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Introduction

The goal of this course is to present basic facts about vector spaces
and mappings between vector spaces in a form suitable for engineers,
scientists and mathematicians. The presentation is addressed to stu-
dents with variying backgrounds.

A special emphasis is put towards general methods and on abstract
reasoning. The material in this course is supposed to prepare you for
the advanced courses in your respective study program. You might en-
counter for the �rst time rigorous reasoning and there will be a particu-
lar focus on de�nitions, statements (=lemmas, propositions, theorems)
and proofs.

In the �rst chapter we discuss basic notions such as sets, functions
and the cardinality of a set.

These notes are accompanying the course TMA4145 Linear meth-
ods.
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CHAPTER 1

Sets and functions

Basic de�nitions and theorems about sets and functions are the
content of this chapter and are presented in the setting of Naive Set
Theory. These notions set the stage for turning our intuition about
collections of objects and relations between these objects.

1.1. Sets

Definition 1.1.1. A set is a collection of distinct objects, its ele-
ments. If an object x is an element of a set X, we denote it by x 2 X.
If x is not an element of A, then we write x =2 X.

A set is uniquely determined by its elements. Suppose X and Y are
sets. Then they are identical, X = Y , if they have the same elements.
More formalized, X = Y if and only if for all x 2 X we have x 2 Y ,
and for all y 2 Y we have y 2 X.

Definition 1.1.2. Suppose X and Y are sets. Then Y is a subset
of X, denoted by Y � X, if for all y 2 Y we have y 2 X.

If Y � X, one says that Y is contained in X. If Y � X and X 6= Y ,
then Y is a proper subset of X and we use the notation Y � X. The
most direct way to prove that two sets X and Y are equal is to show
that

x 2 X () x 2 Y

for any element x. (Another way is to prove a double inclusion: if
x 2 X then x 2 Y , establishing that X � Y and if x 2 Y , then x 2 X,
establishing that Y � X.)

The empty set is a set with no elements, denoted by ;.
Proposition 1.1.3. There is only one empty set.

Proof. Suppose E1 and E2 are two empty sets. Then for all ele-
ments x we have that x =2 E1 and x =2 E2. Hence E1 = E2. �

Some familiar sets are given by the various number systems:

(1) N = f1; 2; 3; :::g the set of natural numbers, N0 = f0; 1; 2; 3; :::g;
(2) Z = f:::;�2;�1; 0; 1; 2; :::g the set of integerr;
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(3) Q = fp=q : p; q 2 Zg the set of rational numbers;
(4) R denotes the set of real numbers;
(5) C denotes the set of complex numbers.

For real numbers a; b with a < b < 1 we denote by [a; b] the closed
bounded interval, and by (a; b) the open bounded interval. The length
of these bounded intervals is b� a.
Here are a few constructions related to sets.

Definition 1.1.4. Let X and Y be sets.

� The union of X and Y , denoted by X [ Y , is de�ned by

X [ Y = fzj z 2 X or z 2 Y g:
� The intersection of X and Y , denoted by X \Y , is de�ned by

X \ Y = fzj z 2 X and z 2 Y g:
� . The di�erence set of X from Y , denoted by XnY , is de�ned
by

XnY = fz 2 X : z 2 X and z 6= Y g:
If all sets are contained in one set X, then the di�erence set
XnY is called the complement of Y and denoted by Y c.

� The Cartesian product of X and Y , denoted by X � Y , is the
set

X � Y = f(x; y)jx 2 X; y 2 Y g;
i.e the set of all ordered pairs (x; y), with x 2 X and y 2 Y .
Recall an ordered pair has the property that (x1; y1) = (x2; y2)
if and only if x1 = x2 and y1 = y2.

� P(X) denotes the set of all subsets of X.

Here are some basic properties of sets.

Lemma 1.1. Let X; Y and Z be sets.

(1) X \ (Y [ Z) = (X \ Y ) [ (X \ Z) and X [ (Y \ Z) = (X [
Y ) \ (X [ Z) (distribution law)

(2) (X [ Y )c = Xc \ Y c and (X \ Y )c = Xc [ Y c (de Morgan's
laws)

(3) Xn(Y [ Z) = (XnY ) \ (XnZ) and Xn(Y \ Z) = (XnY ) [
(XnZ)

(4) (Xc)c = X.

Proof. (1) Let us prove one of de Morgan's relations. Let us
use the most direct approach. Keep in mind that x 2 Ec ()
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x =2 E. We then have:

x 2 (X [ Y )c () x =2 X [ Y () x =2 X and x =2 Y

() x 2 Xc and x 2 Y c () x 2 Xc \ Y c:

This proves the identity.
(2)

x 2 (Xc)c () x =2 Xc () x 2 X:

�

Note that if you have a statement involving [ and \. Then you get
another true statement if you interchange [ with \ and \ with [, as
one can see in the lemma. This is part of the �eld Boolean algebra.

1.2. Functions

Let X and Y be sets. A function with domain X and codomain Y ,
denoted by f : X ! Y , is a relation between the elements of X and Y
satisfying the properties: for all x 2 X, there is a unique y 2 Y such
that (x; y) 2 f , we denote it by: f(x) = y.

