A → X
is a contraction, then f has a unique fixed point and the fixed point is the limit
of every sequence generated from an arbitrary nonzero point x0 ∈ A by iteration
(xn)n, where xn+1 = f(xn) for n ≥ 1.
If the contraction f : A → X satisfies in addition, f(A) ⊆ A, then the fixed point
lies also in A.

Proof. See problem set. �
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Two well-known applications are Newton’s method for finding roots of general
equations, solving systems of linear equations and the theorem of Picard-Lindelöf
on the existence of solutions of ordinary differential equations. We discuss the first
item and postpone the other items.

Newton’s method:

How does one compute
√

3 up to a certain precision, i.e. we are interested in
error estimates? Idea: Formulate it in the form x2−3 = 0 and try to use a method
that allows to compute zeros of general equations.

Newton came up with a method to solve g(x) = 0 for a differentiable function
g : I → R.
Suppose x0 is an approximate solution or starting point. Define recursively

xn+1 = xn −
g(xn)

g′(xn)
for n ≥ 0.

Then (xn) converges to a solution x̃, provided certain assumptions on g hold.
If xn → x̃, then by continuity of g we get g(x̃) = 0.

When does Netwon’s method lead to a convergent sequence of iterates? Idea:
Apply Banach’s Fixed Point Theorem.

Set f(x) := x − g(x)
g′(x) . Then given x0 ∈ I and xn+1 = xn − g(xn)

g′(xn)
= f(xn). More-

over, f(x̃) = x̃ if and only if g(x̃) = 0.

Let us restrict our discussion to the computation of
√

3. The Banach space X
is the space of real numbers R and g(x) = x2 − 3, so

f(x) = x− x2 − 3

2x
=

1

2
(x+

3

x
)

on [
√

3,∞) → [
√

3,∞). Note that [
√

3,∞) is a closed set of R containing
√

3.

For x ≥ 0 we have 1
2 (x + 3/x) ≥

√
3x/x =

√
3. Compute f ′ and note that a

differentiable function f : I → R with a bounded derivative, |f ′(x)| ≤ L for x ∈ I
is Lipschitz continuous with constant L.

f ′(x) =
1

2
(1− 3

x2
)

and note that it’s range is contained in [0, 1/2] for x ≥
√

3. Hence we have L = 1/2

and by Banach’s Fixed Point Theorem 1
2 (xn + 3

xn
)→
√

3.

Let’s pick x0 = 2 and thus x1 = 7/4 and so |x1 − x0| = 1/4. Furthermore, we have

|xn −
√

3| ≤ (1/2)n

1− 1/2
|x1 − x0| =

1

2n
· 2 · 1

4
=

1

2n+1
.

Hence

|xn −
√

3| ≤ 1

2n+1
.

For n = 4, we have |xn −
√

3| ≤ 1/1024 < 0.001.

Integral equations



Banach and Hilbert spaces 43

Equations of the following type appear naturally in mathematics, physics and en-
gineering: Given functions f : [a, b]→ R and k : [a, b]× [a, b]→ R, a parameter λ,
where [a, b] denotes a finite interval of R. Solve the integral equation

f(x) = λ

∫ b

a

k(x, y)f(y)dy + g(x)

for g. We will restrict our discussion to continuous functions f and k. Note that
the mapping

T (f)(x) =

∫ b

a

k(x, y)f(y)dy

is a continuous analogue of matrix multiplication, where the function k on the rec-
tangle [a, b]× [a, b] is the continuous variant of a matrix (aij) and one often calls T
an integral operator and k its kernel. The fixed point theorem of Banach allows
us to solve this integral equation for sufficiently small λ.

Note that T : C[a, b] → C[a, b] respects the vector space structure of C[a, b]: For
any α, β ∈ R and f1, f2 ∈ C[a, b] we have

T (αf1 + βf2) = αT (f1) + βT (f2).

Lemma 3.17. Let f ∈ C[a, b] and k ∈ C
(

[a, b]× [a, b]
)

. Then Tf ∈ C[a, b].

Proof. For each fixed x the function K(x, y) is a continuous function of y on
[a, b]. Hence K(x, y)f(y) is a continuous function of y and so the integral in the
definition of T makes sense.
Claim: For f ∈ C[a, b] we also have Tf ∈ C[a, b].

As a preparation we look at |T (f)(x1)− T (f)(x2)| for x1 6= x2:

|T (f)(x1)− T (f)(x2)| ≤
∣∣∣ ∫ b

a

(
k(x1, y)− k(x2, y)

)
f(y)dy

∣∣∣
≤
∫ b

a

|k(x1, y)− k(x2, y)| |f(y)|dy.

Since k is continuous on [a, b] × [a, b], we have that k is bounded on [a, b] × [a, b]:
‖k‖∞ ≤ ‖k‖∞. We also have more control over k as one would have for a continuous
function. Namely, it is uniformly continuous on [a, b]× [a, b]: For any δ > 0 so that
|x1 − x2| < δ we have

|k(x1, y)− k(x2, y)| ≤ ε/‖f‖∞(b− a) for all y ∈ [a, b].

Using this estimate we obtain that for |x1 − x2| < δ

|T (f)(x1)− T (f)(x2)| ≤ ε for all y ∈ [a, b].

Hence Tf is continuous on [a, b]. �

Furthermore T is also compatible with the norm structure on C[a, b], which
follows from the estimates in the preceding proof:

‖T (f1)− T (f2)‖∞ ≤ ‖k‖∞(b− a)‖f1 − f2‖∞.

Hence we are in the position to specify when Tλf(x) = g(x) + λ
∫ b
a

k(x,y)f(y)dy is

a contraction on C[a, b]: Namely, when |λ| < 1
‖k‖∞(b−a) .
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Proposition 3.3.5. Suppose g ∈ C[a, b] and k ∈ C
(

[a, b]× [a, b]
)

. Then

f(x) = λ

∫ b

a

k(x, y)f(y)dy + g(x)

has a unique continuous solution f̃ on [a, b] for |λ| < 1
‖k‖∞(b−a) . The solution can

be found by iteration.

Proof. Consider the mapping f(x) 7→ Tλf(x) := g(x) + λ
∫ b
a
k(x, y)f(y)dy.

For f1, f2 ∈ C[a, b] we have

|Tλf1(x)− Tλf2(x)| = |g(x)− g(x)|+ |λ|
∫ b

a

|k(x, y)||f1(y)− f2(y)|dy

≤ |λ|
∫ b

a

|k(x, y)||f1(y)− f2(y)|dy.

Since k is bounded on [a, b]× [a, b] we have |k(x, y)| ≤ ‖k‖∞ for all x, y ∈ [a, b]:

|Tλf1(x)−Tλf2(x)| ≤ |λ|
∫ b

a

|k(x, y)||f1(y)−f2(y)|dy ≤ |λ|‖k‖∞
∫ b

a

|f1(y)−f2(y)|dy.

By the boundedness of f1 − f2 on [a, b] we have that |f1(y)− f2(y)| ≤ ‖f1 − f2‖∞.
Thus we have

|Tλf1(x)− Tλf2(x)| ≤ |λ|‖k‖∞‖f‖∞
∫ b

a

1dy = |λ|(b− a)‖k‖∞‖f1 − f2‖∞

Hence Tλ is a contraction on the Banach space (C[a, b], ‖.‖∞) if |λ|(b−a)‖k‖∞ < 1,
i.e.

|λ| < ((b− a)‖k‖∞)−1

and so Banach’s fixed point theorem completes the argument.
�

Mappings of the form T (f)(x) =
∫ b
a
k(x, y)f(y)dy are called integral opera-

tors and one may impose various conditions on [a, b], the function f and the kernel k
depending on your problem. We just point out that a specific choice of kernels gives
integral operators with a one-dimensional range. Namely, if k(x, y) = k1(x)k2(y),
then

Tf(x) =

∫ b

a

k1(x)k2(y)f(y)dy = 〈k2, f〉2 k1(x),

is a scalar multiple of k1. We denote functions of the form k1(x)k2(y) by (k1 ⊗
k2)(x, y). We call operators with one-dimensional range, rank-one operators. If the

kernel is of the form k(x, y) = k
(1)
1 (x)k

(2)
2 (y) + · · ·+ k

(n)
1 (x)k

(n)
2 (y), then the range

of the associated integral operator has a finite-dimensional range and we call these
finite-rank operators.

Integral operators are ubiquitous in mathematics, science and engineering, e.g. as
filters and channels in signal analysis and cybernetics, as pseudodifferential opera-
tors in the generalization of differential operators or in the description of quantiza-
tion procedures in quantum mechanics. Kernels have often a special structure, e.g.

it might be of the form k(x−y). Then Tf(x) =
∫ b
a
k(x−y)f(y)dy and Tf is a mod-

ified variant of f with respect to the function k, and is known as convolution k ∗ f
of f with k. Hence Tf = k ∗ f might be viewed as weighted average of f , e.g. if k
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equals the function k(x−y) = (b−a)−1 on [a, b], then k∗f(x) = (b−a)−1
∫ b
a
f(y)dy.

Convolution operators are an integral part of engineering as time-variant filters or
time-variant channels etc . We close with an application to an important topic: the
existence and uniqueness of solutions of an ordinary differential equation (ODE),
aka the Picard-Lindelöf Theorem.

We consider the following initial value problem:

(3.4) x′(t) =
dx

dt
= f(t, x) and x(t0) = x0

for a function f : A ⊂ R2 → R with t0 ∈ I.

Definition 3.3.6. Let I be an interval and t0 ∈ I. A differentiable function
x : I → R is a solution of the IVP (3.4) if for all t ∈ R we have x′(t) = f(t, x(t))
and x(t0) = x0.

We say that the IVP has a local solution if there exists a δ > 0 such that (3.4)
has a solution x on (x0 − δ, x0 + δ).

Now we can state the theorem of Picard-Lindelöf and in the sketch of its proof
we will also show how to construct approximately a solution to IVPs.

Theorem 3.18 (Picard-Lindelöf). Consider the initial value problem:

(3.5) x′(t) =
dx

dt
= f(t, x) and x(t0) = x0),

where f : U × V → R is a function, U, V are intervals with t0 in the interior of U
and x0 in the interior of V .
Assume that f is continuous and uniformly Lipschitz in x:

|f(t, x)− f(t, x′)| ≤ L|x− x′| for all t ∈ U, x, x′ ∈ V.

Then the IVP has a unique local solution.

We start with a more precise formulation of the assumptions on f .

We have that f is a continuous function defined f : U × V → R on the inter-
vals U = [t0 − a, t0 + a], V = [x0 − b, x0 + b] for a, b > 0, such that

|f(t, x)− f(t, x′)| ≤ L|x− x′| for all t ∈ U, x, x′ ∈ V.

The assumptions on f imply that it is bounded, i.e. there exists a M > 0 such that
|f(t, x)| ≤M for all (t, x) ∈ U × V . Hence, the theorem of Picard-Lindelöf asserts
that for δ < min a, 1/L, b/M the IVP has a solution on [t0 − δ, t0 + δ].

A key step in the proof is the reformulation of the theorem in terms of an integral
equation.

Lemma 3.19. The IVP has a solution if and only if

x(t) = x0 +

∫ t

t0

f(s, x(s))ds.

Proof. We define ϕ on U by ϕ(t) = f(t, x(t)). By the Fundamental Theorem

of Analysis x0 +
∫ t
t0
ϕ(s)ds is the anti-derivative of f whose value at t0 is x0. �
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The next step is an iterative procedure to solve the integral equation, also
known as Picard iteration.
We define an operator T on (C(I), ‖.‖∞) for an interval I by

T (x)(t) = x0 +

∫ t

t0

f(s, x(s))ds.

Then x solves the integral equation

x(t) = x0 +

∫ t

t0

f(s, x(s))ds.

if and only if T (x) = x. We leave the technical details out of the discussion, which
just amount to modify the discussion of the solution of linear integral equations to
the non-linear case.
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Continuous functions between normed spaces

Continuous functions may be viewed as the simplest functions. In this chapter
we define continuous functions between normed spaces. Before are we shifting our
focus to special classes of sets in normed spaces: open sets and closed sets. We also
comment briefly on the concept of topologies on a set.

4.1. Closed and open sets

Here is a reminder about the definition of limit points of a set and closed
subsets.

Suppose (X, ‖.‖) is a normed space and A a subset of X. Then x ∈ X is a
limit point of A if there exists a sequence of points in A that converges to x. We
denote by A the set of all limit points of A. Other terminology for limit point is
accumulation point. Note that a sequence might have several limit points.

Lemma 4.1. For a subset A of a normed space (X, ‖.‖) we have A ⊆ A.

Proof. We have to show that any point a of A is limit point of A. Hence we
have to find a sequence (an) in A that converges to a. There is an evident choice:
Namely the constant sequence (a, a, ...). �

As we have noted before, A might be strictly larger than A. This lead us to
define a special class of sets, closed sets, where this cannot occur: A is called closed
if A = A.

The definition of the closure of a set involved sequences which we would like to
formulate it more elementary.

Lemma 4.2. Suppose (X, ‖.‖) is a normed space and A a subset of X. Then
x ∈ X is a limit point of A if and only if we have that for every ε > 0 there exists
a ∈ A with ‖x− a‖ < ε.

Proof. (⇒) Suppose x ∈ X is a limit point of A. Then there exists (an) in A
such that an → x. Hence for any ε > 0 there exists an N ∈ N such that ‖x−an‖ < ε
for any n ≥ N . In particular, any ball Bε(x) contains a point different from a.

(⇐) Since we have that Bε(x) ∩ A 6= ∅ for any ε > 0, we definitely have for
ε = 1/n for n = 1, 2, 3, .. that there exists an element an ∈ A with ‖x− an‖ < 1/n.
The sequence (an) lies in A and converges to x. �

Let us turn this criterion into a useful characterization of closed subsets.

Lemma 4.3. Suppose (X, ‖.‖) is a normed space and A a subset of X. Then A
is closed if and only if for each x ∈ X\A there exists ε > 0 such that Bε(x) ⊆ X\A.

47
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Proof. By definition a closed subset contains all its limit points. Hence A
is closed if and only if its complement X\A contains no limit points of A. Now,
a point x ∈ X is not a limit point of A if and only if there exists some ε > 0
such that for all a ∈ A we have ‖x − a‖ ≥ ε, i.e. Bε(x) ∩ A = ∅ or equivalently
Bε(x) ⊆ X\A. �

Lemma 4.4. Suppose (X, ‖.‖) is a normed space and A a subset of X. Then A
is a closed set.

Proof. Let x be a limit point of A. Then for any ε > 0 there exists a ∈ A
with ‖x − a‖ < ε/2. Since a ∈ A, it is a limit point A, and there exists a point
a1 ∈ A with ‖a− a1‖ < ε/2. Thus we have

‖x− a1‖ ≤ ‖x− a‖+ ‖a− a1‖ < ε.

Hence x ∈ A. �

An elementary and useful fact concerns closed subspaces of Banach spaces that
is one of tasks of next weeks problem set.

Lemma 4.5. Suppose A is a closed subset of a Banach space (X, ‖.‖). Then
(A, ‖.‖) is a complete subspace of X, i.e. (A, ‖.‖) is a Banach space.

Let us close the discussion of closed sets with a useful characterization.

Lemma 4.6. Let (X, ‖.‖) be a normed spaces and A ⊆ X. Then A is the
smallest closed subset containing A. Hence A is the intersection of all closed sets
containing A.

Proof. Let B be a closed subset with A ⊆ B. If a is a limit point of A, then
there exists (an) in A ⊆ B such that an → a. Hence a ∈ B = B and thus A ⊆ B.
Since the intersection of an arbitrary intersection of closed subsets is closed, we have
that the intersection of all closed sets containing A is closed. By the minimality of
A we deduce the required statement. �

Corollary 4.1.1. Let (X, ‖.‖) be a normed spaces and A ⊆ X. Then

A = ∩n∈N(A+B1/n(0)).

The proof of the corollary is part of the next problem set.

Our concept of open sets in normed spaces relies on the existence of a distance
function since we define a notion of “closeness” of a point by the use of balls Br(x).

Definition 4.1.2. Suppose X is a normed space and U ⊆ X.

(1) A point x ∈ U is called an interior point of U if there is an ε > 0 such
that Bε(x) ⊆ U . We denote the set of all interior points of U by int(U).

(2) The set U is called open if each point in U is an interior point, i.e. for
each point x ∈ U there is an ε > 0 such that Bε(x) ⊆ U .

The characterization of closed sets via its complement becomes in terms of open
sets:

Lemma 4.7. A subset A of a normed space X is closed if and only if its com-
plement X\A is open.

We collect some elementary observations about open sets.
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Lemma 4.8. If U1 and U2 are open subsets of a normed space X, then U1 ∩U2

is also open.

Proof. If x ∈ U1 ∩U2 there is an ε1 > 0 for which Bε1(x) ⊆ U1 and an ε2 > 0
for which Bε2(x) ⊆ U2. Then ε = min{ε1, ε2} gives a ball Bε(x) ⊆ U1 ∩ U2. �

Furthermore, the empty set and X are open sets, the union of arbitrary collec-
tions of open sets is also an open set. As in the case of the closure of a set we have
that the interior of a set is open and that it is the largest open set containing the
set.

Definition 4.1.3. For a set A in a normed space X we define its boundary,
∂A by ∂A := A ∩X\A, i.e. the boundary of A is the set of all limit points which
are arbitrarily close to both A and its complement X\A.

The set ∂A is symmetric under changing A to X\A and thus we have ∂A =
∂(X\A).

Definition 4.1.4. We call the set of all open sets of a normed space X, the
topology of X.

One has that ∂A = A\intA and we have intA ∩ ∂A = ∅ and A = intA ∪ ∂A.

An important concept in this context is the one of a dense subset.

Definition 4.1.5. A subset A of (X, ‖.‖) is said to be dense in R if its closure
is equal to X, i.e. A = X. If the dense subset A is countable, then X is called
separable.
In other words, a subset A of a normed space X is dense in X if for each x ∈ X
and each ε > 0 there exists a vector y ∈ A such that

‖x− y‖ < ε.

The relevance of a dense subset of a normed space is that it provides a way to
approximate elements of the normed space by ones from the dense subset up to any
given precision.

Lemma 4.9. Suppose A is a dense subspace of a normed space X. For any
x ∈ X there exists a sequence of elements xk ∈ A such that ‖xk − x‖ → 0 as
k →∞.

The real numbers have the Archimedean property: For any x, y ∈ R there
exists a natural number n such that nx > y.

As a consequence we deduce a that Q is a dense subspace of R.

Proposition 4.1.6. For x, y ∈ R with x < y there exists a r ∈ Q such that
x < r < y.

Proof. Goal: Find m,n ∈ Z such that

(4.1) x <
m

n
< y.

First step: Choose the denominator of n large such that there exists an m ∈ Z such
that x ∈ (m−1n , mn ) are separating x and y. The Archimedean property of R allows
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us to find a n ∈ N with this property. More concretely, we pick n ∈ N large enough
such that 1/n < y − x or equivalently

(4.2) x < y − 1

n

Second step: Inequality (4.1) is equivalent to nx < m < ny. From the first step we
have n already chosen. Now we choose m ∈ Z to be the smallest integer greater
than nx. In other words, we pick m ∈ Z such that m− 1 ≤ nx < m. Thus we have
m− 1 ≤ nx, i.e. m ≤ nx+ 1. By inequality (4.2)

m ≤ nx+ 1 < n(y − 1

n
) + 1 = ny,

hence we have m < ny, i.e. m/n < y. Once more by (4.2) we have x ≤ m/n. These
two inequalities yield the desired assertion: x < m/n < y. �

In an similar manner one may deduce that the irrational numbers are dense in
the real numbers.

Lemma 4.10. For x, y ∈ R with x < y there exists a r ∈ R\Q such that
x < r < y.

Proof. Pick your favorite irrational number, a popular choice is
√

2. Then by
the density of the rational numbers there exists a rational number r ∈ (x/

√
2, y/
√

2).