By de�nition, for each x 2 X there is exactly one y 2 Y such that
f(x) = y. We say that y the image of x under f . The graph G(f) of a
function f is the subset of X � Y de�ned by

G(f) = f(x; f(x))jx 2 Xg:
The range of a function f : X ! Y , denoted by range(f), or f(X),

is the set of all y 2 Y that are the image of some x 2 X:

range(f) = fy 2 Y j there exists x 2 X such that f(x) = yg:
The pre-image of y 2 Y is the subset of all x 2 X that have y as their
image. This subset is often denoted by f�1(y):

f�1(y) = fx 2 Xj f(x) = yg:
Note that f�1(y) = ; if and only if y 2 Y nran(f).

Here are some simple examples of functions.

jxj =

8><
>:
x if x > 0;

0 if x = 0;

�x if x < 0:

Note that jxj = maxfx;�xg. We de�ne the positive, x+ and negative
part, x� of x 2 R:

x+ = maxfx; 0g; and x� = max�x; 0;
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so we have x = x+ � x� and jxj = x+ + x�.

The following notions are central for the theory of functions.

Definition 1.2.1. Let f : X ! Y be a function.

(1) We call f injective or one-to-one if f(x1) = f(x2) implies x1 =
x2, i.e. no two elements of the domain have the same image.
Equivalently, if x1 6= x2, then f(x1) 6= f(x2).

(2) We call f surjective or onto if ran(f) = Y , i.e. each y 2 Y is
the image of at least one x 2 X.

(3) We call f bijective if f is both injective and surjective.

Note that a bijective function matches up the elements of X with
those of Y so that in some sense these two sets have the same number
of elements.

Let f : X ! Y and g : Y ! Z be two functions so that the range
of f coincides with the domain of g. Then we de�ne the composition,
denoted by g�f , as the function g�f : X ! Z, de�ned by x 7! g(f(x)).

For every set X, we de�ne the identity map, denoted by idX or id
where id(x) = x for all x 2 X.

Lemma 1.2. Let f : X ! Y and g : Y ! Z be two bijections. Then
g � f is also a bijection and (g � f)�1 = f�1 � g�1:

Lemma 1.3. Let f : X ! Y be a function and let C;D � Y . Then

f�1(C [D) = f�1(C) [ f�1(D):

Proof.

x 2 f�1(C [D) () f(x) 2 C [D () f(x) 2 C or f(x) 2 D

() x 2 f�1(C) or x 2 f�1(D) () x 2 f�1(C) [ f�1(D):

�

If one has a function f that maps elements in X to Y , then it
is often desirable to reverse this assignment. Let us introduce some
notions to address this basic problem.

Definition 1.2.2. Let f be a function from X to Y .

� The mapping f is said to be left invertible if there exists a
function g : Y ! X such that g � f = idX . We call g a left
inverse of f and denote it by f�1l .

� The mapping f is said to be right invertible if there exists a
function h : Y ! X such that f � h = idY . We call h a right
inverse of f and denote it by f�1r .
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� The mapping f is said to be invertible if there exists a g : Y !
X such that g � f = f � g = id, the so-called inverse of f and
denoted by f�1.

One may think of a left and right inverse in layman terms: (i) If
you map an element of the domain via a function to an element in the
target space, then the left inverse tells you how to go back to where
you started from;(ii) If one wants to get to a point in the target, then
the right inverse tells you a possible place to start in the domain. The
inverse of a function has some important properties.

Lemma 1.4. Given an invertible function f : X ! Y .

(1) The inverse function f�1 : Y ! X is unique.
(2) The inverse function is also invertible and we have (f�1)�1 =

f .

Proof. (1) Suppose there are two inverse functions gi : Y !
X, i = 1; 2. By assumption we have that f � g1 = id and
g2 � f = id. Hence we have

g2(y) = g2(fg1(y)) = g2f(g1(y)) = g1(y) for all y 2 Y;

i.e. g1 = g2.
(2) Exercise.

�

Let us give a description of left, right invertibility and invertibility
in more concrete terms.

Proposition 1.2.3. Given a function f : X ! Y .

(1) f is left invertible if and only if it is injective.
(2) f is right invertible if and only if it is surjective.
(3) f is invertible if and only if it is injective and surjective, i.e.

if f is bijective.

Proof. (1) Let us assume that f is injective. Then f : x !
ran(f) is invertible with f�1 : ran(f)! X. Let g : Y ! X be
any extension of this inverse. Then g � f = idX .
Suppose f is left invertible. Assume there are x1; x2 2 X such
that f(x1) = f(x2) = y. Then

x1 = f�1l (f(x1)) = f�1l (f(x2)) = x2;

i.e. f is injective.
(2) Let us assume that f is surjective. Pick an arbitrary element

z 2 Y , wich is by assumption an element of ran(f). Hence
z has at least one pre-image in X and thus f�1(z) 6= ;.Take
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y1 6= y2. Then the sets f�1(fy1g) and f�1(fy2g) in X are
disjoint. Let us pick from each set f�1(fyg) an element x and
de�ne x := h(y). Then h : Y ! X and f � h = idY .
Suppose that f is right invertible. Then we have for y 2 Y
that f(f�1r )(y) = f(x) where we set x to be x = f�1r (y). In
other words, y is in the range of f .

(3) Follows from the other assertions.
�

A consequence of the characterizations of left and right invertibility
is the observation:

Remark 1.2.4. If f : X ! Y is left invertible such that ran(f) 6=
Y , then there are many left inverses. However the restriction of any
left inverse of f to ran(f) is unique.
One the other hand if f : X ! Y is right invertible such that f is
surjective but not injective, then f will have many right inverses.

Our study of linear mappings will provide ample examples of the
aforementioned notions. Here we just give one example.

Example 1.2.5. Given the linear mapping T : R3 ! R2 given by
T = Ax with

A =

0
@�3 �4

4 6
1 1

1
A :

Then the matrix

A�1
l =

1

9

��11 �10 16
7 8 �11

�
induces a left inverse T�1l of T .
This left inverse is not unique, for example

1

2

�
0 �1 6
0 1 �4

�
also gives a left inverse. One can turn this example into one for right
inverses as well, see problem set 1.

1.3. Cardinality of sets

Bijective functions provide us with a way to compare the size of
two sets. We start with the case of �nite sets.

Definition 1.3.1. Two sets X and Y have equal cardinality, if
there is a bijective map f : X ! Y . If there is an injective map from
X to Y , then we say that the cardinality of X is less than or equal to
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the cardinality of Y .
A set X has n elements if there is a bijection between X and the set
f0; 1; :::; n � 1g. We denote the set f0; 1; :::; n � 1g by n. A set X is
countable if there is a bijection with N. In other words, X is countable
if we can arrange its elements in an in�nite sequence fx1; x2; x3; :::g
such that eqch element occurs exactly once in the sequence.

Remark 1.3.2. There is some more terminology that we will not
use in the course. A set X is called at most countable if there is an
injection from X to N.

Examples 1.3.3. We give some examples based on the set of nat-
ural numbers.

(1) The set of squares X = f1; 4; 9; :::; n2; :::g is countable, since
f : N! X de�ned by f(n) = n2 is bijective.

(2) The set of odd numbersX = f1; 3; 5; :::; 2n�1; :::g is countable,
since f : N! X de�ned by f(n) = 2n� 1 is a bijection.

Let us state a characterization of countable sets.

Lemma 1.5. A set X is countable. , There exists a surjective map
f : N! X.

Proof. ()) Suppose X is countable. Then there is a surjection
f : N! X which is in addition injective.

(() Given a surjective map f : N ! X. We have to turn this map
into an bijection g. The idea is to omit the repeated values of f . We
proceed in a recursive manner. De�ne g(1) := f(1). Suppose we have
chosen n distinct values g(1); g(2); :::; g(n). We collect the set of natu-
ral numbers where the values of f are not already included among the
list fg(1); g(2); :::; g(n)g:

Xn := fk 2 N : f(k) 6= g(j) for every j = 1; 2; :::; ng:
The set Xn can either be empty or not. Suppose Xn = ;. Then g :
f1; 2; :::; ng ! X is a bijection and thus X is �nite. Otherwise, if Xn 6=
;, then we denote by kn the least integer in Xn and set gn+1 := f(kn).
Note that by construction g(n+ 1) di�ers from g(1); g(2); :::; g(n). We
continue in this manner. If the process terminates, then X is �nite, or
we go through all the values of f and obtain a surjection g : N! X. �

The assignment of the number of elements of f0; 1; :::; n � 1g with
the set n yields that for any set X, there is at most one natural number
n such that X is bijective with the set n.
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Proposition 1.3.4. If there is a bijection between the sets n and
m, then they have the same number of elements.

Proof. We proceed by induction. For n = 0 the set n = f0; 1; :::; n�
1g is the empty set, and thus the only set bijective with it is the empty
set. Suppose that n > 0 and that the result is true for n � 1. Hence
there is a bijection f : f0; 1; :::; n � 1g ! f0; 1; :::;m � 1g. We as-
sume that f(n � 1) = m � 1. Then the restriction of f to the set
f0; 1; :::; n � 2g gives a bijection to f0; 1; :::;m � 2g. By the induc-
tion hypothesis we have n � 1 = m � 1. Let us now look at the case
when f(n � 1) 6= m � 1. We have that f(n � 1) = a for some a and

f(b) = m�1 and we de�ne a function ~f by ~f(x) = f(x) if x 6= b; n�1;
~f(k) = a and ~f(n� 1) = m� 1. Then ~f is a bijection and we conclude
as before that n = m. �

We move on to sets that are bijective to the set of natural numbers
N = f1; :::g.

Proposition 1.3.5. A set is at most countable it is �nite or count-
able.

Proof. Suppose f : X ! N is an injective function. We construct
a function g : X ! N as follows: g(x) = n if f(x) is the nth element
in the image of f. �

Proposition 1.3.6. N� N is countable.

Proof. The argument starts out with decomposing N � N into
�nite sets F0; F1; :::, where

Fk = f(i; j) 2 N� Nj i+ j = kg
and the cardinality of Fk is k + 1. Now we arrange these sets: �rst
writing the one element of F0, then the two elements of F1 and so
forth. Hence, we have established the assertion. In other words, we
have arranged N � N in a table:

(1; 1) (1; 2) (1; 3) (1; 4) � � �
(2; 1) (2; 2) (2; 3) (2; 4) � � �
(3; 1) (3; 2) (3; 3) (3; 4) � � �
(4; 1) (4; 2) (4; 3) (4; 4) � � �
...

...
...