Hence r
√

2 ∈ (x, y). Note that r
√

2 is an irrational number in (x, y) that completes
our argument. �

Let us state an example of a dense subset of the `p-spaces.

Proposition 4.1.7. For 1 ≤ p ≤ ∞ the set cf of all sequences with only finitely
many non-zero entries is dense in `p.

Proof. See problem set. �

The sequence spaces `p behave differently whether p ∈ [1,∞) or p = ∞. One
instance of this phenomenon have we deduced from the definition of the respective
norms: in one case the spaces consist of convergent sequence while for p = ∞ we
have just bounded sequences. A different incarnation of this prinicple is that `∞ is
not separable while all the other `p-spaces are separable.

Proposition 4.1.8. (1) For 1 ≤ p <∞ the sequence spaces `p are sepa-
rable.

(2) `∞ is not separable.

Proof. Let us split up the arguments:

(1) For 1 ≤ p < ∞ this is a consequence of Q = R and the definition of the
‖.‖p-norm. The details are part of a problem on the next problem set.

(2) We have to show that there exists no countable dense subset of `∞.
Suppose that A is a countable dense subset of `∞. We denote by b the set
of all binary sequences, i.e. all sequences where the elements are either 0
or 1. We have shown that b is uncountable in Chapter 1. Note that b is
a subset of `∞.

For a x ∈ b there exists an xa ∈ A such that ‖x − xa‖∞ < 1/2, since
A is dense in `∞ and thus also in b. The mapping a 7→ xa is injective,
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since for any two distinct binary sequences a and a′ we have ‖a−a′‖∞ = 1
and thus we have:

1 = ‖a− a′‖∞ ≤ ‖a− xa‖∞ + ‖xa′ − a′‖∞ + ‖xa − xa′‖∞

and ‖a− xa‖∞ < 1/2 and ‖xa′ − a′‖∞ < 1/2 implies ‖xa − xa′‖∞ > 0.
In summary, we have constructed an injective map between the uncount-
able set b and the dense countable subset X, but b is uncountable and
thus we have arrived at a contradiction.

�

Continuous functions on a bounded interval have as dense subset the space of
polynomials, a result of utmost importance in analysis and its applications.

Theorem 4.11 (Weierstraß). Let [a, b] be a bounded interval of R. Then the
space of polynomials P is dense in C[a, b]. In other words, for any f ∈ C[a, b] we
that for any ε > 0 there exists a polynomial p such that ‖f − p‖∞ < ε.

There are a number of proofs of this deep theorem. We present the one given
by Landau. First we note that we can after take instead of [a, b] the interval [0, 1]
and assume that f(0) = f(1) = 0, and ‖f‖∞ = 1. Before we prove Weierstrass’s
theorem we introduce a sequence of polynomials (qn) and state some of its proper-
ties.

We consider on [−1, 1] the polynomials qn(x) = cn(1 − x2)n, where cn is the nor-

malization factor cn = (
∫ 1

−1(1−x2)ndx)−1. Then the inequality (1−x2)n ≥ 1−nx2

on (0, 1) gives that cn <
√
n. Consequently, we have

∫ 1

−1(1−x2)ndx ≥ 2
∫ 1/
√
n

0
(1−

nx2)dx > 1/
√
n. Note that qn(−x) = qn(x) and

(1) qn(x) ≥ 0 for x ∈ [−1, 1];

(2)
∫ 1

−1 qn(x)dx = 1;

(3) If 0 < δ < |x|, then qn(x) <
√
n(1 − x2)n ≤ (1 − δ2)n. Hence qn(x) → 0

as n→∞ uniformly for |x| ≥ δ.

The sequence (qn)n∈N is a so-called approximate identity for convolution:
∫ 1

−1 f(t)pn(x−
t)dt→ f(x) uniformly as n→∞, i.e. ‖pn ∗ f − f‖∞ → 0 as n→∞.

Proof. Landau defines pn(x) =
∫ 1

−1 f(x− t)qn(t)dt which are polynomials of

degree n. Since x − t ∈ [−1, 1] when t ∈ [0, 1] we may express pn as pn(x) =∫ 1

0
f(t)qn(x− t)dt.

Since f is uniformly continuous on [−1, 1] we have |f(x) − f(y)|ε for |x − y| < δ.
For x ∈ [0, 1] we have

pn(x)− f(x) =

∫ 1

−1
f(x− t)qn(t)dt− f(x)

∫ 1

−1
qn(t)dt.
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By splitting
∫ 1

−1 in
∫ −1
−δ +

∫ δ
−δ +

∫ 1

δ
we obtain

|pn(x)− f(x)| ≤
∫ 1

−1
|f(x− t)− f(t)|qn(t)dt

≤ ε
∫ δ

−δ
qn(t)dt+ ε

∫ 1

δ

qn(t)dt

≤ ε+ 4
√
n(1− δ2)n.

Hence, there exists an N such that for n ≥ N : |pn(x) − f(x)| ≤ 2ε and so ‖pn −
f‖∞ ≤ 2ε. �

Weierstraß established also a variant of this theorem for continuous periodic
functions where trigonometric polynomials enter the picture instead of polynomials.
We denote by T the space of all functions of the form

tn(x) = c−ne
−inx + · · ·+ c−1e

−ix + c0 + +c1e
ix + · · ·+ cne

inx

for n ∈ N. A function of the form tn is a trigonometric polynomial of degree n.
Expressing eix in terms of cosx and sinx gives the following form for tn:

tn(x) = a0 +

n∑
k=1

(ak cos kx+ bk sin kx).

Theorem 4.12 (Weierstraß). Suppose f is a continuous function of period
2π. Then for every ε > 0 there exists a trigononmetric polynomial t such that
‖f − t‖∞ < ε. In other words, T is dense in the space of all 2π-periodic continuous
functions with resepct to the ‖.‖∞-norm.

Our proof strategy resembles closely the one for the non-periodic case since
we use once more an approximate identity to construct a trigonometric polynomial
with the desired properties. In the periodic case the Poisson kernel {Pr}r∈(0,1) is a

good choice. Recall that Pr(ϕ) = 1
2π

∑
k∈Z r

|k|eikϕ. The Poisson kernel is used to
solve the Dirichlet problem for the Laplacian on the open unit disc with prescribed
boundary data given by a continuous function f . The solution of this problem is
given by u = Pr ∗f and so we have that u is a harmonic function, i.e. ∆u = 0. The
Poisson kernel has some useful properties.

(1) Pr(ϕ) ≥ 0 on [−π, π];
(2) Pr(−ϕ) = P (ϕ);
(3)

∫ π
−π P (ϕ)dϕ = 1;

(4) sup0<δ≤|ϕ|≤π Pr(ϕ) ≤ Pr(δ) and thus Pr(δ)→ 0 uniformly as δ → 0.

In particular, we have that for a continuous function f on [−π, π] that fr(ϕ) :=
1
2pi

∫ π
−π f(t)Pr(ϕ− t)dt satisfies

‖fr − f‖∞ → 0 as r → 1.

Proof. We can restrict the discussion to f : [−π, π]→ R such that ‖f‖∞ = 1
and f(−π) = f(π) = 0. We know that for every ε > 0 there is some r ∈ (0, 1) such
that ‖f − fr‖∞ ≤ ε. Note that fr may be expressed as

fr(ϕ) =
∑
k∈Z

f̂(k)r|k|eikϕ
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with f̂(k) = 1
2π

∫ π
−π f(t)e−iktdt the k-th Fourier coefficient of f . Then we have∑

|k|≥N

|f̂(k)r|k||eikϕ ≤
∑
|k|≥N

r|k| = 2
rN

1− r
.

Now we choose N so that 2rN/(1− r) < ε. Consequently, the trigonometric poly-

nomial tN (ϕ) =
∑
|k|<N f̂(k)r|k||eikϕ is the looked-after approximation of f :

‖f − fN‖∞ ≤ ‖f − fr‖∞ + ‖fr − f‖∞ ≤ 2ε.

�

We close our interlude on dense subsets with the existence of a completion for
any normed space X.

Proposition 4.1.9. For any normed space (X,no.X) there exists a Banach

space (X̃, ‖.‖X̃), the completion of X, and there is an injective linear mapping

ι : X → B such that ‖ι(x)‖X̃ = ‖x‖X for all x ∈ X and ι(X) is dense in X̃.

There is several ways to prove that any normed space has a completion. Since
we are just interested in the statement but not so much in its proof, we move on to
just state some interesting consequences.

Proposition 4.1.10. For 1 ≤ p < ∞ the normed space (C[a, b], ‖.‖p) has a
completion, which we denote by Lp[a, b].

The spaces Lp[a, b] are an important class of function spaces which have inti-
mate ties to the theory of Lebesgues measure and measurable functions.

4.1.1. Continuous functions. Our definition of open sets is naturally aligned
with the concept of continuous function. In fact, it enables us to define a continuous
function without recourse to preliminary definition of continuity at a point.

Proposition 4.1.11. Let (X, ‖.‖X) and (Y, ‖.‖Y ) be normed spaces. A function
f : X → Y is continuous in the ε − δ sense if and only if the preimage f−1(U) is
open for each open set U ⊆ Y .

Recall that for a set U ⊆ Y its preimage is a subset of X given by f−1(U) =
{x ∈ X : f(x) ∈ U}.

Proof. (⇒) Let us start with the ε− δ defintion: For each x0 ∈ X and each
ε > 0 there is a δ > 0 such that

‖x− x0‖X < δ ⇒ ‖f(x)− f(x0)‖Y < ε.

In terms of open balls, this says

x ∈ Bδ(x0) ⇒ f(x) ∈ Bε(f(x0)).

Let us phrase this in terms of preimages: For each x0 ∈ X and ε > 0 there is a δ
with

Bδ(x0) ⊆ f−1(Bε(f(x0))).

Hence we have established our claim for any open ball in Y and by our definition
of open sets it is possible to extend this argument to any open set: If U ⊆ Y is
open and if x0 ∈ f−1(U), then f(x) ∈ U . Since U is open, it contains some ball
Bε(f(x0)) and so f−1(Bε(f(x0)) contains Bδ(x0). Hence f−1(U) is open since any
point x0 in it also contains a ball around it.
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(⇐) If for any open set U ⊆ Y its preimage f−1(U) is open, then f−1(Bε(f(x0)))
is an open set of X that includes x0 and hence some Bδ(x0). In this way we get a
δ for each ε and if you write out the conditions of being in a δ and ε ball around
the respective points, then you get the familiar ε− δ definition. �

Linear mapping between normed spaces are an important class of continuous
functions. In the treatment of integral equations we noted that integral operators T
with continuous kernels satisfy ‖Tf‖∞ ≤ C‖f‖∞ for some C ≥ 0 which expresses
that T is a bounded operator on the space of continuous functions with respect to
the supremums-norm. We formalize this in the following definition.

Definition 4.1.12. Suppose (X, ‖.‖X) and (Y, ‖.‖Y ) are normed spaces. A
linear mapping T : X → Y is called bounded if there exists a constant M ≥ 0 such
that

‖Tx‖Y ≤M‖x‖X for all x ∈ X.

A more extensive account of bounded operators is given in the next section.
The relevance of bounded operators is supported by the fact that a linear map
between normed spaces is continuous if and only if the linear map is bounded.

Proposition 4.1.13. Let X and Y be normed spaces. For a linear transfor-
mation T : X → Y the following conditions are equivalent:

(1) T is uniformly continuous.
(2) T is continuous on X.
(3) T is continuous at 0.
(4) T is a bounded operator.

Proof. We will show the following implications to demonstrate the assertions.
From the definitions we have (i) implies (ii) and (ii) implies (iii).

(iii)⇒ (iv) By the continuity of T at 0 there exists a δ > 0 for ε = 1 such that
‖Tx‖ < ε = 1 for ‖x‖ ≤ δ. We want to show that there exists a constant
C > 0 such that

‖Tx‖ ≤ C‖x‖ for all x with ‖x‖ ≤ 1

Note that for x ∈ B1(0) we have δx
2 ∈ Bδ(0):

‖ δx2 ‖ = δ‖x‖/2 ≤ δ/2 < δ.

Hence ‖T ( δx2 )‖ < 1 Since T is linear transformation this condition is

equivalent to ‖T ( δx2 )‖ = δ‖T (x)‖/2 < 1 and thus ‖Tx‖ ≤ 2/δ for x ∈
B1(0). In other words, T is a bounded operator.

(iv)⇒ (i) Since T is linear we have

‖Tx− Ty‖ = ‖T (x− y)‖ ≤ C‖x− y‖

for all x, y ∈ X. Let ε > 0 and δ = ε/C. Then for all x, y ∈ X with
‖x− y‖ < δ

‖Tx− Ty‖ = ‖T (x− y)‖ ≤ C‖x− y‖ ≤ Cε/C = ε.

Hence T is uniformly continuous.

�
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We just state the equivalence between continuity and the boundedness of a
linear mapping as a separate statement due to its relevance.

Proposition 4.1.14 (Boundedness ⇔ Continuity). A linear operator T be-
tween two normed spaces X and Y is continuous if and only if it is bounded.

Lemma 4.13. Let X be an innerproduct space. Then the innerproduct is con-
tinuous in each component.

Proof. We have to show that x→ 〈x, y〉 is continuous for a fixed y ∈ X. By
the symmetry of innerproducts this also yields the continuity with respect to the
second component.
By Cauchy-Schwarz

| 〈x− x′, y〉 | ≤ ‖x− x′‖‖y‖
for a fixed y. Hence we have a bounded map and so we proved its continuity. �

Example 4.1.15. For a = (an) ∈ `∞ we define ϕ(x) =
∑
n anxn for (xn)`1.

Then ϕ is continuous, i.e. a bounded linear functional on `1.
First we show that ϕ is well-defined.

|ϕ(x)| ≤
∑
n

|an||xn| ≤ ‖a‖∞
∑
n

|xn| = ‖a‖∞‖x‖1.

Furthermore this yields that ϕ is a bounded linear mapping from `1 to C and hence
continuous.

Recall that the kernel of a linear operator T : X → Y is the subset of X defined
by

kerT = {x ∈ X : Tx = 0}.

Proposition 4.1.16. Let T be a linear map between normed spaces X and Y .
Then the kernel of T is a closed subspace of X.

Proof. Suppose (xn) is a sequence in kerT with xn → x in X. Then the
continuity of T implies that

Tx = T ( lim
n→∞

xn) = lim
n→∞

Txn = 0,

and x ∈ kerT . �

The range of a bounded linear map is in general not closed.

Examples 4.1.17. (1) We define the Volterra integral operator V : (C[0, 1], ‖.‖∞)→
(C[0, 1], ‖.‖∞) by

V f(x) :=

∫ x

0

f(y)dy.

The operator V is continuous: ‖V f‖∞ ≤ supx∈[0,1]
∫ x
0
|f(y)|dy ≤

∫ 1

0
|f(y)|dy ≤

‖f‖∞. Since V (1) = x and ‖x‖∞ = 1 we have that ‖V ‖ = 1.

The range of V is the set of continuously differentiable functions on [0, 1]
that vanish at x = 0. Thus the range of V is a subspace of C[0, 1], which
is not closed (The proof is part of the next problem set).
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(2) Let T be the multiplication operator Tx = (xn

n ) on `∞. Then T is a
bounded linear operator. The range of T is not closed:

The sequence x0(n) = (1,
√

2, ...,
√
n), 0, 0, ...) is mapped to the sequence

y
(
0n) = (1, 1/

√
2, ..., 1/

√
n, 0, 0, 0, ...). Hence y

(
0n) are inT (`∞). The se-

quence (x
(
0n))n∈N converges to x0 = (1,

√
2, ...,

√
n), ...) which is not in

`∞. Hence the range of T is not closed.

We close the discussion of continuous mappings with a statement about the
extension of a continuous map from a dense subspace to the whole space.

Proposition 4.1.18. Let X be a normed space and Y a Banach space. Suppose
M is a dense subspace of X and T : M → Y is a continuous linear map. Then
there is a unique continuous linear map T : X → Y such that Tx = Tx for all
x ∈M . The map T is bounded and we have ‖T‖ = ‖T‖.

The map T is called the extension of T .

Proof. Since M is dense in X, we have for every x ∈ X that there is a
sequence (xn) in M that converges to x. A natural candidate for the extension of
T is Tx := limn→∞ Txn. Consider y(n) = (1, ...,

√
n, 0, 0, 0, ...). Then Tyn = x(n)

and y(n) ∈ `∞ for all n ∈ N, but (x
(n)
0 ) is a sequence that converges to x0 which is

not in T (X). Hence T (X) is not closed in `∞.
There is two issues we have to address: (i) Does the limit in the definition of Tx
exist?, and (ii) Does the definition of Tx dependent on the sequence (xn) used to
approximate x?

(1) Since T is bounded and (xn) is a Cauchy sequence, we have that (Txn)
is also a Cauchy sequence. By the completeness of Y , (Txn) has a limit
and it is this limit that we denote by Tx.

(2) Suppose that (xn) and (x′n) are two sequences in M that converge to x,
then

‖xn − x′n‖ ≤ ‖xn − x‖+ ‖x− x′n‖

and thus we obtain as n→∞ that ‖xn − x′n‖ → 0. By the continuity of
T we have that

‖Txn − Tx′n‖ ≤ ‖T‖‖xn − x′n‖

and as a consequence we get ‖Txn−Tx′n‖ → 0 as n→∞. In other words,
the definition of Tx does not depend on the approximating sequence.

The map T is linear, since T is linear. For x ∈ M we take the constant sequence
(x, x, ...) to see that T is an extension of T . The boundedness of T is once more a
consequence of the continuity of T :

‖Tx‖ = lim
n→∞

‖Txn‖ = ‖T‖ lim
n→∞

‖xn‖ = ‖T‖‖x‖,

which also gives ‖T‖ ≤ ‖T‖ and since we have for x ∈M that Tx = Tx this gives
‖T‖ = ‖T‖.

The uniqueness of the extension T is deduced by contradiction. Suppose there
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is another continuous linear map T̃ such that T̃ x = Tx for x ∈ M . For x ∈ X we
have a sequence (xn) in M converging to x:

T̃ x = lim
n→∞

T̃ xn = lim
n→∞

Txn = Tx

and thus T̃ x = Tx for all x ∈ X, i.e. T̃ = T . �

This statement is also true for general continuous functions between normed
spaces.

4.1.2. Bounded linear operators between normed spaces. Mappings
between vector spaces are of interest in a wide range of applications. We restrict
our focus to mappings that respect the vector space structure: linear mappings aka
linear operators.

Definition 4.1.19. Let X,Y be vector spaces over the same scalar field F.
Then a mapping T : X → Y is linear if

T (x+ λy) = Tx+ λTy

for all x, y ∈ X and λ ∈ F. We denote by L(X,Y ) the set of all linear operators
between X and Y .

Linear mappings are a special class of functions between two sets. Hence it has
the structure of a vector space.Here are some examples of linear mappings for the
classes of vector spaces of our interest.

(1) Linear mappings between Fn and Fm are given by m×n matrices A with
entries in F, x 7→ Ax for x ∈ Fn.

(2) On the space of polynomials Pn of degree at most n we define the differen-
tiation operator Dp(x) = a1x + · · ·manxn−1, the operator p 7→

∫
p(x)dx

and the evaluation operator Tp(x) = p(0).
(3) Operators on sequence spaces: For an element of the vector space s,

a sequence x = (xn)n, we define the left shift Lx = (0, x0, x1, x2, ...),
the right shift Rx = (x1, x2, ...) and the multiplication operator Tax =
(a0x0, a1x1, ...) for a sequence a = (a0, a1, ...) ∈ s. On the vector space of
convergent sequences c we define Tx = limn xn for x = (xn) ∈ c.

(4) Operators on function spaces: The set of continuous functions C(I) on an
interval of R, popular choices for I are [0, 1] and R. For f ∈ C(I) we define
the integral operator f 7→

∫
k(x, y)f(y)dx for a function k defined on I×I,

the kernel of the operator, and the evaluation operator Tf(x) = f(a) for
a ∈ I. For a differentiable continuous function f we are able to study the
differentiation operator Df(x) = f ′(x).