...
. . .

and list the elements along sucessive (anti-)diagonals from bottom-left
to top-right as

(1; 1); (2; 1)(1; 2); (3; 1); (2; 2); (1; 3); ::::
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We de�ne f : N! N�N by f(n) := nth pair in this order. Note that
f is a bijection. �

Here are some facts about countable sets.

Proposition 1.3.7. We have the following assertions:

(1) The Cartesian product of two countable sets is countable.
(2) The union of countably many countable sets is countable.

Proof. (1) We show that the Cartesian product of two count-
able sets is countable which reduces to the statement that the
set N � N is countable which we have shown in ??.

(2) Let X0; X1; ::: be a countable family of countable sets. We
denote the elements of Xi by fx0i; x1i; :::g for i = 0; 1; ::: and
de�ne a map by f(i; j) = xij. Note that f : N � N! [1i=0Xi

and thus the union [1i=0Xi. is countable. The map f is not
injective in general, because the Xi's need not to be disjoint.
Proposition ?? yields the desired claim.

�

Proposition 1.3.8. The sets Z of integers and Q of rational num-
bers are countable.

Proof. One of the problems of problem set 1. �

Bernstein and Schr�oder observed an elementary characterization of
two sets having the same cardinality, we state it without proof.

Theorem 1.6. Let X and Y be two sets. Suppose there are injective
maps f : X ! Y and g : Y ! X. Then there exists a bijection between
X and Y .

We give some examples of a non-countable sets.

Theorem 1.7 (Cantor). The set R of real numbers is not count-
able.

If a set is not countable, then one often calls it uncountable.

Proof. We argue by contradiction and assume that R is countable.
Then a subset of R is also countable. Thus the open interval (0; 1) is a
countable set, i.e.

(0; 1) = fx0; x1; :::g:
Any ai 2 (0; 1) has an in�nite decimal expansion (possibly terminating,
in which case we let it continue forever with zeros):

ai = 0:ai0ai1:::; aij 2 f0; 1; :::; 9g:
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We set bi to be

bi =

(
3 if aii 6= 3

1 if aii = 7:

By construction we have bi 6= aii and thus the number

a = 0:b1b2:::

di�ers from ai. Note that a 2 (0; 1) which is not included in the given
enumeration of (0; 1). Hence we have deduced a contradiction to the
countability of (0; 1). The number bi 2 (0; 1) and di�ers from ai, since
the ith place of ai and bi are by construction not the same digit. �

Proposition 1.3.9. Let X be the set of all binary sequences: X =
f(a1; a2; a3; :::) : ai 2 f0; 1gg. Then X is not countable.

Proof. We apply the method from the preceding theorem, aka
diagonal argument.
Suppose X = f(x1; x2; x3; :::) : xi 2 f0; 1gg is countable. Then we have

x1 = 010100::::

x2 = 101111::::

...

Then we de�ne a sequence x =2 X by moving down the diagonal and
switching the values from 0 to 1 or from 1 to 0. HenceX is uncountable.

�

Proposition 1.3.10. The power set P(N) of the natural numbers
N is uncountable.

Proof. Let C = [n2N be a countable collection of subsets of N.
De�ne X � N by

X = fn 2 N : n 2 Xng
. Claim: X 6= Xn for every n 2 N. Since either n 2 X and n =2 Xn or
n =2 X and n 2 Xn.
Thus X =2 C and so no countable collection of subsets of N includes all
of the subsets of N. �

We introduce two crucial notions: the in�mum and supremum of a
set. First we provide some preliminaries.

Definition 1.3.11. Let A be a non-empty subset of R

� If there exists M 2 R such that a �M for all a 2 A, then M
is an upper bound of A. We call A bounded above.
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� If there exists m 2 R such that m � a for all a 2 A, then m
is a lower bound of A.

� If there exist lower and upper bounds, then we say that A is
bounded. We call A bounded below.

Definition 1.3.12 (In�mum and Supremum). Let A be a subset
of R.

� If m is a lower bound of A such that m � m0 for every lower
bound m0, then m is called the in�mum of A, denoted by
m = inf A. Furthermore, if inf A 2 A, then we call it the
minimum of A, minA.

� IfM is an upper bound of A such thatM 0 �M for every upper
bound M 0, then M is called the supremum of A, denoted by
M = supA.Furthermore, if supA 2 A, then we call it the
maximum of A, maxA.

Note that the in�mum of a set A, as well as the supremum, are
unique. The elementary argument is left as an exercise.
If A � R is not bounded above, then we de�ne supA = 1. Suppose
that a subset A of R is not bounded below, then we assign �1 as its
in�mum.
We state a di�erent formulation of the notions inf A and supA that is
just a reformulation of the de�nition.

Lemma 1.8. Let A be a subset of R.

� Suppose A is bounded above. Then M 2 R is the supremum
of A if and only if the following two conditions are satis�ed:
(1) For every a 2 A we have a �M .
(2) Given " > 0, there exists a 2 A such that M � " < a.

� Suppose A is bounded below. Then m 2 R is the in�mum of
A if and only if the following two conditions are satis�ed:
(1) For every a 2 A we have m � a.
(2) Given " > 0, there exists a 2 A such that a < m+ ".

Lemma 1.9. Suppose A is a bounded subset of A. Then inf A �
supA

For c 2 R we de�ne the dilate of a set A by cA := fb 2 R : b =
ca for a 2 Ag.

Lemma 1.10 (Properties). Suppose A is a subset of R.

(1) For c > 0 we have sup cA = c supA and inf cA = c inf A.
(2) For c < 0 we have sup cA = c inf A and inf cA = c supA.
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(3) Suppose A is contained in a subset B. If supA and supB exist,
then supA � supB. In words, making a set larger, increases
its supremum.

(4) Suppose A is contained in a subset B. If inf A and inf B exist,
then inf A � inf B. In words, making a set smaller increases
its in�mum.

(5) Suppose A � B are non-empty subsets of R such that x � y
for all x 2 A and y 2 B. Then supA � inf B.

(6) If A and B are non-empty subsets of R, then sup(A + B) =
supA+ supB and inf(A+B) = inf A+ inf B

Proof. (1) We prove that sup cA = c supA for positive c.
Suppose c > 0. Then cx � M , x � M=c. Hence M is an
upper bound of cA if and only if M=c is an upper bound of A.
Consequently, we have the desired result.

(2) Without loss of generality we set c = �1. Let a 2 A (we as-
sume that the set A is non-empty, otherwise there is nothing
interesting here). Then as a lower bound for A, inf A � a.
Moreover, as an upper bound for A, a � supA. Using transi-
tivity, we conclude that inf A � supA.

We now prove the second identity. Keep in mind that
the supremum of a set is its least upper bound, while the
in�mum is its greatest lower bound.

For any a 2 A, inf A � a, so � inf A � �a, showing
that � inf A is an upper bound for �A. Therefore, � inf A �
sup(�A), which implies inf A � � sup(�A) .

For any a 2 A we have �a 2 �A, so �a � sup(�A),
which implies a � � sup(�A). Therefore, � sup(�A) is a

lower bound for A, so � sup(�A) � inf A .

The two boxed inequalities prove the identity inf A = � sup(�A).
(3) Since supB is an upper bound of B, it is also an upper bound

of A, i.e. supA � supB.
(4) Analogously to (iii).
(5) Since x � y for all x 2 A and y 2 B, y is an upper bound of A.

Hence supA is a lower bound of B and we have supA � inf B.
(6) By de�nition A + B = fc : c = a + b for some a 2 A; b 2 Bg

and thus A + B is bounded above if and only if A and B
are bounded above. Hence sup(A + B) < 1 if and only if
supA and supB are �nite. Take a 2 A and b 2 B, then
a+ b � supA+supB. Thus supA+supB is an upper bound
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of A+B:

sup(A+B) � supA+ supB:

The reverse direction is a little bit more involved. Let " > 0.
Then there exists a 2 A and b 2 B such that

a > supA� "=2; b > supB � "=2:

Thus we have a + b > supA + supB � " for every " > 0, i.e.
sup(A+B) � supA+ supB.

The other statements are assigned as exercises. �

One reason for the relevance of the notions of supremum and in�-
mum is in the formulation of properties of functions.

Definition 1.3.13. Let f be a function with domain X and range
Y � R. Then

sup
X

f = supff(x) : x 2 Xg; inf
X
f = infff(x) : x 2 Xg:

If supX f is �nite, then f is bounded from above on A, and if infX f
is �nite we call f bounded from below. A function is bounded if both
the supremum and in�mum are �nite.

Lemma 1.11. Suppose that f; g : X ! R and f � g, i.e. f(x) �
g(x) for all x 2 X. If g is bounded from above, then supX f � supA g.
Assume that f is bounded from below. Then infX f � infX g.

Proof. Follows from the de�nitions. �

The supremum and in�mum of functions do not preserve strict in-
equalities. De�ne f; g : [0; 1]! R by f(x) = x and g(x) = x+1. Then
we have f < g and

sup
[0;1]

f = 1; inf
[0;1]

f = 0; sup
[0;1]

g = 2; inf
[0;1]

g = 1:

Hence we have sup[0;1] f > inf [0;1] g.

Lemma 1.12. Suppose f; g are bounded functions from X to R and
c a positive constant. Then

sup
X
(f + cg) � sup

X
f + c sup

X
g inf

X
(f + cg) � inf

X
f + c inf

X
g:

The proof is left as an exercise. Try to convice yourself that the
inequalities are in general strict, since the functions f and g may take
values close to their suprema/in�ma at di�erent points in X.
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Lemma 1.13. Suppose f; g are bounded functions from X to R.
Then

j sup
X

f � sup
X

gj � sup
X
jf � gj; j inf

X
f � inf

X
gj � sup

X
jf � gj

Lemma 1.14. Suppose f; g are bounded functions from X to R such
that

jf(x)� f(y)j � jg(x)� g(y)j for all x; y 2 X:

Then
sup
X

f � inf
X
f � sup

X
g � inf

X
g:

Recall that a sequence (xn) of real numbers is an ordered list of
numbers xn, indexed by the natural numbers. In other words, (xn) is a
function f from N to R with f(n) = xn. A sequence is a function from
N to R or C, so the properties of the inf and sup for functions apply
to sequences as well.



CHAPTER 2

Normed spaces and innerproduct spaces

In order to measure the length of a vector and to de�ne a distance
between vectors we introduce the notion of a norm of a vector. Norms
may be a tool to specify properties of a class of vectors in a convenient
form. We review basic aspects of vector spaces before we de�ne normed
vector spaces.