Norms on these spaces provide a tool to understand the properties of these mappings
via the notion of operator norm that measures the size of the measure of distortion
of x induced by T : For normed spaces (X, ‖.‖X), (Y, ‖.‖Y ) and a linear mapping
T : X → Y we are interested in operators such that there exists a constant c such
that

‖Tx‖Y ≤ c‖x‖X forall x ∈ X.
Often we will omit the subscripts to ease the notation. The operators with a finite c
are of particular relevance and are called bounded operators. We denote by B(X,Y )
the set of all bounded linear operators from X to Y .
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Definition 4.1.20. Let T be a linear operator between the normed spaces
(X, ‖.‖X) and (Y, ‖.‖Y ). The operator norm of T is defined by

‖T‖ = sup{‖Tx‖Y
‖x‖X

: ‖x‖X 6= 0}.

Sometimes we denote the operator norm of T by ‖T‖op.

Lemma 4.14. For T ∈ B(X,Y ) the following quantities are all equal to the
operator norm ‖T‖ of T :

(1) C1 = inf{c ∈ R : ‖Tx‖Y ≤ c‖x‖X},
(2) C2 = sup{‖Tx‖Y : ‖x‖X ≤ 1},
(3) C3 = sup{‖Tx‖Y : ‖x‖X = 1}.

Proof. The argument is based on some inequalities:

(1) C2 ≤ C1: By definition of C1 we have ‖Tx‖ ≤ C1‖x‖. Hence for all
x ∈ B1(0) we have ‖Tx‖ ≤ C1 and thus we have C2 ≤ C1.

(2) C3 ≤ C2: For all x ∈ B1(0) we have ‖Tx‖ ≤ C2. Pick an x with ‖x‖ = 1
and define the sequence of vectors (xn = (1 − 1/n)v)n which all have
‖xn‖ ≤ 1 and hence ‖Txn‖ ≤ C2 for all n ∈ N. Taking the limit gives
‖Tx‖ ≤ C2 and thus C3 ≤ C2.

(3) ‖T‖ ≤ C3 : By definition of C3 we have ‖Tx‖ ≤ C3 for all x with ‖x‖ = 1.
Take an arbitrary non-zero vector x ∈ X. Then x/‖x‖ has unit length

and hence ‖T ( x
‖x‖ )‖ = ‖Tx‖

‖x‖ ≤ C3, which establishes the desired inequality

‖T‖ ≤ C3.
(4) We have ‖Tx‖‖x‖ ≤ ‖T‖ for all x ∈ X. Hence ‖Tx‖ ≤ ‖T‖‖x‖ for all x ∈

X. Hence we have C1 ≤ ‖T‖. Hence we have C1 ≤ C2 ≤ C3 ≤ ‖T‖ ≤ C1

and so the assertion is established.

�

These different expressions for the operator norm of a linear operator are el-
ementary but nonetheless useful. Before we discuss some examples we note some
properties of the operator norm.

Proposition 4.1.21. For S, T ∈ B(X,Y ) we have

(1) ‖I‖ = 1 for the identity operator I : X → X.
(2) ‖λS + µT‖ ≤ |λ|‖S‖+ |µ|‖T‖ for λ, µ ∈ F .
(3) Submultiplicativity: ‖S ◦ T‖ ≤ ‖S‖‖T‖.
(4) If T has an inverse T−1, then ‖T−1‖ ≥ ‖T‖−1.

Proof. (1) By the definition of the operator norm we have ‖I‖ = 1.
(2) The triangle inequality for norms yields the assertion.
(3) By definition we have

‖S ◦ T‖ = sup{‖STx‖ : ‖x‖ = 1} ≤ sup{‖S‖‖Tx‖ : ‖x‖ = 1} = ‖S‖‖T‖.

(4) T−1T = I and hence 1 = ‖I‖ ≤ ‖T‖‖T−1‖, i.e. ‖T−1‖ ≥ ‖T‖−1.
�

Proposition 4.1.22. The vector space B(X,Y ) of bounded operators between
two normed spaces is a normed spaces with respect to the operator norm.
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Proof. The preceding proposition implies the homogeneity property and the
triangle inequality. The operator norm is clearly positive definite, and we have
‖T‖ = 0 if and only if T = 0 because it is defined in terms of a norm on Y . fined
in terms of a norm on Y . �

We treat some of the operators defined above.

(1) The right shift Rx = (0, x0, x1, x2, ...) has ‖R‖ = 1 and also the left shift
Lx = (x2, x3, ...) ‖L‖ = 1 on `∞. For the multiplication operator Tax =
(a0x0, a1x1, ...) for a sequence a = (a0, a1, ...) ∈ s we have ‖Ta‖ = ‖a‖∞
on `∞. Let us look at the right shift operator. The operator norm is given
by ‖R‖ = sup{‖Rx‖∞ : ‖x‖∞ = 1}:

‖Rx‖∞ = 0 + |x0|2 + |x1|2 + · · · = ‖x‖∞ = ‖x‖∞,

for all x ∈ `∞, hence ‖R‖ = 1. In a similar way one gets the norms of the
other operators.

(2) The operator norm of the integral operator Tkf(x) =
∫ b
a
k(x, y)f(y)dy

on C[a, b] with ‖.‖∞ for an interval of finite length with a kernel k ∈
C([a, b]× [a, b]) is (b− a) |k‖∞. Note that

‖Tkf‖∞ = sup{|
∫ b

a

k(x, y)f(y)dy| : x ∈ [a, b]}

≤ sup{
∫ b

a

|k(x, y)||f(y)|dy : x ∈ [a, b]}

≤ ‖k‖∞‖f‖∞(b− a),

so we have ‖Tkf‖∞ ≤ ‖k‖∞‖f‖∞(b − a) for all non-zero f ∈ C[a, b], i.e.
‖Tk‖ ≤ ‖k‖∞(b− a). For the constant function f(x) = 1 for all x ∈ [a, b]
we get ‖Tk‖ = 1.

Some classes of operators on a normed space X: (i) isometries on X are linear
operators T with ‖Tx‖ = ‖x‖ for all x ∈ X, (ii) projections are linear operators
P on X satisfying P 2 = P . A different way is to specify norms ‖.‖a and ‖.‖b on
Cn and Cm, respectively. Then these norms induce a norm on Mm×n(C), known
as the induced norm. From a general perspective that is the operator norm of the
induced linear transformation.

Example 4.1.23. Let A : Cn → Cn be a linear operator given by a matrix
A = (aij) and we put on both spaces the 1-norm. Let A = (a1| · · · |an). Then
‖A‖op = max 1 ≤ j ≤ n‖aj‖1, i.e. it is the maximum column sum.
We have Ax =

∑n
j=1 aijxj and thus

‖A‖op = ‖Ax‖1 ≤
n∑
j=1

|aij ||xj | ≤ ‖x‖1 max
j
‖aj‖1.

Hence max‖x‖1=1 ‖Ax‖1 ≤ maxj ‖aj‖1.
Let ej be the jth standard basis vector for Cn. Then ‖A‖op = maxj ‖aj‖1.

We state a sufficient condition on the infinite matrix A that implies that the
linear mapping T (x) = Ax maps `p into `p for p ∈ [1,∞]. This statement is often
called Schur’s test, after the eminent German mathematician I. Schur.
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Proposition 4.1.24. Let A = (aij)i,j∈N be an infinite matrix such that

Mc = sup
i∈N

∞∑
j=1

|aij | <∞, Mr = sup
j∈N

∞∑
i=1

|aij | <∞.

Then we have the following for each p ∈ [1,∞].

(1) For x ∈ `p the series (Ax)i =
∑∞
j=1 aijxj converges for i = 1, 2, ..., and

((Ax)i) is in `p.
(2) The map T (x) = Ax is bounded on `p and its operator norm satisfies:

‖T‖ ≤M1/q
c M1/p

r ,

where q is given by q = p/(p− 1).

Proof. We leave the proof for the reader. Split it up in the case p = 1, p =∞
and p ∈ (1,∞) and use Hölder’s inequality. �

We move on to the properties of the class of all bounded operators between
normed spaces.

Proposition 4.1.25. The normed space of bounded operators (B(X,Y ), ‖.‖op)
is complete if and only if Y is a Banach space.

The Banach space (B(X,C), ‖.‖op) is known as the dual space of X, denoted
by X ′, and its elements are refered to as functionals on X.

Proof. Let (Tn) be a Cauchy sequence in B(X,Y ), so for any ε > 0 there
exists a N ∈ N such that for all m,n ≥ N we have ‖Tm− Tn‖op < ε. Hence for any
x ∈ X we have

‖(Tm − Tn)x‖Y ≤ ‖Tm − Tn‖op‖x‖X < ε‖x‖X .
Hence for all x ∈ X the sequence (Tnx) is a Cauchy sequence in Y . Since Y is a
Banach space, it has a limit denoted by Tx, and thus we define Tx = limn→∞ Tnx.
The limit operator T is linear and bounded.

‖Tx‖Y ≤ sup
n
‖Tnx‖Y ≤ ‖x‖X sup

n
‖Tn‖op,

and thus we have ‖T‖op ≤ supn ‖Tn‖op, i.e. T ∈ B(X,Y ).
We show that ‖Tn − T‖op → 0. We assume otherwise that ‖Tn − T‖op does not
converge to 0. Then there exists an ε > 0 and a subsequence (Tnk

)k of (Tn) such
that

‖Tn − T‖op ≥ ε for all k.

Consequently, for every k there exists a xk ∈ X with ‖xk‖ = 1 and

‖Tnk
(xk)− Tm(xk)‖ ≥ ε.

By assumption (Tn) is a Cauchy sequence, so one can choose a N0 such that for all
m,nk ≥ N0 we have

‖Tnk
(xk)− Tm(xk)‖ ≤ ε/2

and this gives

ε ≤ ‖Tnk
(xk)− T (xk)‖Y ≤ ‖Tnk

(xk)− Tm(xk)‖Y + ‖Tm(xk)− T (xk)‖Y .
Hence for all m ≥ N0 we have

‖Tm(xk)− T (xk)‖Y ≥ ε/2.
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That is a contradiction to the definition of T , thus we have Tm(xk)−T (xk)→ 0 in
(B(X,Y ), ‖.‖op). �

The operator norm on B(X,Y ) induces a notion of convergence for operators.

Definition 4.1.26. Suppose (Tn) is sequence of operators in B(X,Y ). If there
exists a T in B(X,Y ) such that

lim
n→∞

‖T − Tn‖ = 0,

then we say that Tn converges uniformly to T .

The definition of uniform convergence of operators is analogous to the uniform
convergence of sequences of continuous functions. So one might wonder about the
analog of pointwise convergent sequences of functions.

Definition 4.1.27. Suppose (Tn) is sequence of operators in B(X,Y ). If there
exists a bounded operator T such that Tnx→ Tx in Y for all x ∈ X, then we say
that Tn converges strongly to T .

Strong convergence does not imply uniform convergence, i.e. it is at strictly
weaker notion of convergence.

Example 4.1.28. On `2 we define Pn by Pn(x) = (x1, ..., xn, 0, 0, ....). Then
‖Pn − Pm‖ = 1 for n 6= m and thus (Pn) does not converge uniformly but for any
x ∈ `2 we have ‖Pnx− x‖2 → 0 as n→∞. In other words, Pn converges strongly
to I on `2.

4.1.3. Applications of operator norm. The operator norm provides a way
to measure the “size” of a linear mapping. The fixed point theorem of Banach relies
on contractions on a Banach space and we indicate a way to use this theorem for
solving systems of linear equations. We are interested in this system:

8x1 − x3 = 2

−2x1 + 5x2 = 3

−4x2 + 7x3 = 4

(i) Express the system in the form x = Ax + b and view A : R3 → R3 as a
linear operator on (R3, ‖.‖∞), where ‖x‖∞ = max{|x1|, |x2|, |x3|} is the
supremum norm of x = (x1, x2, x3) ∈ R3.

Our system is equivalent to

x1 = 1
4x3 + 1

4

x2 = 2
5x1 + 3

5

x3 = 4
7x2 + 4

7

and thus we are looking for solutions of

x = Ax+ b,
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where

A =

 0 0 1/8
2/5 0 0
0 4/7 0

 , b =

1/4
3/5
4/7

 .

We have

‖Ax‖∞ ≤ max 1/8, 2/3.4/7‖x‖∞
and thus A is a contraction: ‖Ax−Ay‖∞ ≤ 4

7‖x‖∞.

(ii) Since A is a contraction on (R3, ‖.‖∞) Banach’s fixed point theorem yields
that any x0 ∈ R3 may be used as starting point for a solution of our linear
system via iteration.

The space of n-tuples Fn is complete for any ‖.‖p-norm, so it is up to you, to pick
appropriate norms in the domain and target space.

The other application is once more about solutions of linear systems. Suppose
T is a bounded invertible linear operator on (X, ‖.‖) and b ∈ X a given vector. We
would like to solve Tx = b. In practice one has often to deal with faulty data and
so one actually has to deal with the system

T x̂ = b̂.

How does the solution x̂ of this system relate to the one of Tx = b?

We introduce the error vector e = x− x̂ and the residual vector r = b− b̂ = b−T x̂.
The residual vector is the vector which gives how much T x̂ fails to match b. Then
we have by linearity of T

Te = Tx− T x̂ = b− b̂ = e

and since T is invertible: e = T−1r:

‖e‖ ≤ ‖T−1‖‖r‖.

We also know that ‖b‖ ≤ ‖T‖‖x‖ and consequently,

‖e‖‖b‖ ≤ ‖T‖‖T−1‖‖x‖‖r‖

which may be written as
‖e‖
‖x‖
≤ ‖T‖‖T−1‖‖r‖

‖b‖
.

We denote ‖T‖‖T−1‖ by cond(T ) and call it the condition number of T , ‖e‖‖x‖ is the

relative error and ‖r‖
‖b‖ the relative residual of the system. The condition number

measures the quality of your linear system, which satisfies cond(T ) ≥ 1. A system
with cond(T ) around 2 or 3 is considered good.

4.1.4. Equivalent norms. On a vector space X one may define different
norms. We describe a way to compare these norms that respects basic properties,
e.g. convergent sequences.

Definition 4.1.29. Given a vector space X. Two norms ‖.‖a and ‖ − ‖b are
called equivalent if there exist (positive) constants C1, C2 such that

C1‖x‖a ≤ ‖x‖b ≤ C2‖x‖a for all x ∈ X.



Continuous functions between normed spaces 63

Two equivalent norms ‖.‖a and ‖ − ‖b on a vector space X give the same class
of convergent sequences: Namely, a sequence (xn) converges in (X, ‖.‖a) if and only
if (xn) converges in (X, ‖.‖b),i.e. there exists an x ∈ X such that

lim
n→∞

‖xn − x‖a = 0 ⇔ lim
n→∞

‖xn − x‖b = 0.

Lemma 4.15. Suppose ‖.‖a and ‖ − ‖b are equivalent norms on X.

(1) Then a sequence (xn) converges with respect to the ‖.‖a if and only if it
converges with respect to ‖.‖b.

(2) Then a sequence (xn) is Cauchy with respect to the ‖.‖a if and only if it
is Cauchy with respect to ‖.‖b.

Proof. We just give the proof for (i) and leave the other case as an exercise.

(⇐) Suppose lim ‖xn − x‖a = 0. Then our assumption implies the existence of
a constant such that

‖xn − x‖b ≤ C2‖xn − x‖a
and hence lim ‖xn − x‖b = 0. (⇒) The argument is as for the other direction but
now we use that there exists a constant such that C1‖x‖a ≤ ‖x‖b. �

An important consequence is the following fact:

Proposition 4.1.30. Suppose ‖.‖a and ‖.‖b are equivalent norms on X. Then
(X, ‖.‖a) is a Banach space if and only if (X, ‖.‖b) is a Banach space.

Proof. See next problem set. �

Examples 4.1.31. In the infinite-dimensional setting one has norms on vector
spaces that are not equivalent.

(1) Let s be the space of all real-valued sequences. Then the ‖.‖1-norm and
the ‖.‖∞ are not equivalent on s.

Fix an N ∈ N and take the sequence x = (1, 1, ..., 1, 0, 0, 0, ...) with
N non-zero entries. Then ‖x‖1 = N and ‖x‖∞ = 1. Hence we have
N‖x‖∞ ≤ ‖x‖1 and thus there exists no finite constant M such that
‖x‖1 ≤M‖x‖∞ for all x ∈ s.

(2) Let us take the space of continuous functions C[0, 1] and complete it with
respect to ‖.‖2 and ‖.‖∞. Then we have shown that (C[0, 1], ‖.‖2) is not
complete, but (C[0, 1], ‖.‖∞) is a Banach space.

Let us distill the general principle underlying this example.

Proposition 4.1.32. Suppose ‖.‖a and ‖.‖b are two norms on a vector space
X. Then ‖.‖a and ‖.‖b are not equivalent if there exists a sequence (xn) in X such
that ‖xn‖b = 1 for all n ∈ N but ‖xn‖a = n for all n ∈ N.

We continue with some properties of equivalent norms.

Lemma 4.16. Given three norms ‖.‖a, ‖.‖b and ‖.‖c on X. Suppose ‖.‖a and
‖.‖c are equivalent and ‖.‖b and ‖.‖c. Then ‖.‖a and ‖.‖b are equivalent norms.

Proof. We have constants C1, C2, C
′
1, C

′
2 such that

C1‖x‖c ≤ ‖x‖a ≤ C2‖x‖c
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and
C ′1‖x‖c ≤ ‖x‖b ≤ C ′2‖x‖c.

Hence ‖x‖c ≤ C−11 ‖x‖a and thus

‖x‖b ≤ C ′2C−11 ‖x‖a,
which by the second set of inequalities gives

‖x‖b ≤ C ′2C−11 ‖x‖a.
In a similar way, we obtain

C ′1C
−1
2 ‖x‖a ≤ ‖x‖b

and thus ‖x‖b and ‖x‖a are equivalent

C ′1C
−1
2 ‖x‖a ≤ ‖x‖b ≤ C ′2C

−1
1 ‖x‖a.

�

Open sets in normed spaces are defined in terms of open balls and thus there
might be a relation between equivalent norms and open sets. Indeed, there is a
close link. We denote by Bar (x) = {y ∈ X : ‖x − y‖a < r} and Bbr(x) = {y ∈
X : ‖x− y‖b < r} the open balls of radius r and center x ∈ X with respect to the
norms ‖.‖a and ‖.‖b.

Proposition 4.1.33. Let ‖.‖a and ‖.‖b be two norms on a vector space X.
Then the following statements are equivalent:

(1) ‖.‖a and ‖.‖b are equivalent norms.
(2) There exists some r > 0 such that Ba1/r(0) ⊆ Bb1(0) ⊆ Bar (0).

(3) For a set U ⊆ X we have that U is open in (X, ‖.‖a) if and only if U is
open in (X, ‖.‖b).

(4) For a set F ⊆ X we have that F is closed in (X, ‖.‖a) if and only if F is
closed in (X, ‖.‖b).

Proof. We just prove (i)⇔ (ii) and leave the other claims as an exercise.

(i) ⇐ (ii) Suppose that ‖.‖a and ‖.‖b are equivalent norms. Then there exists
an r > 0 such that

1

r
‖x‖b ≤ ‖x‖a ≤ r‖x‖b for all x ∈ X.

Then for x with ‖x‖b < 1 we have ‖x‖b ≤ r‖x‖a < r and thus we have Bb1(0) ⊆
Bar (0). Now we assume x ∈ X and ‖x‖a < 1/r. Then we get that ‖rx‖a < 1. Since
the norms are equivalent we have 1

r‖rx‖b ≤ ‖rx‖a < 1 and thus we have ‖x‖b < 1,

i.e. Ba1/r(0) ⊆ Bb1(0).

(ii) ⇐ (i) Suppose Ba1/r(0) ⊆ Bb1(0) ⊆ Bar (0) holds for some r > 0. Then for any

x ∈ X we have that x
2‖x‖b is in Bb1(0) and consequently in Bar (0), i.e. ‖ x

2‖x‖a ‖b < r.

Hence we have
‖x‖b ≤ 2r‖x‖a.

The other inclusion follows by the same reasoning. �

On a finite-dimensional vector space X all norms are equivalent.

Theorem 4.17. All norms on Rn are equivalent.
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Proof. By Lemma 4.16 it suffices to show a norm ‖.‖ on Rn is equivalent to
a fixed norm. We fix the ‖.‖1 on Rn. Suppose e1, ..., en is a basis for Rn. Then any
x ∈ Rn has a unique expansion

x =
∑
i=1

aiei

and its 1-norm is defined by

‖x‖1 =

n∑
i=1

‖ai|.

The proof may be broken up into four steps. Step 1 is the reduction of the general
case to the situation that we have to show that ‖.‖ is equivalent to ‖.‖1. Step 2 is
the elementary observation that it suffices to check the desired assertion

C1‖x‖1 ≤ ‖x‖ ≤ C2‖x‖1
not for all x ∈ X but just for elements in the unit ball of ‖.‖1. Namely, the
preceding inequalities are true for x = 0. Let us assume x 6= 0. Then we can divide
the inequalities by ‖x‖1:

C1 ≤ ‖x/‖x‖1‖ ≤ C2.

Since the elements we have to check our inequalities are now in B1(0) defined by
the ‖.‖1.
The next step paves the way to make the problem accessible to methods from
analysis. Step 4: ‖.‖ is continuous under ‖.‖1. Explicitly, we have to show that
for a given ε > 0 there exists a δ > 0 such that ‖x − x′‖1 < δ implies that
| ‖x‖ − ‖x′‖ | < ε. We know that

| ‖x‖ − ‖x′‖ | ≤ ‖x− x′‖.
Let us relate the ‖.‖ with ‖.‖1. We represent x and x′ with respect to the basis
{e1, ..., en}:

x =

n∑
i=1

aiei and x′ =

n∑
i=1

a′iei.

The triangle inequality implies

‖x− x′‖ ≤
n∑
i=1

|ai − a′i|‖ei‖ ≤ (max
i
‖ei‖)‖x− x′‖1.

Choose δ = ε/maxi ‖ei‖. Then we get the desired statement: If ‖x−x′‖1 < δ, then

| ‖x‖ − ‖x′‖ | ≤ ε.
The final step is to use the the Extreme Value Theorem for the continuous function
‖.‖ on Rn and note that the set {x ∈ X : ‖x‖1 = 1} is closed and bounded. Then
‖.‖ has to achieve its minimum and maximum on the unit ball for the 1-norm:

C1 := max{‖x‖ : ‖x‖1 = 1} and C2 := min{‖x‖ : ‖x‖1 = 1}.
By definition we have C2 ≥ C1 and hence

C1 ≤ ‖x‖ ≤ C2

for x ∈ X with ‖x‖1 = 1. �

A consequence of the equivalence of norms on Rn is that a sequence in Rn
converges in norm if and only if converges coordinate-wise.
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Proposition 4.1.34. Let ‖.‖ be a norm on Rn, and (xj) a sequence in Rn.

Then ‖xj − x‖ → 0 if and only if x
(i)
j → x(i) for i = 1, ..., n.

Proof. (⇐) Since all norms are equivalent we are allowed to pick a norm most
appropriate for our problem. We pick the sup-norm.

Suppose limj ‖xj − x‖ = 0. Denote the components of xj by xj = (x
(1)
j , ..., x

(n)
j ).

Then x
(i)
j converges to x(i) for i = 1, ..., n.

(⇒) For this direction we use the 1-norm. Suppose x
(i)
j → x(i) for i = 1, ..., n.

Then ‖xj − x‖1 =
∑n
j=1 |x

(i)
j − x(i)| → 0. �



CHAPTER 5

Best approximation and projection theorem

This chapter is based on a classical theorem of the theory of Hilbert spaces,
the projection theorem, that was first proved by E. Schmidt in his Ph.D. thesis,
where he also established the Gram-Schmidt orthogonalization method. The pro-
jection theorem indicates that Hilbert spaces are in some sense infinite dimensional
Euclidean spaces. In contrast, the structure of Banach spaces is quite rich and full
of strange phenomena.

Let M be a line through the origin of R2. Then any vector in the plane not in
M may be projected onto this line and there is one way that has minimal distance.
The latter arises via orthogonal projection. We demonstrate that this method also
works in general Hilbert spaces as long as one takes closed subspaces.

We give some examples of subspaces in the Hilbert spaces Mn(R), `2 and L2[0, 1].

Examples 5.0.35. (1) The set of all symmetric matrices Ms, and the set
of all anti-symmetric matrices Mas are closed subspaces of Mn(R), the
space of n× n-matrices with real entries.

Ms = {A ∈Mn(R) : A = AT } Mas = {A ∈Mn(R) : AT = −A}.

(2) In `2 we will consider M = {x ∈ `2 : (x1, ..., xn, 0, 0, 0, ...)} and M =
{x ∈ `2 : (x1, 0, x3, ...)}. For the space of square-integrable sequences
defined on the integers `2(Z) we have as subspace M = {x ∈ `2(Z) :
(..., 0, 0, x0, x1, ...)}.

(3) Subspaces in L2[−1, 1] we are interested in, are M = {f ∈ L2[−1, 1] :
f(x) = 0 for x ∈ [−1, 0]}, the spaces of even and odd functions Me = {f ∈
 L2[−1, 1] : f(−x) = f(x)} and Mo = {f ∈  L2[−1, 1] : f(−x) = −f(x)}.

All these subspaces are closed in the respective Hilbert spaces.

A consequence of our main result are decompositions of elements in Hilbert
spaces with respect to subspaces and these generalize the well-known facts for
matrices and functions. Any matrix may be decomposed into a symmetric and
an anti-symmetric matrix:

A =
A+AT

2
+
A−AT

2

and any f ∈ L2[−1, 1] may be written as an even and odd function:

f(x) =
f(x) + f(−x)

2
+
f(x)− f(−x)

2
.

67
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Let M be a subspace of X. Denote by M⊥, its orthogonal complement, the set
of all x ∈ X that are orthogonal to all the elements of M . Formally we have

M⊥ = {x ∈ X : 〈x, y〉 = 0 for all y ∈M}.
The linearity of an innerproduct implies that M is a vector space.

Lemma 5.1. Let M be a subspace of (X, 〈., .〉). Then M⊥ is a closed subspace
of X.

Proof. Let (xn) be a sequence in M⊥ converging to x ∈ X. We have to show
that x ∈M⊥. Since 〈xn, y〉 = 0 for all y ∈M we note that

| 〈xn − x, y〉 | ≤ ‖xn − x‖‖y‖ → 0.

Hence we have

〈xn, y〉 → 〈x, y〉 ,
but 〈xn, y〉 = 0 for all n. Consequently, 〈x, y〉 = 0 and so x ∈M⊥. �

By definition of M⊥ we have that M and M⊥ are disjoint subspaces of X. For
any proper closed subspace M of X its orthogonal complement M⊥ is non-empty
and there are sufficiently many elements in M⊥ that allows one to decompose el-
ements in X with respect to M and M⊥. The precise formulations of these facts
and their proofs are the main parts of our treatment of Hilbert spaces.

The best approximation property holds for proper closed subspaces of Hilbert
spaces.

Theorem 5.2 (Best Approximation Theorem). Suppose M is a proper closed
subspace of a Hilbert space X. Then for any x ∈ X there exists a unique element
z ∈M such that

‖x− z‖ = inf
m∈M

‖x−m‖.

The quantity infm∈M ‖x − m‖ measures the distance of x from M . In the
chapter on metric spaces we show that it defines an honest metric on X.

Remark 5.0.36. In general the theorem is not true in Banach spaces. Take
`∞ and as closed subspace c0, the space of sequences converging to zero. For
x = (1, 1, 1, ...) there exists no sequence in c0 attaining the minimal distance 1.

Proof. Denote by d = infm∈M ‖x−m‖2. Note that d is finite, since the real
numbers ‖x−m‖ for m ∈M are all nonnegative and bounded below by 0. Since d
is the greatest lower bound of this set, there exists a sequence (mk) ⊂M such that
for each ε > 0 there exists an N such that ‖x−mk‖2 ≤ d+ ε for all k ≥ N .
Claim: The sequence (mk) is a Cauchy sequence. Applying the parallelogram
identity to x−mk and x−ml we get

‖2x−mk −ml‖2 + ‖mk −ml‖2 = 2(‖x−mk‖2 + ‖x−ml‖2),

which yields to

‖x− mk +ml

2
‖2 + ‖mk −ml‖2/2 = (‖x−mk‖2 + ‖x−ml‖2)/2.

Since mk+ml

2 ∈M we have ‖x− mk+ml

2 ‖2 ≥ d and so we have

‖mk −ml‖2 ≤ 2(‖x−mk‖2 + ‖x−ml‖2)− 4d.
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For any ε > 0 there exists a N such that ‖x−mk‖2 ≤ d+ ε/4 for all k ≥ N . Then
we have for all k, l ≥ N that

‖mk −ml‖2 ≤ 2(‖x−mk‖2 + ‖x−ml‖2)− 4d ≤ ε.
Hence we have demonstrated that (mk) is a Cauchy sequence. Since M is closed,
(mk) converges to some element z ∈M and we have that ‖x− z‖2 = d and so z is
the vector in M closest to x. We have established the existence of a closest vector.
The uniqueness goes as follows: Suppose there is another element y ∈M such that
‖x − y‖2 = d. Consider the sequence (y, z, y, z, ...), and note that it is a Cauchy
sequence by the same argument as for (mk). Hence y = z and so z is the unique
solution to our approximation problem. �

There is a characterization of best approximations in Hilbert spaces in terms
of the orthogonal complement.

Theorem 5.3 (Characterization of Best Approximation). Suppose M is a
proper closed subspace of a Hilbert space X. Then for any x ∈ X there exists
a best approximation x̃ ∈M if and only if x− x̃ ∈M⊥.

Proof. First step: Suppose x− x̃ ∈M⊥. Then for any y ∈M with y 6= x̃ we
have ‖y − x‖2 = ‖y − x̃ + x̃ − x‖2. Note that y − x̃ ∈ M and x̃ − x ∈ M⊥ so we
have 〈y − x̃, x̃− x〉 = 0. Hence Pythagoras yields ‖y − x‖2 = ‖y − x̃‖2 + ‖x̃− x‖2.
By assumption y− x̃ 6= 0 so we arrive at the desired assertion ‖y−x‖2 > ‖x̃−x‖2.
Second step: Suppose x̃ minimizes ‖x− x̃‖. We assume that there exists a y ∈ M
of unit length such that 〈x− x̃, y〉 = δ 6= 0.
Consider the element z = x̃+ δy.

‖x− z‖2 = ‖x− x̃− δy‖2

= 〈x− x̃, x− x̃〉 − 〈x− x̃, δy〉 − 〈δy, x− x̃〉+ 〈δy, δy〉
= ‖x− x̃‖2 − |δ|2 − |δ|2 + |δ|2

= ‖x− x̃‖2 − |δ|2.

Thus we have ‖x − z‖2 ≤ ‖x − x̃‖2. Contradiction to the assumption that x̃
minimizes ‖x− x̃‖. �

Theorem 5.4 (Projection Theorem). Let M be a closed proper subspace of a
Hilbert space X. Then every x ∈ X can be uniquely written as x = y + z where
y ∈M and z ∈M⊥.

Proof. For x ∈ X there exists a best approximation y ∈ M . Note that
x = y + x− y with y ∈M and x− y ∈M⊥. Furthermore we have M ∩M⊥ = {0}
(if x ∈ M ∩M⊥, then 〈x, x〉 = 0 = ‖x‖2 and thus x = 0.) which completes the
proof. �

Corollary 5.0.37. Let M be proper closed subspace of a Hilbert space X.
Then M⊥ 6= {0}.

Proof. If x 6= M , then the decomposition x = y + z has a z 6= 0. Since
z ∈M⊥ we have M⊥ 6= {0}. �

Recall that a projection on a normed space X is a linear mapping P : X → X
satisfying P 2 = P .
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Here is a reformulation of the preceding theorem in terms of projections, justifying
the name.

Proposition 5.0.38. For any closed subspace M of a Hilbert space X, there
is a unique projection P on X satisfying:

(1) ran(P ) = M and ran(I − P ) = M⊥.
(2) ‖Px‖ ≤ ‖x‖ for all x ∈ X. Moreover, ‖P‖ = 1.

Proof. (1) The decomposition of x ∈ X into x = y + z for y ∈ M, z ∈
M⊥ allows one to define Px := y. By definition ran(P ) ⊆ M and if
x ∈M , then Px = x. Thus P 2 = P and M ⊆ ran(P ).
Once more, by x = y + z we have (I − P )x = z ∈ M⊥ and as above we
deduce that ran(I − P ) = M⊥.

(2) By Pythagoras we have ‖x‖2 = ‖Px‖2 + ‖z‖2 and thus we have ‖Px‖ ≤
‖x‖. Hence ‖P‖ ≤ 1. On the other hand, there exists x ∈ X with Px 6= 0
and ‖P (Px)‖ = ‖Px‖, so that ‖P‖ ≥ 1. Hence we conclude that ‖P‖ = 1.

�

Example 5.0.39. Let M be the line {tξ : t ∈ R} given by a unit vector ξ ∈ X.
Then

Pξx = 〈ξ, x〉ξ
projects a vector orthogonally onto its component in direction ξ

Example 5.0.40. In L2[−1, 1], consider the closed subspaces Me = {f ∈
L2[−1, 1] : f(−x) = f(x)} and Mo = {f ∈ L2[−1, 1] : f(−x) = −f(x)} of even
and odd functions. We will show that M⊥e = Mo. If f ∈Me and g ∈Mo, then

〈f, g〉 =

∫ 1

−1
f(t)g(t) dt = 0,

since the integrand fg is an odd function and we integrate from −1 to 1. This
shows that Mo ⊂ M⊥e . To show that M⊥e ⊂ Mo, recall from an earlier example
that any f ∈ L2[−1, 1] may we written as a sum

f = fe + fo,

where fe ∈ Me and fo ∈ Mo. Now assume that f ∈ M⊥e . Since fe ∈ Me, this
implies that

0 = 〈f, fe〉 = 〈fe + fo, fe〉 = 〈fe, fe〉 = ‖fe‖2,
hence fe = 0. Thus f = fe + fo = fo, and we see that f ∈ Mo. This proves that
M⊥e ⊂Mo, so M⊥e = Mo.
It is clear from the proof of the previous proposition that the associated projection
P : L2[−1, 1]→M is given by

Pf = fe,

where f = fe + fo is the unique decomposition of f as the sum of an odd function
fo and an even function fe.

We state some consequences of the projection theorem. In the mathematics
literature the tensor product notation ξ ⊗ ξ is used to refer to Pξ.

Proposition 5.0.41. Let X be a Hilbert space.

(1) For any closed subspace M of X we have M⊥⊥ = M .

(2) For any set A in X we have A⊥⊥ = span(A).
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Proof. (1) For any x ∈ M we have 〈x, y〉 = 0 for every y ∈ M⊥. In
other words, x is orthogonal to M⊥, so x ∈ (M⊥)⊥.
Conversely, suppose that x ∈M⊥⊥. Since M is closed, we can decompose
x = y + z with y ∈ M and z ∈ M⊥. Since x ∈ M⊥⊥ we have 〈x, z〉 =
0. Furthermore, we have y ∈ M ⊆ M⊥⊥, so we also have 〈y, z〉 = 0.
Consequently, ‖z‖2 = 〈z, z〉 = 〈x− y, z〉 = 〈x, z〉− 〈y, z〉 = 0. Hence z = 0
and we have deduced that x ∈M .

(2) For a general set A in X we note that span(A) is the smallest closed
subspace containing A. We set M = span(A). Then we have M ⊂M and

thus M
⊥ ⊆ M⊥. Consequently, M⊥⊥ ⊆ M

⊥⊥
. But M is closed in X so

M
⊥⊥

= M⊥⊥. Since M
⊥⊥

= M⊥⊥ we get that M⊥⊥ ⊆ M
⊥⊥

. Finally,
M ⊆ M⊥⊥ and M⊥⊥ closed implies M ⊆ M⊥⊥, which completes the
argument.

�

Corollary 5.0.42. A subset A in a Hilbert space X is dense if and only if
A⊥ = {0}. Moreover, A⊥ = {0} is equivalent to x orthogonal to A and hence

x = 0. In words, span(A) = X if and only if the only element orthogonal to every
element in A is the zero vector.

Proof. Suppose span(A) = X. Then A is a closed linear subspace and hence
A⊥ = A⊥⊥⊥ = X⊥ = 0.
Conversely, span(A) = A⊥⊥ = 0⊥ = X. �

Many interesting theorems in analysis are about the identification of the dual
spaces of normed spaces. A topic one is at the heart of functional analysis. Here we
restrict our focus to the Hilbert space setting since its proof relies on the projection
theorem.

Recall that the dual space X ′ of a normed space X is the space of bounded operators
from X to C.

Lemma 5.5. For ϕ ∈ X ′ we have that ker(ϕ) is a closed subspace of X.

Proof. Let (xn) be a sequence in ker(ϕ) converging to x ∈ X. Then ϕ(xn) = 0
for all n and so |ϕ(xn)− ϕ(x)| ≤ ‖ϕ‖‖x− xn‖. Thus we have ϕ(x) = 0. �

Theorem 5.6 (Riesz representation theorem). Let X be a Hilbert space. For
each ξ ∈ X define ϕξ(x) = 〈x, ξ〉. Then ϕξ ∈ X ′ is a bounded linear functional on
X.
Furthermore, every ϕ ∈ X ′ is of the form ϕξ for some unique ξ ∈ X.

The final assertion of the theorem is the subtle part and is due to F. Riesz.

Proof. The Cauchy-Schwarz inequality gives |ϕξ(x)| ≤ ‖x‖‖ξ‖ and thus ϕξ ∈
X ′.
Converse statement: For any x, z ∈ X and a non-zero ϕ ∈ X ′. Then ϕ(x)z−ϕ(z)x ∈
ker(ϕ).
Let us pick z in ker(ϕ)⊥, which we can do by the projection theorem, to get

0 = 〈z, ϕ(x)z − ϕ(z)x〉 = ϕ(x)‖z‖2 − ϕ(z)〈x, z〉.
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Hence,

ϕ(x) =
ϕ(z)

‖z‖2
〈x, z〉.

We set ξ = ϕ(z)
‖z‖2 z. Then we have ϕ(x) = 〈x, ξ〉.

Since ξ → ϕξ preserves sums and differences we have that ‖ϕ‖ obeys the paral-
lelogram law. Hence the theorem of Jordan-von Neumann implies that X ′ is a
Hilbert space.
Uniqueness: Suppose ξ̃ is another representation of ϕ of the form ϕξ̃. Then

〈x, ξ − ξ̃〉 = 〈x, ξ〉 − 〈x, ξ̃〉 = 0 and ξ = ξ̃. �

The theorem yields that any bounded linear functional ϕ on `2 is of the form

ϕ(x) =

∞∑
n=1

xiξi for a unique ξ ∈ `2.

A different description of operators is one consequence of Riesz’ theorem, be-
cause it implies the existence of the adjoint of an operator.

Lemma 5.7. Suppose T ∈ B(X), X a Hilbert space, and x, x′ ∈ X.

(1) If 〈x, y〉 = 〈x′, y〉 for all y ∈ X, then we have x = x′.
(2) ‖T‖ = sup{‖Tx‖ = sup{|〈Tx, y〉| : x, y ∈ X with‖x‖, ‖y‖ ≤ 1}.