2.1. Vector spaces

Vector spaces and linear mappings between them are a useful tool
for engineers, scientists and mathematicians, aka Linear Algebra.

Vector spaces formalize the notion of linear combinations of objects
that might be vectors in the plane, polynomials, smooth functions, se-
quences. Many problems in engineering, mathematics and science are
naturally formulated and solved in this setting due to their linear na-
ture. Vector spaces are ubiquitous for several reasons, e.g. as linear
approximation of a non-linear object, or as building blocks for more
complicated notions, such as vector bundles over topological spaces.
We restrict our discussion to complex and real vector spaces.

A set V is a vector space if it is possible to build linear combinations
out of the elements in V. More formally, on V we have the operations
of addition of vectors and multiplication by scalars. The scalars will
be taken from a �eld F, which is either the real numbers R or C. In
various situations F might also be a �nite �eld or a �eld di�erent from
R and C. If it is necessary we will refer to these vector spaces as real
or complex vector spaces.

Developing an understanding of these vector spaces is one of the main
objectives of this course. The axioms for a vector space specify the
properties that addition of vectors and scalar multiplication.

Definition 2.1.1. A vector space over a �eld F is a set V together
with the operations of addition V � V ! V and scalar multiplication
F� V ! V satisfying the following properties:

17
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(1) Commutativity: u + v = v + u for all u; v 2 V and (��v) =
�(�v) for all �; � 2 F;

(2) Associativity: (u+ v) + w = u+ (v + w) for all u; v; w 2 V ;
(3) Additive identity: There exists an element 0 2 V such that

0 + v = v for all v 2 V ;
(4) Additive inverse: For every v 2 V , there exists an element

w 2 V such that v + w = 0;
(5) Multiplicative identity: 1v = v for all v 2 V ;
(6) Distributivity: �(u + v) = �u + �v and (� + �)u = �u + �u

for all u; v 2 V and �; � 2 F.
The elements of a vector space are called vectors. Given v1; :::; vn be in
V and �1; :::; �n 2 F we call the vector

v = �1v1 + � � �+ �nvn

a linear combination.

Our focus will be on three classes of examples.

Examples 2.1.2. We de�ne some useful vector spaces.

� Spaces of n-tuples: The set of tuples (x1; :::; xn) of real
and complex numbers are vector spaces Rn and Cn with re-
spect to component-wise addition and scalar multiplication:
(x1; :::; xn)+(y1; :::; yn) = (x1+y1; :::; xn+yn) and �(x1; :::; xn) =
(�x1; :::; �xn).

� The set of functions F(X; Y ) of a set X to a set Y : �f +
�g(x) := (�f + �g)(x) for all x 2 X.

� The space of polynomials of degree at most n, denoted by Pn,
where we de�ne the operations of multiplication and addition
coe�cient-wise: For p(x) = a0 + a1x + � � � anxn and q(x) =
b0 + b1x+ � � � bnxn we de�ne

(p+q)(x) = (a0+b0)+(a1+b1)x+� � � (an+bn)xn and (�p)(x) = �a0+�a1x+� � ��anxn

for � 2 F.

The space of all polynomials P is the vector space of poly-
nomials of arbitrary degrees.

� Sequence spaces: s denotes the set of sequences, c the set of
all convergent sequences, c0 the set of all convergent sequences
tending to 0, cf the set of all sequences with �nitely many
non-zero elements.

� Function spaces: The set of continuous functions C(I) on an
interval of R, popular choices for I are [0; 1] and R. We de�ne
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addition and scalar multiplication as follows: For f; g 2 C(I)
and � 2 F
(f + g)(x) = f(x) + g(x) and (�f)(x) = �f(x):

We denote by C(n)(I) the space of n-times continuously di�er-
entiable functions on I and the space C1(I) of smooth func-
tions on I is the space of functions with in�nitely many con-
tinuous derivatives. More generally, the set F(X) of functions
from a set X to F is a vector space for the operations de�ned
above. Note that F(f1; 2; :::; ng) is just Fn and hence the �rst
class of examples.

� Spaces of matrices: Denote byMm�n(C) the space of com-
plex m� n matrices where we de�ne addition and scalar mul-
tiplication entry-wise: For A = (aij)i;j and B = (aij)i;j where
i = 1; :::;m and j = 1; :::n we de�ne

A+B := (aij + bij)i;j and �(aij)ij = (�aij)ij; � 2 F:
There are relations between the vector spaces in the aforementioned

list. We start with clarifying their inclusion properties.

Definition 2.1.3. A subset W of a vector space V is called a
subspace if W is a vector subspace with respect to addition and scalar
multiplication of V .

One way to express this more concretely is stated in the next lemma:

Lemma 2.1. A subset W of a vector space V is a subspace if and
only if W is closed under linear combinations: For any �; � 2 F and
w1; w2 2 W we have �1w1+�2w2 2 W . Equivalently, we have that the
subset W of a vector space V is a subspace if and only if

(1) 0 2 W ;
(2) w1 + w2 2 W for any w1; w2 2 W ;
(3) �w for any � 2 F and any w 2 W .

Consequently, we have a way to decide when a subset of a vector
space is not a subspace.