For motivation of the general result we indicate the main idea for linear opera-
tors T on C2. We represent T with respect to the standard basis of C2, so T = Ax
for a matrix A = (aij). We look for a matrix B = (bij) such that

〈Ax, y〉 = 〈x,By〉

for all x, y ∈ C2. Concretely, we have

〈
(
a11 a12
a21 a22

)(
x1
x2

)
, y〉 = 〈x,

(
b11 b12
b21 b22

)(
y1
y2

)
〉

and so

〈
(
a11x1 + a12x2
a21x1 + a22x2

)
, y〉 = 〈x,

(
b11y1 + b12y2
b21y1 + b22y2

)
〉

The equation is equivalent to

a11x1y1 + a12x2y1 + a21x1y2 + a22x2y2 =

= x2b11y1 + x1b12y2 + x2b21y1 + x2b22y2

to hold for all x1, x2, y1, y2 ∈ C. Hence we deduce that

a11 = b11, a12 = b21, a21 = b12, a22 = b22.

Thus

B =

(
a11 a21
a21 a22

)
is the conjugate-transpose of A. The adjoint of T , denoted by T ∗, is in this way
linked to the original transform.
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Theorem 5.8 (Adjoint). Let T be a bounded operator on a Hilbert space X.
Then there exists a unique operator T ∗ ∈ B(X) such that

〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ X.
The operator T ∗ is called the adjoint of T .

Proof. Fix y ∈ X and let ϕ : X → C be defined by ϕ(x) = 〈Tx, y〉. Then ϕ
is linear and by Cauchy-Schwarz it is bounded:

|ϕ(x)| ≤ |〈Tx, y〉| ≤ ‖Tx‖‖y‖ ≤ ‖T‖‖x‖‖y‖.
Hence ϕ is a bounded linear functional on X and so by the Riesz representation
theorem there exists a unique ξ ∈ X such that ϕ(x) = 〈x, ξ〉 for all x ∈ X.
The vector ξ depends on the vector y ∈ X. In order to keep track of this fact we
set T ∗y := ξ. Hence we have defined an operator T ∗ from X to X based on the
structure of bounded linear functionals on X. In summary, we have demonstrated
the existence of an operator T ∗ on X such that

〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ X.
(1) T ∗ is linear.

〈x, T ∗(λy1 + µy2)〉 = 〈Tx, λy1 + µy2〉
= λ〈Tx, y1〉+ µ〈Tx, y2〉
= λ〈x, T ∗y1〉+ µ〈x, T ∗y2〉
= 〈x, λT ∗y1〉+ µT ∗y2〉.

(2) T ∗ is bounded. We use the Cauchy-Schwarz inequality:

‖T ∗y‖2 = 〈T ∗y, T ∗y〉 = 〈TT ∗y, y〉
≤ ‖TT ∗y‖‖y‖
≤ ‖T‖‖T ∗y‖‖y‖.

Hence we have shown

‖T ∗y‖2 ≤ ‖T‖‖T ∗y‖‖y‖
If ‖T ∗y‖ > 0, then we can through and obtain the desired result: ‖T ∗y‖ ≤
‖T‖‖y‖. Suppose ‖T ∗y‖ = 0. Then the desired inequality holds, too.
Consequently, we have proved that

‖T ∗‖ ≤ ‖T‖.
(3) T ∗ is unique. Suppose there exists another S ∈ B(X) such that 〈Tx, y〉 =
〈x, Sy〉 for all x, y ∈ X. Then we have

〈x, Sy〉 = 〈x, T ∗y〉 y ∈ X
and by a well-known fact about innerproducts we deduce that T ∗y = Sy
for all y ∈ Y . Hence T ∗ is unique.

�

We collect a few properties of the adjoint.

Lemma 5.9. Let S, T be in B(X) and λ, µ ∈ C.

(1) (λS + µT )∗ = λS∗ + µT ∗;
(2) (ST ∗) = T ∗S∗.
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(3) If T is invertible, then T ∗ is also invertible and (T ∗)−1 = (T−1)∗.

Proof. The proofs of (i) and (iii) are left as an exercise. Here we show the
second assertion:

〈x, (ST )∗y〉 = 〈STx, y〉 = 〈Tx, S∗y〉 = 〈x, T ∗S∗y〉

holds for all x ∈ X and so we have (ST ∗) = T ∗S∗. �

We continue with some useful facts about T ∗.

Lemma 5.10. Let T be a bounded operator on a Hilbert space X.

(1) (T ∗)∗ = T ;
(2) ‖T ∗‖ = ‖T‖;
(3) ‖T ∗T‖ = ‖T‖2 (C∗-algebra identity)

Proof. (1) For x, y ∈ X we have

〈y, (T ∗)∗x〉 = 〈T ∗y, x〉

= 〈x, T ∗y〉

= 〈Tx, y〉
= 〈y, Tx〉,

so (T ∗)∗x = Tx for all x ∈ X.
(2) In the proof of the existence of the adjoint we established that ‖T ∗‖ ≤ ‖T‖.

Applying this result to T ∗∗ and using (i) yields ‖T‖ ≤ ‖T ∗‖. Hence we
have ‖T ∗‖ = ‖T‖.

(3) By (ii) we have ‖T ∗‖ = ‖T‖ that implies

‖T ∗T‖ ≤ ‖T ∗‖‖T‖ = ‖T‖2.

For the reverse inequality we use

‖Tx‖2 = 〈Tx, Tx〉
= 〈T ∗Tx, x〉
≤ ‖T ∗Tx‖‖x‖
≤ ‖T ∗T‖‖x‖2

to deduce ‖T‖2 ≤ ‖T ∗T‖.
�

Some examples should help to build up some intuition on adjoint operators.

Example 5.0.43. We investigate some operators on`2 and L2[0, 1].

(1) The adjoint of Lx = (0, x1, x2, ...) on `2 is the right shift operator Rx =
(x2, x3, ...).

By definition

〈(0, x1, x2, ...), (y1, y2, ...)〉 = 〈x, L∗y〉

for all x, y ∈ `2. We denote L∗y by z = (zn) Therefore we have

x1y2 + x2y3 + · · · = x1z1 + x2z2 + · · · .
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This equation is true for all xi if z1 = y2, z2 = y3, .... Hence by the
uniqueness of the adjoint

L∗y = (y2, y3, ...),

i.e. L∗ = R.
(2) The adjoint of the multiplication operator Ta for a ∈ `∞ is the multipli-

cation operator for the sequence a.

〈Tax, y〉 = 〈x, T ∗a y〉
Hence

a1x1y1 + a2x2y2 + · · · = x1a1y1 + x2a2y2 + · · · ,
which by the uniqueness of the adjoint gives that Ta is the adjoint of Ta.

(3) The multiplication operator Ta on L2[0, 1] defined by a ∈ C[0, 1] has Ta
as its adjoint.

〈Taf, g〉 =

∫ 1

0

a(t)f(t)g(t)dt =

∫ 1

0

f(t)a(t)g(t)dt = 〈f, Tag〉.

We introduce some classes of operators defined in terms of the adjoint.

Definition 5.0.44. Let T be a bounded operator on a Hilbert space X.

(1) T is called normal if T ∗T = TT ∗.
(2) T is called unitary if T ∗T = TT ∗ = I.
(3) T is called selfadjoint if T = T ∗.

Examples 5.0.45 (Operators on `2). (1) The multiplication operator Ta
for a ∈ `∞ is normal, since T ∗aTa = T ∗aTa = T|a|2 . Hence it is unitary if

|a| = 1 as in the example (1, i,−1,−i, ...) = (−ik)∞k=0. Ta is selfadjoint if
and only if a is real-valued.

(2) The shift operator is not normal: L∗L = I and LL∗y = (0, y2, y3, ...) 6= I.
Hence L is not unitary.

We state a few properties of unitary operators. We denote the set of all unitary
operators on X by U

Lemma 5.11. For S, T in U we have that ST and TS are also in U . The identity
operator is a unitary operator. Unitary operators are invertible and T−1 = T ∗.

Proof. Since (ST )∗(ST ) = T ∗S∗ST ∗ we get from S∗S = I and T ∗T = I
that ST is also unitary. The invertibility follows from the definition of unitary
operators. �

In some problems it is of interest to have control over linear operators that
preserve the norm, known as isometries.

Definition 5.0.46. Let X be a normed space. Then T ∈ B(X) is called an
isometry if ‖Tx‖ = ‖x‖ for all x ∈ X.

In one of the problem sets we have already settled that isometries are injective.
We settle the structure of isometries for Hilbert spaces.

Proposition 5.0.47. Let T be a bounded operator on a Hilbert space X.

(1) T is an isometry of X if and only if T ∗T = I.
(2) If T is unitary then T is an isometry of X.
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(3) T is a surjective isometry if and only if T is unitary.

Proof. (1) Suppose that T ∗T = I. Then

‖Tx‖2 = 〈Tx, Tx〉 = 〈T ∗Tx, x〉 = 〈Ix, x〉 = ‖x‖2,
so T is an isometry.
Conversely, suppose that T is an isometry. Then

〈T ∗Tx, x〉 = 〈Tx, Tx〉 = ‖Tx‖2 = ‖x‖2 = 〈Ix, x〉.
Hence T ∗T = I.

(2) Suppose that T is unitary. By (i) T is an isometry.
(3)

�

Example 5.0.48. The shift operator Rx = (0, x1, x2, ...) is an isometry on `2,
but it is not a unitary operator due to its lack of surjectivity.

Example 5.0.49. Let U be a linear transformation on a finite-dimensional
innerproduct space X. Consider U as a matrix relative to an orthonormal basis on
X. Show that the following statements are equivalent.

(1) U is unitary, i.e. U∗U = I = UU∗.
(2) The columns of U are an orthonormal basis of X.
(3) The rows of U are an orthonormal basis of X.

We close our discussion of the adjoint, with some relations between the kernel
and range of an operator and its adjoint. These statements are of utmost impor-
tance.

Proposition 5.0.50. Let T be a bounded operator on a Hilbert space X.

(1) ran(T ) = (ker(T ∗))⊥.
(2) ker(T ) = (ran(T ∗))⊥;

Equivalently,

ran(T ) = (ker(T ∗))⊥, ker(T ) = (ran(T ∗))⊥

and consequently:

X = ker(T )⊕ ran(T ∗).

Proof. (1) ran(T ) ⊆ (ker(T ∗))⊥ : Let z ∈ ker(T ∗) and let y ∈ ran(T ),
i.e. there exists a x ∈ X such that y = Tx. Hence

〈y, z〉 = 〈Tx, z〉 = 〈x, T ∗z〉 = 0

and we have shown that ran(T ) ⊆ (ker(T ∗))⊥. Since (ker(T ∗))⊥ is closed,

we have that ran(T ) ⊆ (ker(T ∗))⊥.
(ran(T ∗))⊥ ⊆ ker(T ) : For x ∈ ran(T ))⊥ we have for all y ∈ X:

0 = 〈Ty, x〉 = 〈y, T ∗x〉 ,
that gives T ∗x = 0 and thus ran(T )⊥ ⊆ ker(T ∗). By taking the orthogonal

complement of this relation, we get ker(T ∗)⊥ ⊆ ran(T )⊥
⊥

= ran(T ).
(2) Apply (i) to T ∗.

For the equivalent formulation note, that we have as above ran(T ) = (ker(T ∗))⊥,

but since (ker(T ∗))⊥ is closed we also get ran(T ) ⊆ (ker(T ∗))⊥. The rest of the
argument follows similar lines as before. �
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Corollary 5.0.51. Let T be a bounded operator on a Hilbert space X. Then
ker(T ∗) = {0} if and only if ran(T ) is dense in X.

Proof. Assume that ker(T ∗) = {0}. Then

ker(T ∗)⊥ = {0}⊥ = X

and the assertion (ii) of the proposition implies that

ker(T ∗)⊥ = (ran(T ))⊥⊥ = ran(T ).

Thus we have ran(T ) is dense in X.

Suppose ran(T ) is dense in X. Then by (ran(T ))⊥⊥ = ran(T ) = X and

ker(T ∗) = ran(T )⊥ = ((ran(T ))⊥⊥)⊥ = X⊥ = {0}.
�

The corollary allows one to check if the range of an operator is dense in a
Hilbert space by determining its adjoint and the computation of the kernel of the
adjoint. In general, this is a good strategy, because it is very difficult to compute
the range of an operator. Another important application of the preceding theorem
is the Fredholm alternative.

Theorem 5.12 (Fredholm alternative). Suppose T is a bounded linear operator
on a Hilbert space X with closed range. Then the equation

Tx = b , b ∈ X
has a solution x in X for every b ∈ X if and only if

b ∈ (ker(T ∗))⊥.

Hence operators with a closed range have a general criterion of existence. For
example if T ∈ B(X) satisfies for all x ∈ X and estimate of the form

‖Tx‖ ≥ c‖x‖ for some c > 0.

Example 5.0.52. The range of the right shift operator R on `2 is closed since
if consists of {(0, x2, x3, ...) : xi ∈ C}. The left shift is L not invertible since its
kernel is one-dimensional and spanned by (1, 0, 0, ...).
The equation

Rx = b⇔ (0, x1, x2, ...) = (b1, b2, ...)

is solvable if and only if b1 = 0, or b ∈ (ker(L))⊥.

On the other hand
Lx = b

is solvable for all b ∈ `2 despite of L not being injective.





CHAPTER 6

Series and bases in normed spaces

In this chapter we investigate series and bases in normed spaces and in particu-
lar, we focus on Schauder bases for Banach spaces, the geometric series for bounded
operators, and orthonormal bases for separable Hilbert spaces.

6.1. Schauder bases and series of operators

First some general facts about bases in vector spaces.

Definition 6.1.1. A set A = {xn : n ∈ N} is called linearly independent if we
have

n∑
i=1

αixi = 0 ⇒ α1 = · · ·αn = 0

for all n ∈ N, xi ∈ A and αi ∈ F for i = 1, ..., n.

For example, we have that {1, x, ..., xn} is a linearly independent set of Pn, the
space of polynomials of degree at most n and that {xn : n = 0, 1, 2, ...} is a linearly
independent set of the space of all polynomials P. These two linearly independent
sets have an additional property, namely they span the respective spaces.

Definition 6.1.2. We call a linearly independent set B of a vector space X a
basis if B spans X, i.e. if for any x ∈ X there exist unique scalars α1, ..., αn such
that

x = α1x1 + · · ·+ αnxn.

If the basis consists of finitely many elements, then X is called finite dimensional.
Otherwise, we call X infinite dimensional.

The aforementioned bases for a vector space are also known as Hamel bases,
named after the German mathematician G. Hamel. The axiom of choice implies
that any vector space has a (Hamel) basis. For most interesting cases are these
bases uncountable and of little practical use. We are interested in substitutes of
the notion of a basis for normed spaces. There is a variety of notions and we are
just treating, so-called Schauder basis.

Definition 6.1.3. A countable set B of a normed space X is called a Schauder
basis if for any x ∈ X there exists a unique sequence of scalars (αn)n∈N such that
for any ε > 0 there exists an N ∈ N such that

‖x−
N∑
n=1

αnxn‖ < ε forn ≥ N,

and we write in this case

x =

∞∑
n=1

αnxn.

79
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In other words, a Schauder basis allows to take infinite linear combinations to
express elements in a normed space, since the norm on the vector spaces gives us
a way to define a limiting process. Note that rational linear combinations of the
basis elements of a Schauder basis span the normed space and thus normed spaces
with a Schauder basis are separable.

Definition 6.1.4. Let X be a normed space and (xn) a sequence of vec-
tors in X. Then we define the series

∑∞
n=1 xn as the sequence of partial sums

(
∑n
k=1 xk)n∈N converging with respect to the norm in X, i.e.

∑∞
n=1 xn is the ele-

ment s ∈ X such that

‖
n∑
k=1

xk − s‖ → 0 as n→∞.

Many of the Banach spaces that are of interest in applications, have a Schauder
basis, such as the space of continuous functions on a bounded interval etc. We just
describe a Schauder basis for the sequence spaces `p for p ∈ [1,∞).

Proposition 6.1.5. We denote by {en : n ∈ N} the standard basis, where en
is the sequence that has a 1 at the nth component and is zero otherwise. Then
{en : n ∈ N} is a Schauder basis for `p for p ∈ [1,∞).

Proof. The proof is part of one of the problems one the new problem set. �

Since `∞ is not separable, the standard basis {en : n ∈ N} for `∞. We are still
interested in finding out under what conditions the series

∑
h∈N αnen converges in

`∞. By the definition of a series one gets that this is precisely the case when the
sequence (αn) converges to zero. Filling in the details for this claim is also part of
the new problem set.

Suppose we have a polynomial p(x) = a0 + a1x+ · · ·+ anx
n. Then we associate to

p the operator
p(T ) = a0 I + a1 T + · · ·+ an T

n

for any operator T ∈ B(X). If one thinks of taking powers of a number is the
same as taking compositions of T , then this association between p(x) and p(T )
is an instance of a so-called functional calculus and if we define T 0 := I, then
p(T ) =

∑n
k=0 akT

k.

Let us try to see how one could try to make sense of this procedure for power
series. We will at the moment just focus on the one for the geometric series: We
know that

∑∞
k=0 x

k converges for x ∈ C if and only if |x| < 1 and in the case of
convergence the series sums to 1/(1−x). Based on our experience with convergent
sequences in normed spaces, we expect that for bounded operators with norm less
than one, the geometric series might make sense.

Proposition 6.1.6 (Neumann series). Let X be a normed space. For T ∈ B(X)
with ‖T‖ < 1 the geometric series

∑∞
k=0 T

k exists and equals to

1 + T + T 2 + · · · = (1− T )−1.

This way of computing the inverse of 1 − T for operators that are sufficiently
close to the identity operator, is named after the German mathematician F. Neu-
mann, who used this relation for solving integral equations.
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Proof. Note that
∑∞
k=0 ‖T k‖ converges for ‖T‖ < 1 since ‖T k‖ ≤ ‖T‖k. Con-

sequently, the partial sums Sn =
∑n
k=0 T

k form a Cauchy sequence (Sn) in B(X).
Hence there exists a S ∈ B(X) such that ‖S − Sn‖ → 0 as n→∞.

Note that 1− S and Sn commute for each n ∈ N and that

(1− T )Sn = Sn(1− T ) = 1− Tn+1.

We have as n goes to infinity that (1−T )S = I and S(1−T ) = I, since ‖T‖n+1 → 0
as n→∞. Hence S =

∑∞
k=0 T

k is the inverse of (1− T ), as claimed. �

Neumann series are an important tool in applications and many algorithms are
based on this elementary fact. We close the discussion of series of operators with
a consequence of Neumann series on the structure of the set (actually group) of
invertible bounded operators on a normed space X, we denote this set by G(X).

Proposition 6.1.7. Let X be a normed space. Then G(X) is open in B(X),
the space of bounded linear operators on X with respect to the operator norm.

Proof. For S ∈ G(X) and T ∈ B(X) we have

T = S − (S − T ) = S(I − S−1(S − T ))

and hence T ∈ G(X) if I −S−1(S−T ) is invertible. Our result on Neumann series
yields that I − S−1(S − T ) is invertible if ‖S−1(S − T )‖ < 1, i.e. if ‖S − T‖ <
1/‖S−1‖. Consequently, we have shown that the open ball

B := {T ∈ B(X) : ‖S − T‖ < 1/‖S−1‖}
around the invertible operator S consists of invertible operators. Hence G(X) is
open. �

6.2. Separable Hilbert spaces

We restrict our discussion to Hilbert spaces that contain a countable dense
subset, i.e. separable Hilbert spaces, for two reasons: (i) The general case is way
more technically involved, and (ii) most of the time one just has to deal with sep-
arable Hilbert spaces. There is one prominent example of a non-separable Hilbert
space, the space of almost periodic functions. Since we are not going to discuss this
function space in this course, we have decided to keep non-separable Hilbert spaces
for another occasion.

Definition 6.2.1. A set A of an innerproduct space is called orthonormal if
for any two distinct elements x, y ∈ A we have 〈x, y〉 = 0 and ‖x‖ = 1 for any
x ∈ X.

We have encountered orthonormal sets earlier in this course. Let L2[0, 2π] be

the completion of C[0, 2π] with respect to ‖f‖ = (
∫ 2π

0
)|f(x)|2dx)1/2. Then the set

of exponentials {einx : n ∈ Z} is an orthonormal sequence in L2[0, 2π].

Lemma 6.1. Any orthonormal set in an innerproduct space is linearly indepen-
dent.

The proof is left as an exercise.
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Lemma 6.2. Let A be a finte orthonormal set in an innerproduct space X, then

‖
n∑
j=1

αjej‖2 =

n∑
j=1

|αj |2

for any scalars α1, ..., αn.

Proof. The argument is just an elementary computation:

‖
n∑
j=1

αjej‖2 = 〈
n∑
j=1

αjej ,

n∑
j=1

αjej〉 =

n∑
j=1

n∑
k=1

αjαk〈ej , ek〉 =

n∑
j=1

|αj |2.

�

Any infinite-dimensional innerproduct space contains a countable orthonormal
set. Since the vector space is infinite-dimensional, it has to contain an infinite set
of linearly independent vectors. Now use any procedure that turns this set into an
orthonormal one. The most popular orthogonalization method is the one by Gram
and Schmidt, but it is by any means the only method out there.

Proposition 6.2.2. Let X be an infinite-dimensional innerproduct space. Then
X contains a countable orthonormal set.

Proof. By assumption there exists a linearly independent subset {x1, x2, ...}
inX. We show that there exists an orthonormal set {e1, e2, ...} such that span{x1, ..., xn} =
span{e1, ..., en} for all n ∈ N.

The argument is based on an extension of the Gram-Schmidt algorithm to infinite-
dimensional sets. Set e1 := x1/‖x1‖. Then we have span(x1) = span(e1). We con-
tinue by induction. Suppose that for some n ≥ 2 we have constructed an orthonor-
mal set En−1 = {e1, ..., en−1} such that span{x1, ..., xn−1} = span{e1, ..., en−1}.
Then we project xn onto En−1 and subtract this from xn:

ẽn := xN −
n−1∑
k=1

〈xn, ek〉 ek.

Since
∑n−1
k=1 〈xn, ek〉 ek ∈ En−1 it also lies in span{x1, ..., xn−1} and thus {x1, ..., xn−1, xn}

is linearly independent, which yields that ẽn is non-zero. By construction, 〈ẽn, ek〉 =
0 for j < k. We normalize ẽn and add this vector to En−1, in order to get our En.
Note that En = span{x1, ..., xn}. Hence in this way we have constructed a count-
able orthonormal set in X. �

Suppose {en : n ∈ N} is an orthonormal sequence in a Hilbert space. We study
for which sequences the series

∑
k αkek exists.

Proposition 6.2.3. Let {en : n ∈ N} be an orthonormal sequence in a
Hilbert space X. Then the series

∑∞
k=1 αkek exists if and only if (αk) ∈ `2, and

‖
∑∞
k=1 αkek‖ = ‖(αk)‖`2 .

Proof. As shown above, we have that ‖
∑n
k=1 αkek‖2 =

∑n
k=1 |αk|2. Hence

the partial sums (sn =
∑n
k=1 αkek) satisfy for n > m

‖sn − sm‖2 =

n∑
k=m+1

|αk|2.
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Hence (sn) is a Cauchy sequence in X if and only if (‖sn‖2) is a Cauchy sequence in
R. Since X and R are both complete, these two sequences converge or divergence
simultaneously. In the case of convergence, we take the limit n → ∞ and obtain
the desired claim. �

Note that any x in the span of finitely many orthonormal vectors {e1, ..., en}
may be uniquely written as

x =

n∑
k=1

〈x, ek〉 ek.

Since the vectors e1, ..., en are a basis for its span, we have that there exist some
scalars α1, ..., αn such that x =

∑n
k=1 αkek. Take the innerproduct with ej yields

〈x, ej〉 = αj .

Our characterizations of series in Hilbert spaces gives us that the (generalized)
Fourier series

∞∑
k=1

〈x, ek〉 ek

exists if and only if the sequence (〈x, ek〉) is square-summable. These generalized
Fourier series have some interesting properties. Consequently, we have that the
closed span of an orthonormal sequence {en : n ∈ N} in a Hilbert space X is of the
form

span({en : n ∈ N}) = {x ∈ X|x =

∞∑
k=1

αkek for (αk) ∈ `2}.

Proposition 6.2.4. Let {en : n ∈ N} be an orthonormal sequence in a Hilbert
space. Then for any x ∈ X the best approximation of x in span({en : n ∈ N}) is
given by

Px =

∞∑
k=1

〈x, ek〉 ek,

which also gives the projection of x onto span({en : n ∈ N}). Furthermore, we have
for any n ∈ N that

‖x−
n∑
k=1

〈x, ek〉 ek‖2 = ‖x‖2 −
n∑
k=1

| 〈x, ek〉 |2.

Proof. Since for any x the sequence (〈x, en〉) is in `2 the series
∑∞
k=1 〈x, ek〉 ek

exists and defines an element x̃ ∈ X. We apply the characterization of best ap-
proximations in terms of orthogonal complements to deduce the claim. Note that
〈x̃− x, en〉 = 0 for all n ∈ N and thus an x̃ − x ∈ span({en : n ∈ N})⊥ and con-
sequently x̃ is the best approximation of x in span({en : n ∈ N}) and it also gives
the orthogonal projection onto span({en : n ∈ N}). �

The equation ‖x−
∑n
k=1 〈x, ek〉 ek‖2 = ‖x‖2 −

∑n
k=1 | 〈x, ek〉 |2 yields that

‖x‖2 ≥
n∑
k=1

| 〈x, ek〉 |2.
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Since this is true for all n ∈ N we may take the limit as n goes to ∞:
∞∑
k=1

| 〈x, ek〉 |2 ≤ ‖x‖2.

This inequality is known as Bessel’s inequality.

Proposition 6.2.5 (Bessel’s inequality). If {en : n ∈ N} is an orthonormal
sequence in a Hilbert space C, then we have for any x ∈ X:

∞∑
k=1

| 〈x, ek〉 |2 ≤ ‖x‖2.

Suppose {en : n ∈ N} is an orthonormal sequence in a Hilbert space X. We
are interested when it is possible to extend it to an orthonormal set that spans all
of X. This is exactly the case, when span({en : n ∈ N})⊥ = {0}.

Definition 6.2.6. An orthonormal sequence {en : n ∈ N} in a Hilbert space
X is called maximal if

span({en : n ∈ N})⊥ = {0}.

The classical example of a maximal orthonormal set in L2[0, 2π] is the expo-
nentials {einx : n ∈ N}. This follows from the Approximation Theorem of Weier-
strass that the trigonometric polynomials are dense in C[0, 2π] and by construction
C[0, 2π] is dense in L2[0, 2π] (which in the traditional approach to L2[0, 2π] via
measure theory is known as Lusin’s theorem).

Definition 6.2.7. An orthonormal sequence {en : n ∈ N} in a Hilbert space
X is called an orthonormal basis of X if

x =

∞∑
k=0

〈x, ek〉ek

holds for any x ∈ X.

By definition we have that an orthonormal sequence {en : n ∈ N} is maximal if
and only if it is an orthonormal basis. We present a characterization of orthonormal
bases in a Hilbert space X.

Theorem 6.3 (Parseval’s identity). Let {en : n ∈ N} be an orthonormal se-
quence in a Hilbert space X. The following are equivalent:

(1) {en : n ∈ N} is an orthonormal basis of X.
(2)

∑∞
k=1 | 〈x, ek〉 |2 = ‖x‖2 for any x ∈ X.

Proof. Suppose (2) holds. Since (〈x, en〉) is in `2, the sequence of partial sums

(

n∑
k=1

〈x, ek〉 ek)

is a Cauchy sequence inX. Hence there exists a x̃ ∈ X such that x̃ =
∑∞
k=1 〈x, ek〉 ek.

We want to show that x̃ = x. Note that x− x̃ is orthogonal to x̃, because 〈x̃, ek〉 =
x̃ek for any k ∈ N. By the Pythagoras Theorem we get that ‖x‖2 = ‖x−x̃‖2+‖x̃‖2.
By assumption we have ‖x‖ = ‖x̃‖ and consequently ‖x − x̃‖ = 0 which implies
that x = x̃. Hence we have established that (1) is true.
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Suppose we have that {en : n ∈ N} is an orthonormal basis of X. Then any x
is of the form

x =

∞∑
k=1

〈x, ek〉ek.

Take the innerproduct with x and you have (2). �

We summarize all these results in the following theorem.

Theorem 6.4. Let {en : n ∈ N} be an orthonormal sequence in a Hilbert space
X. The following are equivalent:

(1) {en : n ∈ N} is an orthonormal basis of X.
(2)

∑∞
k=1 | 〈x, ek〉 |2 = ‖x‖2 for any x ∈ X.

(3) x =
∑∞
k=1〈x, ek〉ek holds for any x ∈ X.

(4) {en : n ∈ N} is a maximal orthonormal sequence of X, i.e. 〈x, en〉 = 0
for all n ∈ N implies x = 0.

(5) The linear span of {en : n ∈ N} is dense in X.

The existence of a series expansion with respect to an orthonormal basis for a
separable Hilbert space implies that the elements of the Hilbert space are uniquely
determined by its Fourier coefficients. Hence in some sense any separable Hilbert
space looks like `2. Let us turn this observation into some rigorous statement.

Definition 6.2.8. Two Banach spaces X and Y are called isometrically iso-
morphic if there exists a surjective isometry T : X → Y .

Observe that if T : X → Y is a surjective isometry, then its inverse T−1 is a
surjective isometry as well. If X and Y are Hilbert spaces, this implies that the
surjective isometry is actually a unitary operator.

Theorem 6.5 (Riesz-Fischer). Every infinite dimensional separable Hilbert
space is isometrically isomorphic to `2.

Proof. Since any infinite dimensional separable Hilbert space has a countable
orthonormal basis {en : n ∈ N} and we can uniquely express every x ∈ X as
x =

∑∞
k=1〈x, ek〉ek. We define a map T : X → `2

Tx = (〈x, en〉)n∈N.
By Parseval’s identity we have ‖Tx‖ = ‖x‖ for any x ∈ X and T is a surjective
isometry. �

Note that this isomorphism theorem is due to the choice of an orthonormal
basis for X and that the uniqueness of the coefficients and the special nature of
orthonormal series.
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Some topics in linear algebra

We review some facts about spanning sets, basis and linear transformations in
finite-dimensional vector spaces.

7.1. Spanning sets and bases

Recall that a set of vectors {x1, ..., xn} ⊂ X is linearly independent if for all
α1, ..., α the equation

α1x1 + · · ·+ αnxn = 0

has only α1 = · · · = αn = 0 as solution. If there exists a non-trivial linear combi-
nation of the xi’s, then we call the {x1, ..., xn} linearly dependent.

Here are a few elementary observations: {x1, ..., xn} ⊂ X is linearly independent if
and only if every x ∈ span{x1, ..., xn} can be written uniquely as a linear combina-
tion of elements of {x1, ..., xn}.

There are two central notions in the theory of vector spaces:

Definition 7.1.1. Let X be a vector space.

(1) If there exists a set S ⊆ X with span(S) = X, then we call S a spanning
set. In case that S consists of finitely many elements {x1, ..., xn}, then we
say that X is finite-dimensional. Finally, if there exists no finite spanning
set for X, then we call the vector space infinite-dimensional.

(2) If there exists a linearly independent spanning set B for X, then we call
B a basis for X.

We revisit some vector spaces from this point of view.

Example 7.1.2. (1) The space of polynomials of degree at most n is
finite-dimensional, because the set of monomials {1, x, x2, ..., xn} is a span-
ning set and even a basis for Pn.

(2) The space of all polynomials P is infinite dimensional.

Let us present the argument for this fact. We have to show that for any
n there is only just the trivial linear combination of monomials {x0(t) =
1, x1(t) = t2, ..., xn(t) = tn} that represents the zero function. We use
induction: For n = 0 we have α0 = 0 if and only if α = 0.
Suppose for n we know that

α0x0(t) + · · ·+ αnxn(t) = 0 for all t ∈ R

only holds for α0 = α1 = · · · = αn = 0. Then we want to show that
this is also true for n + 1. We reduce the latter case to the case n by

87
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differentiation. Suppose that

f(t) = α0x0(t) + · · ·+ αnxn(t) + an+1xn+1(t) = 0 for all t ∈ R.
Then

f ′(t) = α1t+ · · ·+ nαnt
n−1 + (n+ 1)an+1t

n = 0 for all t ∈ R.
Now the induction hypothesis implies that α1 = · · ·αn+1 = 0 and by the
induction base we get a0 = 0. Hence f(t) is identically zero. Hence the set
of monomials is a linearly independent set of P and it spans the space of
polynomials by definition. Hence it is even a basis of infinite cardinality.

(3) The space of continuous functions on the real-line, or the space of contin-
uously differentiable function, or the space of infinitely often differentiable
functions are infinite-dimensional vector spaces.

Proposition 7.1.3. Every finite-dimensional vector space has a basis.

The proof is based on an extension principle.

Proposition 7.1.4 (Basis Extension Principle). Let X be a finite-dimensional
vector space. Then any linearly independent subset of X can be extended to a basis.

Let X be a finite-dimensional vector space of dimension n. Then any set
{x1, ..., xn} of n linearly independent vectors is a basis of X. In other words, any
set of vectors {x1, ..., xm} with m > n is linearly dependent.
Any two bases of a finite-dimensional vector space have the same number of ele-
ments. These observations motivate

Definition 7.1.5. Suppose X has a basis {x1, ..., xn}. Then we call the number
of elements of this basis the dimension of X, denoted by dim(X). If X is infinite-
dimensional, then we write dim(X) =∞.

We have that dim(Cn) = n, dim(Pn) = n+ 1 and dim(P) =∞.

There is a relation between the dimensions of two subspaces and the dimensions of
their intersection and sum.

Proposition 7.1.6. Let M,N be subspaces of a finite-dimensional vector space
X. Then

dim(M +N) + dim(M ∩N) = dim(M) + dim(N).

Understanding the structure of linear transformation between finite-dimensional
vector spaces is one of the main goals of linear algebra. As a first step we discuss
the link between matrices and linear transformations. On the one hand a m × n
matrix A defines a linear transformation from Cn to Cm by T (x) = Ax. Suppose
a1, a2, ..., an are the columns of A. Then we may denote A by A = (a1|a2| · · · |an)
if the knowledge of columns is of relevance for the argument. For example, the
action of a matrix A on a vector x = (x1, ..., xn)T ∈ Fn is in terms of columns:
Ax = a1x1 + · · · + anxn, i.e. it amounts to taking linear combinations of the
columns scaled by the coordinates of x.

On the other hand any linear transformation on finite-dimensional vector spaces
can by represented in matrix form relative to a choice of bases.
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We present the details for this assertion. Let B = {x1, ..., xn} be a basis of X and
C = {y1, ..., ym} be a basis of Y . Suppose T is a linear transformation T : X → Y
Then

x =

n∑
i=1

αixi

yields

T (x) =

n∑
i=1

αiT (xi)

and thus

[T (x)]C =

n∑
i=1

αi[T (xi)]C .

We define a m×n matrix A which has as its j-th column [[T (xj)]C ]. Then we have

[Tx]C = A[x]B.

The matrix A represents T with respect to the bases B and C. Sometimes, we
denote this A sometimes by [T ]CB.

We address now the relation between the matrix representation of T depend-
ing on the change of bases. Suppose we have two bases B = {x1, ..., xn} and
R = {y1, ..., yn} for X. Let x =

∑n
j=1 αixi. Then

[x]R =

n∑
j=1

αi ~xiR.

Define the n×n matrix P with j-th column ~xjR, and we call P the change of bases
matrix:

[x]R = P [x]B

and by the invertibility of P we also have

[x]B = P−1[x]R.

Let now C and S be two bases for Y . Then a linear transformation T : X → Y has
two matrix representations:

A = [T ]CB and B = [T ]SR.

In other words we have

[Tx]C = A[x]B , [Tx]S = B[x]R

for any x ∈ X. Let P be the change of bases matrix of size n × n such that
[x]R = P [x]B for any x ∈ X and let Q be the invertible m ×m matrix such that
[y]S = Q[y]C .
Hence we get that

[Tx]S = BP [x]B

and
[y]S = [Tx]S = Q[Tx]C = QA[x]B

for any x ∈ X. Hence we get that

B = QAPP−1 and A = Q−1BP.
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In the case X = Y we have P = Q and we set S = Q−1 to get B = S−1AS. Then
the matrices A and B represent the same linear transformation T on V with respect
to different bases.
These observation motivate the definition.

Definition 7.1.7. Two m× n matrices A and B are called equivalent if there
exists an invertible matrix S such that B = QAP−1. Furthermore, Two n × n
matrices A and B are called similar if there exists an invertible matrix S such that
B = S−1AS.

A way to look at equivalent matrices is that this is precisely the case, when
these matrices have the same rank.

Given a general n× n matrix A. Two similar matrices are “essentially the same”.
The notion of similarity is of utmost importance for linear algebra. It allows one
to classify matrices.

We close our summary of elementary facts with the rank-nullity theorem. Sup-
pose X and Y are finite dimensional vector spaces. Then one can construct bases
for ker(T ) and ran(T ). We call the dimension of the ker(T ) the nullity of T and
the dimension of ran(T ) the rank of T .

Proposition 7.1.8 (rank-nullity theorem). Let X and Y be finite dimensional
vector spaces. For a linear mapping T : X → Y we have

dim(X) = dim(ker(T )) + dim(ran(T )).

Proof. The idea is to use the dimension formula for the sum of vector spaces
stated in 7.1.6.
Let X be a n-dimensional vector space. Suppose {b1, ..., bk} is a basis for ker(T ).
Then there exist bk+1, ..., bn in X such that {b1, ..., bk, ..., bn} is a basis for X. We
denote by S = span{xk+1, ..., xn}. Then by construction we have

ker(T ) ∩ S = {0}
and by the dimension formula for subspaces we have

dim(ker(T ) ∩ S) + dim(() ker(T ) + S) = dim(ker(T )) + dim(S).

Since dim(ker(T ) ∩ S) = 0 and dim(() ker(T ) + S) = dim(()X) we have

dim(()X) = dim(ker(T )) + dim(S).

Note that ran(T ) = T (S) and the restriction of T to S is injective. Hence dim(ran(T (S))) =
dim(S) = dim(ran(T )). Thus we have the desired assertion. �

Corollary 7.1.9. Let X and Y be finite dimensional vector spaces. For a
linear mapping T : X → Y we have that T is injective if and only if T is surjective
if and only if T is bijective.

7.2. Invariant subspaces and Schur’s form

In this section we start to view linear transformations from a more conceptual
point of view. Invariance of a class of objects under some structures is an integral
part of mathematics. In the case of linear transformations between vector spaces
the invariance of a subspace under a linear transformation is one of the crucial
notions. Since it allows one to address the main problem of linear algebra: Show
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that given a linear transformation on a vector space X, there exists a basis of X
with respect to which T has a reasonable simple matrix representation.

Definition 7.2.1. Suppose T is a linear transformation on a vector space. A
subspace M of X is called invariant under T if x ∈ M implies Tx ∈ M . We will
also refer to M as T-invariant subspace.

Here are some examples of invariant subspaces.

Examples 7.2.2. Let T be a linear transformation on a vector space X.

(1) {0} and V ;
(2) The kernel and the range of T .

A question of interest is if a linear operator on a vector space has an invariant
subspace. We will later demonstrate that any linear transformation on a complex
vector space has an invariant subspace.

Let us investigate one-dimensional invariant subspaces.

Proposition 7.2.3. A linear transformation on a finite-dimensional vector
space has a one-dimensional invariant subspace if and only if T has an eigenvector.

Proof. (•) Suppose M is invariant under T , then Tx ∈M and hence there is
a scalar λ ∈ F such that Tx = λx.

(•) If Tx = λx for some λ ∈ F and some non-zero x ∈ X, then the span(x) is
a one-dimensional subspace. This subspace is invariant under T . �

We restrict our discussion to complex vector spaces, i.e. the scalars in our linear
combinations are complex numbers.