Lemma 2.2. A subset W of a vector space V is a not a subspace if
one of the following conditions holds:

(1) 0 =2 W ;
(2) There are some w1; w2 2 W such that w1 + w2 2 W ;
(3) There is a vector w 2 W such that �w is not in = W .
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This is the contrapositve of the preceding lemma.

Here are some examples of vector subspaces:

Pn � P � F ; C1(I) � C(n)(I) � C(I); cf � c0 � c � s

.
We de�ne the linear span, spanS, of a subset S of a vector space V

to be the intersection of all subspaces of V containing S.
Linear transformations T between vector spaces V andW are map-

pings T that respect linear transformations:

T (�1v1 + �2v2) = �1T (v1) + �2T (v2) for any v1; v2 2 V; �; � 2 F:
We denote by L(V;W ) the set of all linear transformations between V
andW and it is a subset of the vector space of all functions f : V ! W .
Furthermore L(V;W ) is a vector space:

L(V;W ) � F(V;W ):

Example 2.1.4. LetD denote the di�erentiation operatorDf = f 0.
Then D : C(1)(a; b)! C(a; b) is a linear transformation.

Linear transformations have some useful properties.

Lemma 2.3. For any T 2 L(V;W ) we have T (0) = 0.

Proof. We have that v + 0 = v for any v 2 V ; in particular for
v = 0:

T (0) = T (0 + 0) = T (0) + T (0)

and after subtracting T (0) we get T (0) = 0. �

The kernel of T 2 L(V;W ) is the set

ker(T ) := fv 2 V jTv = 0g;
i.e. ker(T ) = T�1(0).

Lemma 2.4. For a linear transformation T : V ! W the kernel of
T is a subspace of V .

Proof. Suppose v1; v2 2 ker(T ). Then for any scalars �1; �2 we
have

T (�v1 + �2v2) = �1T (v1) + �2T (v2) = �1 � 0 + �2 � 0 = 0

and thus �v1 + �2v2 2 ker(T ): �

The range of T is a subspace of W , too.

Lemma 2.5. The range of a linear transformation T : V ! W is a
subspace of W .
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Proof. Exercise, see problem set 2. �

There is some natural operations for vector spaces.

Definition 2.1.5. Let V and W be subspaces of Z.

(1) The sum of V and W is de�ned by V +W := fz 2 Zj z =
v + w v 2 V;w 2 Wg.

(2) The intersection of V and W is de�ned by V \W := fz 2
Zj z 2 V \Wg.

From the de�nitions we see that V +W and V \W are subspace of
Z. We introduce some more notions: If the sum of the subspaces V and
W equals Z, then we say that Z is the sum of V andW , i.e. V +W = Z.
If in addition, the subspaces are disjoint subsets, U \ V = f0g, then
we refer to the sum of V and W as the direct sum.

Lemma 2.6. Let I be an index set. Given vector spaces Vi for any
i 2 I. Then \i2IVi is a vector space.

Proof. Exercise, see problem set 2. �

Definition 2.1.6. Let S be a nonempty subset of a vector space
V . Then we de�ne the span of S, span(S), as the intersection of all
subspaces of V that contain S.

Lemma 2.7. Let S � V be a nonempty subset. Then

span(S) = f�1 v1 + : : :+ �n vn : v1; : : : ; vn 2 S and �1; : : : ; �n 2 Fg:
By de�nition, span(S) is the intersection of all subspaces W of V

that contain the set S. From the preceding lemma, it follows that
span(S) is a subspace of V , hence it is the smallest subspace of V that
contains S.

Let us denote

W := f�1 v1 + : : :+ �n vn : v1; : : : ; vn 2 S and �1; : : : ; �n 2 Fg;
so W is the set of all linear combinations with elements in S.

Being a subspace of V , span(S) must contain all such linear com-
binations, so we must have that

W � span(S):

All we have left to show is that W is a subspace of V . This is not
hard to see, since linear combinations of linear combinations are linear
combinations as well.

Indeed, let a; b 2 F and let w1; w2 2 W , so

w1 = �1 v1 + : : :+ �n vn with v1; : : : ; vn 2 S;

w2 = �1 u1 + : : :+ �m um with u1; : : : ; um 2 S:
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Then

aw1 + bw2 = a�1 v1 + : : :+ a�n vn + b�1 u1 + : : :+ b�m um;

and since v1; : : : ; vn; u1; : : : ; um 2 S, it follows that aw1 + bw2 2 W .
Therefore, W is a subspace of V that contains S, so we must have

span(S) � W:

Together with the previous inclusion, this proves the equality of the
two sets.

2.2. Normed spaces

The norm on a general vector space generalizes the notion of the
length of a vector in R2 and R3.

Definition 2.2.1. A normed space is a vector space X together
with a function k:k : X ! R, the norm on X, such that for all x; y 2 X
and � 2 R:

(1) Positivity: 0 � kxk <1 and kxk = 0 if and only if x = 0;
(2) Homogeneity: k�xk = j�jkxk for � 2 F;
(3) Triangle inequality: kx+ yk � kxk+ kyk.

We denote this normed space by (X; k:k)
A norm gives a way to measure the distance between two vectors

by d(x; y) := kx � yk. We refer to d as the metric associated to the
norm k:k.