Definition 7.2.4. A scalar λ is called an eigenvalue of a linear transformation
T : X → X if there exists a non-zero x ∈ X such that Tx = λx. The set σ(T ) of C

σ(T ) = {z ∈ C : T − zI is not invertible}
is known as the spectrum of T .

In other words, x is an eigenvector of T if and only if x ∈ kerT − λI. For finite-
dimensional vector spaces σ(T ) is the set of all eigenvalues counting multiplicities
of T .

Theorem 7.1. Suppose T is a linear transformation on a finite-dimensional
complex vector space. Then there exists an eigenvalue λ ∈ C for an eigenvector x
of T .

Proof. We assume that dim(()X) = n and choose any non-zero vector x in
X. Consider the following set of n+ 1 vectors in X:

{x, Tx, T 2x, ..., Tnx}.
Since n + 1 vectors in an n-dimensional vector space X are linearly independent,
there exists a non-trivial linear combination:

a0x+ a1Tx+ · · ·+ anT
nx = (a0I + a1T + · · ·+ anT

n)x = 0.

Note that not all a1, ..., an are zero. If they were all zero, then a0x = 0 which would
imply that a0 = 0. Hence that the linear combination is trivial.
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Let us denote by p(z) = a0 + a1z + · · · + anz
n the polynomial associated to the

linear transformation T . Powers of numbers correspond to powers of T by the cor-
responding iterates of T and T 0 = I.

Then the non-trivial linear combination among the vectors turns into a polyno-
mial equation in T :

p(T ) = 0.

By the Fundamental Theorem of Algebra any polynomial can be written as a prod-
uct of linear factors:

p(t) = c(t− λ1)(t− λ2) · · · (t− λn), λi ∈ C, c 6= 0.

Hence p(T ) has a factorization of the form:

p(T ) = c(T − λ1I)(T − λ2I) · · · (T − λmI).

Hence p(T ) is a product of linear mappings T − λjI for j = 1, ...,m. We know
that p(T )x = 0 for a non-zero x 6= 0, which implies that at least one of these
linear mappings is not invertible. Thus it has to have a non-trivial kernel, let’s
say y ∈ ker(T − λiI), which yields that y is an eigenvector for the eigenvalue λi.
Consequently, we have shown the desired assertion. �

The assumptions of the above statement are crucial: (i) Since there are lin-
ear transformations on a real vector space, do not need to have eigenvalues. For
example, the rotation by 90 degrees in the plane R2. (ii) The left shift on `2,
(x1, x2, ...) 7→ (0, x1, x2, ...) does not have any eigenvalues.

Matrix representations of a linear transformation are of a nice form if they are
of upper-triangular form. We connect these upper-triangular matrices with invari-
ant subspaces.

Proposition 7.2.5. Suppose T is a linear transformation on a vector space X
with a basis B = {b1, ..., bn}. The following are equivalent:

(1) The matrix representation [T ]B of T with respect to B is upper-triangular.
(2) Tbj ∈ span(b1, ..., bj) for j = 1, ..., n.
(3) span(b1, ..., bj) is T -invariant for j = 1, ..., n.

The proof is part of the next problem set.
As an important consequence of the existence of an eigenvector for linear map-

pings between complex finite-dimensional vector spaces we prove Schur’s triangu-
larization theorem, our first classification theorem. Before we introduce a refined
version of similarity. Namely, if the matrix S in the definition of similar matrices
may be chosen as a chosen as a unitary matrix, then we call the matrices A and B
unitarily equivalent.

Theorem 7.2 (Triangularization Theorem). For any A ∈ Mn(C) there exists
a unitary matrix U such that

A = UTU∗,

where T is an upper triangular matrix with the eigenvalues (counted with their
multiplicities) on the diagonal.
In other words, there exists an orthonormal basis x1, ..., xn for Cn such that for
each k = 1, ..., n the vector Axk is a linear combination of x1, ..., xk.
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We refer to the upper triangular matrix as the Schur form of the matrix A.

Proof. We proceed by induction on n. For n = 1, there is nothing to show.
Suppose that the result is true up to matrices of size n− 1.
Let x1 be a normalized eigenvector of the eigenvalue λ1 of the n× n matrix A Let
M = span(x1) and let M⊥ be its orthogonal complement, i.e. Cn = M ⊕M⊥. We
denote by PM⊥ the orthogonal projection of with range M⊥. For x ∈ M⊥ we set
AM⊥x := PM⊥Ax. Then AM⊥ is a linear operator on the (n−1)-dimensional space
M⊥.
By the induction hypothesis, there exists an orthonormal basis x2, ..., xn of M⊥

such that AM⊥xk for k = 2, ..., n is a linear combination of x2, ..., xn. Hence,
{x1, ..., xn} is an orthonormal basis for Cn and each Axk is a linear combination of
x1, ..., xk. �

Based on our observation that invariant subspaces of a linear transformation
are equivalent to upper-triangular matrix representations of the transformation, we
are able to answer the question about the existence of invariant subspaces of linear
transformations.

Corollary 7.2.6. Any linear transformation T on a complex finite-dimensional
vector space has an invariant subspace.

Example 7.2.7. Find the Schur form of A =

(
5 7
−2 −4

)
.

First step: Find an eigenvalue of A and associated eigenvector. The eigenvalues of

A are λ1 = −2 and λ2 = 3. An eigenvector for λ1 = −2 is x1 =

(
1
−1

)
.

The second step is to complete it to a basis of C2. In our case we take the eigenvector
to the second eigenvalue and note that the corresponding set of vectors is linearly

independent: x2 =

(
7
−2

)
.

Third step: Use a orthonormalization procedure, e.g. Gram-Schmidt, to turn the

system {x1, x2} into a basis {u1 = 1√
2

(
1
−1

)
, u2 = 1√

2

(
1
1

)
}.

Final step: Form the matrix U = 1√
2

(
1 1
−1 1

)
. Computation of U∗AU =

(
2 9
0 3

)
,

which has the eigenvalues of A on its diagonal and is upper triangular.

7.3. Schur form and spectral theorem

Definition 7.3.1. Let T : X → Y be a linear transformation from X to Y .
The subspace Eλ = kerT − λI is called the eigenspace of T for the eigenvalue λ.
The dimension of Eλ is called the geometric multiplicity of λ.

Note that Eλ consists of the eigenvectors of T and the zero vector 0.

Definition 7.3.2. A n×n matrix A is called diagonalizable if it has n linearly
independent eigenvectors. Hence the eigenvectors form a basis of Cn. If the basis
of eigenvectors is orthonormal, then we say that A is unitarliy diagonalizable
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By definition a diagonalizable n × n matrix A has eigenvalues λ1, ..., λn and
associated eigenvectors u1, ..., un satisfying:

Au1 = λu1

...

Aun = λun.

Collect the eigenvectors of A into one matrix: P = (u1|u2| · · · |un); and the eigen-
values of A into the diagonal matrix

D =


λ1 0 · · · · · · 0
... λ2 0 · · · 0
... 0

. . .
. . . λn

 .

Then the eigenvalue equations turn into a matrix equation:

AU = UD.

Since A is diagonalizable, the eigenvectors are a basis for Cn. Hence P is invertible
and we have

A = PDP−1.

Sometimes U is an unitary matrix, i.e. the eigenvectors yield an orthonormal basis
for Cn. Then we have A = UDU∗. In this case we say that A is unitarily diago-
nalizable.

On several occasions we are going to rely on a basic fact about non-zero eigen-
values of the product of matrices.

Lemma 7.3. For a m × n-matrix A and a n ×m-matrix B we have that AB
and BA have the same non-zero eigenvalues.

Lemma 7.4. Proof. A non-zero scalar λ is an eigenvalue of AB when
AB − λI is not invertible. By a rescaling of A we can restrict our discussion to
λ = 1. Let X be the inverse of (I −AB), i.e. (I −AB)X = I = X(I −AB) which
is equivalent to ABX=XAB. Then (I − BA) is also invertible and I + BXA is its
inverse:

(I −BA)(I +BXA) = I −BA+BXA−BAXA = I +BXA−BA−BABXA
Note that BXA−BXABA = B(I −AB)XA = BA which yields that

(I −BA)(I +BXA) = I −BA+BA = I.

�

Remark 7.3.3. The inverse of I −BA in terms of the inverse of I −AB might
seem like a magic trick. Suppose we can use Neumann series to express the inverse
of I −AB, i.e. ‖AB‖ < 1. Then a rewriting of the geometric series for the inverse
of I −BA gives the relation I +BXA.

We present an interplay on the structure of diagonalizable matrices and the
notions from our discussion of normed spaces. Let Mn(C) denote the vector space
of complex n× n matrices, and by D the set of diagonalizable n× n matrices.
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Lemma 7.5. Let U be a unitary n× n matrix. Then tr(A) = tr(UA). Further-
more, we have tr(AB) = tr(BA) for any n× n matrices A and B.

Recall that

tr(A∗A) =

n∑
i,j=1

|aij |2 = ‖A‖.

Proposition 7.3.4. The set of diagonalizable matrices D is dense in Mn(C)
with respect to the Frobenius norm. More explicitly, given A ∈ Mn(C) and ε > 0.

There exists a diagonalizable matrix Ã ∈Mn(C) such that
n∑

i,j=1

|aij − ãij |2 < ε.

Since all norms are equivalent on Mn(C), the preceding statements holds for
any unitarily invariant norm on Mn(C).

Proof. We have the Schur form for A

A = U


λ1 x · · · x

0 λ2
. . . x

...
. . .

. . .
...

0 . . . . . . λn

U∗,

for a unitary matrix and eigenvalues λ1, ..., λn counting multiplicities. Define small
perturbations of these eigenvalues λj such that these new numbers λ̃1, ..., λ̃n are all
distinct. We add multiples of a number η to the λj ’s:

λ̃j = λj + jη, η > 0

and fixed at the end of the proof. Set Ã

U


λ̃1 x · · · x

0 λ̃2
. . . x

...
. . .

. . .
...

0 . . . . . . λ̃n

U∗,

where we only change the diagonal entries of the upper triangular matrix. Now Ã
is diagonalizable and we have

tr((A− Ã)∗(A− Ã)) =

n∑
i,j=1

|aij − ãij |2

Since the diagonal matrix with entries λ1− λ̃1, ..., λn− λ̃n is unitarily equivalent to
A− Ã we deduce that

tr((A− Ã)∗(A− Ã)) =

n∑
j=1

|λj − λ̃j |2.

By the definition of l̃aj this gives
n∑
j=1

|λj − λ̃j |2 = η2
n∑
j=1

j2 = η2n(n+ 1)/2.
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Consequently,
n∑
j=1

|λj − λ̃j |2 ≤ ε

for η ≤ 2ε/(n(n+ 1)). �

A well-known criterion for the non-invertiblity of a matrix is the vanishing of its
determinant. Hence eigenvalues are the zeros of the polynomial pA(z) = det(zI−A),
known as the characteristic polynomial of A. Since the eigenvalues are intrinsic to
the linear transformation and is independent of its matrix represenation.

Lemma 7.6. Similar matrices have the same characteristic equation.

Proof. Let A and B be similar matrices. Thus there exists an invertible
matrix S such that B = S−1AS.

pB(z) = det(zI − S−1AS) = det(zS−1S − S−1AS) = det(S−1(zI −A)S) = pA(z).

�

The question about the diagonalizability is of utmost importance and its answer
is known as the Spectral Theorem.

Theorem 7.7 (Spectral theorem). Given A ∈ Mn(C). Then the following
statements are equivalent:

(1) A is normal.
(2) A is unitarily diagonalizable. Hence there exists a unitary matrix U such

that A = UDU∗, where D is a diagonal matrix with the eigenvalues of A
as entries of the diagonal, the columns of U are the corresponding eigen-
vectors of A.

(3)
∑n
i,j=1 |aij |2 =

∑n
i,j=1 |λi|2, where λ1, ..., λn are the eigenvalues of A

counting multiplicities.

In the proof we make use of two useful statements. An elementary computation
yields the following fact.

Lemma 7.8. Suppose A and B are unitarily equivalent. Then A is normal if
and only if B is normal, i.e. A is normal if and only if UAU∗ is normal for some
unitary matrix U .

Proof. Elementary computations yield the assertion. �

Lemma 7.9. An upper triangular matrix is normal if and only if it is diagonal.

Proof. (⇒) Suppose T is an upper triangular matrix. Then the n, n-th entry

of TT ∗ is |tnn|2 while the n, n-th entry of T ∗T is |tnn|2+
∑n−1
i=1 |tin|2. If T is normal,

then these two entries have to be the same. Hence tin = 0 for i = 1, ..., n − 1.
Repeating this argument for the entries n− 1, n− 1, ..., 1 gives that T is diagonal.
(⇐) If T is diagonal, then T is certainly normal. �

Spectral theorem. (i)⇔ (ii) By Schur’s theorem A is unitarily equivalent
to an upper triangular matrix T . Then we know that A is normal if and only if T is
normal, which is normal if and only if T is diagonal. In other words, A is unitarily
equivalent to a diagonal matrix.
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(ii) ⇔ (iii) Suppose A is unitarily equivalent to a diagonal matrix D where the
diagonal entries of D are the eigenvalues λ1, ..., λn of A. Then

n∑
i,j=1

|aij |2 = tr(A∗A) = tr(D∗D) =

n∑
i=1

|λi|2.

(ii)⇔ (ii) By Schur’s theorem A is unitarily equivalent to a triangular matrix T :

n∑
i=1

|λi|2 =

n∑
i,j=1

|aij |2 = tr(A∗A) = tr(T ∗T ) =

n∑
i=1

|tii|2 +

n∑
i,j=1,i6=j

|tij |2.

Since the diagonal entries of T are the eigenvalues of A we have that

n∑
i=1

|λi|2 =

n∑
i=1

|tii|2.

Hence tij = 0 for i 6= j, i.e. T is diagonal and A is unitarily equivalent to a diagonal
matrix. �

The matrix

(
1 1
0 1

)
is not normal. This matrix and its higher-dimensional

analogs are going to play a crucial role in the Jordan Normal Form.

Recall that selfadjoint matrices, A = A∗, are normal. Consequently our spectral
theorem for normal matrices implies the spectral theorem for selfadjoint matrices.

Theorem 7.10. Suppose A is a selfadjoint n× n matrix. Then A is unitarily
equivalent to a diagonal matrix, and the eigenvalues of A are real.

Proof. The fact about the diagonalizability follows from the Spectral The-
orem for unitary matrices. Now let U be the unitary matrix implementing this
similarity: A = UDU∗. Then we have A∗ = UDU∗. Hence A is selfadjoint if and
only if the diagonal entries of D are real. Since these entries are the eigenvalues of
A, we have to show that eigenvalues of a selfadjoint matrix are real numbers.
Let λ ∈ C be an eigenvalue of A and x an eigenvector. Then 〈Ax, x〉 = 〈λx, x〉 =
λxx but A is selfadjoint and thus 〈Ax, x〉 = 〈x,Ax〉 = 〈x, λx〉 = λxx. Since x 6= 0
we deduce that λ = λ, which is the desired assertion. �

Corollary 7.3.5. Let A be a n×m matrix. Then the m×m matrix A∗A and
the n×n matrix AA∗ are selfadjoint with non-negative eigenvalues and the positive
eigenvalues coincide for these two matrices.

Proof. Note that ‖Ax‖2 = 〈Ax,Ax〉 = 〈A∗Ax, x〉 ≥ 0. The matrices A∗A
and AA∗ are selfadjoint and have the same non-zero eigenvalues. Suppose λ is an
eigenvalue and x an eigenvector of A∗A. Then 〈A∗Ax, x〉 = 〈λx, x〉 = λ‖x‖2 ≥ 0
and thus λ > 0. �

In the case of unitary matrices we can also use the spectral theorem to deduce
some information about the eigenvalues.

Proposition 7.3.6. A matrix A is unitary if and only if all of the eigenvalues
of A have modulus one.
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Definition 7.3.7. A complex selfadjoint matrix A on an n-dimensional in-
nerproduct space (X, 〈., , 〉 .) is said to be positive definite if 〈Ax, x〉 > 0 for all
non-zero vectors x ∈ X. If A satisfies the weaker condition 〈Ax, x〉 ≥ 0 for all
non-zero vectors x ∈ X, then we call A semi-positive definite.

The notion of positivity is also of interest in the infinite dimensional setting,
where it lies at the heart of the theory of operator algebras. We restrict our discus-
sion to mappings between finite-dimensional vector spaces.

Remark 7.3.8. The matrix

(
1 1
1 1

)
is not positive definite. Hence one cannot

deduce from the positivity of the matrix entries its positive definiteness.

For 2×2 matrices there is a way to state some explicit conditions on the matrix
entries by just examining the quadratic form 〈Ax, x〉. Completion the squares yields
that A is positive definite if and only if its pivots are positive. A good way to think
about positive definite matrices is to understand its relation with the spectrum.

Lemma 7.11. A complex selfadjoint n × n matrix A is positive if and only if
all its eigenvalues λ1, ..., λn are positive.

Proof. (⇐) Suppose A is positive definite. Then 〈Ax, x〉 is positive for all
non-zero vectors. In particular, also for eigenvectors. Let x be an eigenvector of A.
Then 〈Ax, x〉 = 〈λx, x〉 = λ‖x‖2 > 0 and thus λ > 0.
(⇒) By the spectral theorem A is unitarily equivalent to a diagonal matrix given
by its eigenvalues. Hence 〈Ax, x〉 is positive for all non-zero vectors. �

7.4. Singular Value Decomposition

We present a way to factorize an arbitrary matrix with complex entries, the
singular value decomposition (SVD). The SVD has various applications in signal
analysis, statistics, mathematics and other areas, for example the principal compo-
nent analysis, data compression, identifying structures in higher-dimensional data
etc.

Definition 7.4.1. Given an m× n matrix A of rank r. Let σ2
1 ≥ · · · ≥ σ2

r be
the positive eigenvalues of A∗A. The numbers σ1, ..., σr the singular values of A.

Since the matrix A∗A is of size n×n, it has n eigenvalues and so we define the
singular values to the n− r zero eigenvalues to be 0, i.e. σj := 0 for j = r+1, ..., n.
Since the non-zero eigenvalues of A∗A and AA∗ are the same, one might want to
pick either one to determine the singular values of A.

Theorem 7.12 (Singular Value Decomposition – SVD). Given an m×n matrix
A of rank r. Let σ1 ≥ · · · ≥ σr be the positive singular values of A. Let Σ be
the m × n diagonal matrix with σ1, ..., σr in the first r diagonal entries and zeros
elsewhere. Then there exist unitary matrices U and V , of sizes m×m and n× n,
respectively, such that

A = UΣV ∗.

The decomposition in the theorem is often called the full SVD. The columns of
the m × m matrix U are the eigenvectors of AA∗, and the columns of the n × n
matrix V are the eigenvectors of A∗A
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Proof. Note that D = Σ∗Σ is a real n × n diagonal matrix with σ2
1 ≥ σ2

2 ≥
· · · ≥ σ2

r and zeros everywhere. The matrix A∗A is a selfadjoint matrix with r
positive eigenvalues σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

r and n − r eigenvalues equal to zero. The
spectral theorem yields that there exists a unitary matrix V such that

V ∗A∗AV = D.

The ijth entry of V ∗A∗AV is the innerproduct of columns j and i of AV . Hence
the preceding equation yields that the columns of AV are pairwise orthogonal.
Furthermore, when 1 ≤ i ≤ r then the length of column j is σj . Let Ur denote
the m × r matrix with 1

σj
(column j of AV) as its jth column. The r columns of Ur

are then an orthonormal set. Now complete Ur to an m ×m matrix by using an
orthonormal basis for the orthogonal complement of the column space of Ur for the
remaining m− r columns. Hence

AV = UΣ

and hence AV = UΣV ∗. �

There is other ways to write the SVD. Since only the first r diagonal entries of
Σ are non-zero, the last m − r columns of U and the last n − r columns of V are
superfluous. Let Σ̃ be the r × r matrix diag(σ1, ..., σr). Replace the n × n matrix
U and the m ×m matrix V by the (m − r) × (m − r) matrix Ur and by the r × n
matrix Vr consisting of the first r rows, respectively. Hence,

A = UrΣr.

Summary: Any matrix A has an SVD with a unique diagonal matrix Σ, but the
unitary matrices U and V are not uniquely determined by the matrix A. It is
just the way these unitaries are used that is specified: Namely, A(column j ofV ) =
σj(column j ofU), or in matrix form:

AV = UΣV ∗.

Definition 7.4.2. The vectors u1, u2, .., , um and v1, ..., vn are called the left
and right singular vectors. Based on our results on the kernel of T and the range
of T ∗ the properties of singular vectors is not surprising:

Proposition 7.4.3. Let A be a m× n matrix of rank r. Then

ran(A) = span{u1, ..., ur}, ker(A∗) = span{ur+1, ..., um}
ran(A∗) = span{v1, ..., vr}, ker(A) = span{vr+1, ..., vn}.

Hence we have

ran(A)⊕ ker(A∗) = Cm

and

ran(A∗)⊕ ker(A) = Cn.

Or in terms of basis: The columns of V ∗ are an orthonormal basis for Cn and
the columns of U are an orthonormal basis for Cm. Then A maps the jth basis
vector of Cn to a multiple of the jth basis vector of Cm, where the multiplier is
given by the singular value σj. If we order the singular values decreasingly, then
σ1 is the largest factor by which the length of a basis vector is multiplied. We now
show that this is the largest factor by which the length of any vector is multiplied. In
other words, the operator norm of the linear transformation induced by A is equal
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to the largest singular value. The operator norm of a matrix is often known as the
spectral norm.

Proposition 7.4.4. Let A be a m × n matrix with singular values σ1 ≥ σ2 ≥
· · · ≥ σr > 0. Then the operator norm of A equals σ1:

‖A‖ = σ1.

Proof. The equation AV = UΣ gives for the first column vector v1 of V
that ‖Av1‖ = σ1. Let x be a vector of length one in Cn. Then the SVD gives
Ax = UΣV ∗x. Since V is unitary, also V ∗ is unitary and hence an isometry. Let
us denote V ∗x = y. Then ‖y‖ = 1 and the vector Σy is the vector where the jth
component gets multiplied by σj . Hence ‖Σy‖ ≤ σ1‖y‖. Since U is unitary

‖Ax‖ = ‖UΣy‖ ≤ σ1.

�

A complex number may be written in polar form z = |z|e2πiϕ. The polar decom-
position of a matrix A decomposes it as a product of a unitary matrix and a positive
definite matrix. If one looks at the eigenvalues of these matrices, then the first one
has only eigenvalues of modulus one and the other has only positive eigenvalues.
Hence in terms of the spectrum of the matrices the polar decomposition is a natural
generalization of the one for complex numbers.

Proposition 7.4.5 (Polar decomposition). Given a n × n matrix A. There
exist a unitary matrix U and a positive definite matrix R such that

A = UR.

Proof. The SVD decomposition gives us unitary n×n matrices U and V such
that

A = UΣV ∗ = UV ∗V ΣV ∗.

Note that UV ∗ is unitary as a product of two unitary matrices and V ΣV ∗ is positive
definite, since Σ is positive definite. Hence V ΣV ∗ is the replacement of the length
of a complex number and UV ∗ the one for the phase factor. �

Consequently, the SVD gives in an elementary manner a polar decomposition
of a matrix.

Example 7.4.6. Determine the singular value decomposition of

(
3 2 2
2 3 −2

)
.

Write

A =

(
3 2 2
2 3 −2.

)
We follow the procedure for singular value decomposition. We have

A∗A =

3 2
2 3
2 −2

(3 2 2
2 3 −2

)
=

13 12 2
12 13 −2
2 −2 8


The non-zero eigenvalues of A∗A are σ2

1 = 25 and σ2
2 = 9. The normalized

eigenvectors for the singular values σ1 and σ2 are given by:
σ2
1 = 25
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13− 25 12 2
12 13− 25 −2
2 −2 8− 25

 ∼
0 0 0

0 0 1
1 −1 − 17

2



v1 =


√
2
2√
2
2
0

 is a normalized eigenvector for λ1 = 25.

λ2 = 9 13− 9 12 2
12 13− 9 −2
2 −2 8− 9

 ∼
0 0 0

0 1 1
4

1 0 − 1
4



v2 =


√
2
6

−
√
2
6

2
√
2

3

 is a normalized eigenvector for λ2 = 9.

λ3 = 0 13 12 2
12 13 −2
2 −2 8

 ∼
0 0 0

0 1 −2
1 0 2


v3 =

 2
3
− 2

3
− 1

3

 is a normalized eigenvector for λ3 = 0.

We get the singular value decomposition A = UΣV ∗ for

V =
(
v1|v2|v3

)
=


√
2
2

√
2
6

2
3√

2
2 −

√
2
6 − 2

3

0 2
√
2

3 − 1
3

 ,

Σ =

(
σ1 0 0
0 σ2 0

)
=

(√
λ1 0 0
0

√
λ2 0

)
=

(
5 0 0
0 3 0

)
,

and

U =
(
U1|U2

)
=
(

Av1
‖Av1‖ |

Av2
‖Av2‖

)
=

(√
2
2

√
2
2√

2
2 −

√
2
2

)
.

Explicitly, we have(
3 2 2
2 3 −2

)
=

(√
2
2

√
2
2√

2
2 −

√
2
2

)(
5 0 0
0 3 0

)
√
2
2

√
2
2 0√

2
6 −

√
2
6

2
√
2

3
2
3 − 2

3 − 1
3


Given a m × n matrix A and a vector b ∈ Cm. Then we are interested in

solutions of
Ax = b.

There will be a solution, if b lies in the range space of A, i.e. A has full rank. If that
is not the case, there exists no solution, but we still find a best approximation of b
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from the range of A. These best approximations of Ax = b that minimize ‖Ax− b‖
among all the the elements of the range of A are known as least squares solutions.
The characterization of best approximation in terms of the orthogonal complement
gives in this case that the least square solution with minimal norm, denoted by x+,
is the vector x such that

(b−Ax) ⊥ ran(A)

which is equivalent to (b−Ax)∗A = 0, or equivalently stated in terms of the normal
equations

A∗Ax = A∗b.

The matrix that produces x+ is called the pseudoinverse of A, denoted by A+ and we
have A+b = x+. If A has full column rank, meaning m > n, then A+ = (A∗A)−1A∗.
For general matrices the SVD provides a convenient way for finding A+:

A+ = V Σ+U∗,

where Σ+ is the n×m matrix which is the transpose of Σ, where the singular values
σi of A are replaced by σ−1i .

Example 7.4.7. Solve the equation

−x1 + 2x2 + 2x3 = b, for b ∈ R,
and explain in which sense your result has to be interpreted.

We let A =
(
−1 2 2

)
and rewrite the equation as Ax = b. The Singular

Value Decomposition gives that

A = UΣV ∗,

where

U =
(
1
)

, Σ =
(
3 0 0

)
, V =


− 1

3
2√
5

2
3
√
5

2
3 0

√
5
3

2
3

1√
5

4
3
√
5

 .

The pseudoinverse of A is

A+ = V Σ+U∗ =


− 1

3
2√
5

2
3
√
5

2
3 0

√
5
3

2
3

1√
5

4
3
√
5




1
3

0
0

(1) =


− 1

9

2
9

2
9


The solutions of the equation Ax = b are given by

x = A+b+ kerA =


− 1

9

2
9

2
9

 b+ kerA.

7.5. Generalized eigenspaces and Jordan normal form

Disclaimer: Work in progress In this section we describe a modification of
the Schur form of a matrix that is a consequence of a particular choice of bases for
particular subspaces associated to the distinct eigenvalues, the so-called generalized
eigenspaces.

Suppose T is a linear operator on a finite-dimensional vector space X and let
λ be an eigenvalue of T .
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(1) If the characteristic polynomial contains a factor of the form (x − λ)a.
Then we call a the algebraic multiplicity of the eigenvalue λ.

(2) The geometric multiplicity g of the eigenvalue λ equals the dimension of
the eigenspace associated with λ: g := dim(ker(T − λI)).

The algebraic multiplicity of an eigenvalue equals the number of times λ appears
on the diagonal of the upper-triangular matrix in the Schur form.
Note that the geometric multiplicity of an eigenvalue is always less than or equal
to the algebraic multiplicity. In case the sum of the geometric multiplicities is less
than the sum of the algebraic multiplicities, then T has not enough eigenvectors to
form a basis for X and the T is not invertible.

Definition 7.5.1. Let T be a linear transformation on a vector space X.

(1) A non-zero vector x ∈ X is called a generalized eigenvector of T corre-
sponding to a scalar λ if

(T − λI)kx = 0

for some positive integer k.
(2) Suppose X is n dimensional and A is the matrix representation of T for

a basis of X. A non-zero vector x ∈ Cn is called a generalized eigenvector
of degree k of the n × n matrix A corresponding to λ if (T − λI)kx = 0
for some positive integer k.

(3) The generalized eigenspace GE(T, λ) corresponding to λ is

GE(T, λ) = {x ∈ X : (A− λI)px = 0 for some positive integer p}.

Note that
mathcalGE(T, λ) consists of the zero vector and all generalized eigenvectors cor-
responding to λ, and any generalized eigenvector of degree 1 is an eigenvalue. In
numerical analysis are generalized eigenspaces often called Krylov spaces.

Definition 7.5.2. Let T be a linear transformation on a finite-dimensional
vector space X. We say that T is nilpotent if there exists a power of the matrix
such that T k = 0. The minimal exponent, e, such that T e = 0 and T e−1 6= 0, is
the index of nilpotency of T .

The matrix Tp defined by

Tp =



0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
. . . 1

...

0 0 0
... 1

0 0 0
... 0


is a nilpotent matrix of index p− 1.

Proposition 7.5.3. Let T be a linear transformation on a finite-dimensional
vector space X. Then T is nilpotent if and only if 0 is the only eigenvalues of T .

Proof. (⇐) Suppose T is nilpotent and λ is an eigenvalue of T . Then there
exists a non-zero x ∈ X such that Tx = λx. Then there exists a p such that

0 = T px = λpx
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and hence T p = 0 implies that λ = 0.
(⇒) Suppose σ(T ) = {0}. Then T is similar to a triangular matrix with all zeros
on the diagonal. The powers of an upper-triangular matrix become eventually the
zero matrix. Hence T is nilpotent. �

Furthermore, let p be the smallest positive integer such that (T − λI)px = 0,
then (T − λI)p−1x 6= 0 and thus T − λI is a nilpotent operator of exponent p with
eigenvalue λ.

Example 7.5.4. Let T be the differentiation operator on the space Pn of poly-
nomials of degree at most n. Then T is a nilpotent operator of index n+ 1. This is
just a rephrasing of the well-known fact that the (n+1)-th derivative of xn vanishes
identically.
Suppose you pick as basis of Pn the monomial basis {1, x, x2, ..., xn}. Then the
coefficients of p(x) = a0 + a1x+ · · ·+ anx

n are the coordinates wrt the monomial
basis. The matrix of the differentiation operator is

T =



0 1 0 · · · 0
0 0 2 · · · 0
...

. . .
. . . n− 1

...

0 0 0
... n

0 0 0
... 0


.

The basis representation of T wrt the normalized monomial basis {1, x, x
2

2! , ...,
xn

n! }
is

T =



0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
. . . 1

...

0 0 0
... 1

0 0 0
... 0


.

We say that a polynomial p annihilates a linear transformation T if the evalu-
ation of p at T vanishes: p(T ) = 0.

Proposition 7.5.5. Let T be a linar transformation on a finite-dimensional
vector space X. Then there exists a non-zero annihilating polynomial for T .

Proof. Suppose that X is n-dimensional. Then the space of linear transfor-

mations on X is of dimension n2. The set {I, T, T 2, ..., Tn
2} is linearly dependent,

since it contains more than element than the dimension of the space of linear trans-
formation. Hence there exists a polynomial of degree n2+1 satisfying p(T ) = 0. �

Equivalently, let us pick a basis for the finite-dimensional vector space X. Then
there exists a non-zero polynomial p of degree at most n2 annihilating this matrix.
Are there other annihilating polynomials that have degree less than n2?

Definition 7.5.6. Let A be a n×n-matrix. We call the polynomial m of least
degree satisfying m(A) = 0, the minimal polynomial for A.

A basic fact about the set of annihilating polynomials is that the minimal poly-
nomial is a divisor.
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Proposition 7.5.7. Let A be a n × n-matrix and p a non-zero polynomial p
such that p(A) = 0. Then there exists a polynomial q with degree less than the
degree of p such that p(z) = m(z)q(z).

Proof. Suppose p annihilates A. Then there exists q such that deg(q) <
deg(p) and a polynomial r of degree less than the one of q or r = 0 such that

p(z) = m(z)q(z) + r(z).

The claim is equivalent to r = 0. By assumption we have

0 = p(A) = m(A)q(A) + r(A) = 0 q(A) + r(A)

and thus r(A) = 0. Since the degree of r is less than the one of m, this is only
possible if r is the zero polynomial. �

A well-known theorem by Cayley and Hamilton is providing us with a polynomial
of degree at most n that annihilates a n × n-matrix: the characteristic polynomial
pA.

Theorem 7.13 (Cayley-Hamilton). Let A be an n×n-matrix. Then pA(A) = 0.

Proof. Our argument is based on the density of the set of diagonalizable ma-
trices in (Mn(C), ‖.‖). The theorem is definitely true for diagonal matrices D.
Thus it is also true for all diagonalizable matrices, i.e. for all matrices A = P−1DP
where P runs through all invertible matrices P . Since pA(A) = P−1pD(D)P due
to Ak = P−1DkP for any positive k. We have pA(A) = 0 if and only if pD(D) = 0.
The characteristic polynomial is a continuous function on (Mn(C), ‖.‖), since p(z) =
det(A − zI) is a polynomial in the entries of A. We know that there exists a se-
quence (Ak) of diagonalizable matrices such that ‖Ak − A‖ → 0 as k → ∞ and
that pAk

(Ak) = 0 for k = 1, 2, .... By continuity of the characteristic polynomial
we have that pA(A) = 0. �

In other words, the characteristic polynomial and the minimal polynomial have
the same set of zeros but the multiplicities of the factors in m might be less than
the ones for the factors of the characteristic polynomial. Thus an n × n-matrix A
is diagonalizable if and only if mA has n distinct roots.

In contrast to the characteristic polynomial, there is no algorithm for computing
the minimal polynomial of a matrix. Consequently, one determines the character-
istic polynomial and then computes if there is a polynomial of degree less than of
the characteristic polynomial with the same zeros, annihilates the matrix.

Example 7.5.8. The minimal polynomial for A =

2 1 0
0 2 1
0 0 1

 is equal to the

characteristic polynomial pA(z) = (A − 2I)3, i.e. λ = 2 has algebraic multiplicity

3 and the e1 =

1
0
0

 is an eigenvector. The vectors e2 =

0
1
0

 and e3 =

0
0
1

 are

generalized eigenvectors for A, since we have (A − 2I)e2 = 0 and (A − 2I)e3 = 0
which gives (A− 2I)3e3 = 0.
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In general, if a linear transformation has the form of a Jordan block of size n

T =



λ 1 0 · · · 0
0 λ 1 · · · 0
...

. . .
. . . 1

...

0 0 0
... 1

0 0 0
... λ


.

for a basis {x0, x1, ..., xn−1}, then x0 is an eigenvector for λ and {x1, ..., xn−1} are
generalized eigenvectors for λ. More explicitly, x0 6= 0 and

Ax0 = λx0 and Axj = λxj + xj−1, j = 1, 2, ..., n− 1.

The set {x0, x1, ..., xn−1} is also known as Jordan chain. By backward substitution
we have that the elements of a Jordan chain are of the form: xn−j = (A−λI)jxn−1
for j = 1, 2, ..., n− 1 and so

{x0, x1, ..., xn−1} = {(A− λI)jxn−1 : j = 1, ..., n− 1}.

Let us determine the generalized eigenspace for the differentiation operator D on
Pn. The operator D is nilpotent of exponent n + 1 and the eigenvalue λ = 0 has
multiplicity n+ 1. The eigenvector of D is the constant function 1 and the gener-

alized eigenvectors are {x, x
2

2! , ...,
xn

n! } = {Dj(x
n

n! ) : j = 1, ..., n}.

We add to the nilpotent operator of differentiation D a multiple of the identity.
Then the eigenvector of D − λI is eλx and a generalized eigenvector of degree 2 is
the function xeλx as we have D(xeλx) = eλx + xλeλx, i.e. (D − λI)(xeλx) = eλx.
More generally, a generalized eigenvector of degree k is of the form xkeλx. Thus
the generalized eigenspace GE(λ,D − λI) is spanned by {eλx, xeλx, ..., xneλx}.

We state that generalized eigengspaces of the form are of the aforementinoned type.

Proposition 7.5.9. Let T be a nilpotent linear transformation on a finite-
dimensional vector space X of dimension n. Then the generalized eigenspace GE(λ, T )
is spanned by the Jordan chain {xn−1, Txn−1, ..., Tn−1xn−1} for a vector xn−1 sat-
isfying Tn−1xn−1xn−1 6= 0.

There is a way to determine generalized eigenspaces of T based on the knowl-
edge of the minimal polynomial mT . Suppose the minimal polynomial factorizes as
mT (z) = (z− λ1)k1 · · · (z− λm)km . Define pl(z) = mT (z)(z− λl)kl for l = 1, ...,m,
Then

GE(T, λl) = ran(pl(T )).

The Jordan Normal Form of a linear transformation T on a finite-dimensional
vector space uses Jordan chain for each eigenvalue to break up the matrix in smaller
pieces where each transformation behaves like a Jordan block.

Theorem 7.14 (Jordan Normal Form). Let T be a linear transformation on a
finite-dimensional vector space X of dimension n with distinct eigenvalues λ1, ..., λm.
Then X = GE(T, λ1)⊕· · ·⊕GE(T, λm) and if we pick for each generalized eigenspace
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a Jordan chain, then the matrix of T is of the form
J1

J2
. . .

Jm

 ,

where Jk =



λk 1 0 · · · 0
0 λk 1 · · · 0
...

. . .
. . . 1

...

0 0 0
... 1

0 0 0
... λk


for k = 1, ...,m.

In other words, any complex n×n-matrix is similar to J =


J1

J2
. . .

Jm


where Jk is a Jordan block for λk, k = 1, ...,m. The columns of the change of basis
P are the Jordan chains for λ1, ..., λm and we have A = P−1JP .

A standard application of the Jordan Normal Form is the computation of the ex-
ponetial of a matrix:

eA = I +
A

1!
+
A2

2!
+ · · ·+ ...,

which is a bounded operator ‖eA‖ ≤ e‖A‖. Like in our discussion of geometric
series of bounded operators, one deduces that the exponetional of an n × n-matrix
A exists, i.e. the partial sums converge. For B = P−1AP we have eB = P−1eAP
and thus the computation of eA can be reduced to Jordan blocks J . Hence we have
to compute

eJ =

∞∑
k=0

(λI +N)k

k!
= I + (I +N) +

(I +N)2

2!
+ · · · (I +N)n

n!
,

and use that (I +N)k =
∑n
k=0

(
n
k

)
λn−kNk. Thus

eJ =



eλ λ λ2/2! · · · λn/n!
0 eλ λ · · ·
...

. . .
. . . λ

...

0 0 0
... λ

0 0 0
... eλ


For a matrix A we have that e(s+t)A = esAetA for any s, t ∈ R. Consequently,
(etA)−1 = e−tA. We have also that the derivative of etA is

(etA)′ = A+ tA+ · · · = AetA.

Like in the scalar case this allows us to solve differential equations for vectors in
Cn:
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Proposition 7.5.10. Given an n × n-matrix A and a differentiable vector-
valued function x on R. Let x(t0) = x0 be a fixed vector in Cn. Then the initial
value propblem (x(t))′ = Ax(t) with x(t0) = x0 has as solution

x(t) = etAx0.
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