Proposition 2.2.2. Let (X; k:k) be a normed space. Then d :
X �X ! R de�ned by d(x; y) = kx� yk satis�es for all x; y; z 2 X

(i) d(x; y) � 0 for all x; y 2 X and d(x; y) = 0 if and only if
x = y (positivity);

(ii) d(x; y) = d(y; x) (symmetry);
(iii) d(x; z) � d(x; y) + d(y; z) (triangle inequality).

Proof. The properties (i)-(iii) are direct consequences of the ax-
ioms for a norm. In particular, (i) follows from property (1) of a norm,
(ii) is derived from property (ii) of a norm for � = �1 and (iii) is
deduced from property (3) of a norm. �

The metric d on X is also compatible with the linear structure of
a vector space:

� Translation invariance: d(x+z; y+z) = d(x; y) for all x; y; z 2
X;

� Symmetry: d(�x; �y) = j�jd(y; x) for all x; y 2 X and � 2 F.
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The function d(x; y) = kx�yk on the vector space R is an example
of a distance function on R, aka as a metric.

The metric d on X gives us a way to generalize intervals in R to
so-called balls.

Definition 2.2.3. For r > 0 and x 2 X we de�ne the open ball
Br(x) of radius r and center x as the set

Br(x) = fy 2 X : kx� yk < rg;
and the closed ball Br(x) of radius r and center x as

Br(x) = fy 2 X : kx� yk � rg:
The translation invariance and the homogeneity imply that the ball

Br(x) is the image of the unit ball B1(0) centered at the origin under
the (a�ne) mapping f(y) = ry + x.

The balls Br(x) have another peculiar feature. Namely, these are con-
vex subsets of X.

Definition 2.2.4. Let X be a vector space.

� For two points x; y 2 X the interval [x; y] is the set of points
fzj z = �x+ (1� �)y 0 � � � 1g.

� A subset E of X is called convex if for any two points x; y 2 E
the interval [x; y] is also in E.

The notion of convexity is central to the theory of vector spaces and
enters in an intricate manner in functional analysis, numerical analysis,
optimization, etc. .

Lemma 2.8. Let (X; k:k) be a normed vector space. Then the unit
ball B1(0) = fx 2 Xj kxk � 1g is a convex set.

Proof. For x; y 2 B1(0) we have that k�x+ (1� �)yk � j�jkxk+
j1��jkyk = 1, because kxk; kyk are both less than or equal to 1. Thus
�x+ (1� �)y 2 B1(0). �

The real numbers with the absolute value is a normed space (R; j:j)
and the open ball Br(x) is the open interval (x� r; x+ r) and Br(x) is
the closed interval [x� r; x+ r].

Lemma 2.9 (Reverse triangle inequality). Let (X; k:k) be a normed
space. Then we have

jkxk � kykj � kx� yk for all x; y 2 X:

Proof. See problem set 3. �
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A fundamental class of normed spaces is Rn with the `p-norms.

Definition 2.2.5. For p 2 [1;1) we de�ne the p-norm, denoted
by k:kp, on Rn by assigning to x = (x1; :::; xn) 2 Rn the number kxkp:

kxkp = (jx1jp + jx2jp + � � � jxnjp)1=p

. For p =1 we de�ne the `1-norm k:k1 on R by

kxk1 = max jx1j; :::; jxnj:
The notation for k:k1 is justi�ed by the fact that it is the limit of

the k:kp-norms.

Lemma 2.10. For x 2 Rn we have that

kxk1 = lim
p!1

kxkp:

Proof. Without loss of generality we assume that the largest com-
ponent of x, the kxk1, to be xn. For 1 � p <1 we have

kxkp = (jx1jp+ jx2jp+ � � � jxnjp)1=p = kxk1(( jx1jkxk)
p+

jx2j
kxk)

p+ � � �+1)1=p;

since jxij
kxk

) < 1 for i = 1; :::; n � 1 we have limp!1
jx1j
kxk

)p = 0. Thus we

have

lim
p!1

kxkp = kxk1:
�

In the proof of the triangle inequality for the p-norms we have to
rely on some inequalities: H�older's inequality and Young's inequality.

For p 2 (1;1) we de�ne its conjugate q as the number such that

1

p
+

1

q
= 1:

If p = 1, then we de�ne its conjugate q to be 1 and vice versa for
p =1 we set q = 1.

Lemma 2.11 (Young's inequality). For p 2 (1;1) and q its conju-
gate we have

ab � ap

p
+
bq

q
;

for any non-negative real numbers a; b.
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Proof. Consider the function f(x) = xp�1 and integrate this with
respect to x from zero to a. Now take the inverse function of f given
by f�1(y) = yq�1, where we used that 1=(p� 1) = q � 1 for conjugate
exponents p and q. Let us integrate f�1 from zero to b. Then the
sum of these two integrals always exceeds the product ab, see �gure.
Note that the two integrals are given by ap=p and bq=q. Hence we have
established Young's inequality. �

A consequence of Young's inequality is H�older's inequality.

Lemma 2.12. Suppose p 2 (1;1) and x = (x1; :::; xn) and y =
(y1; :::; yn) are vectors in Rn. Then

j
nX
i=1

xiyi �
� nX

i=1

jxijp
�1=p� nX

i=1

jyijq
�1=q

:

Proof. Set ai = jxij=(
Pn

i=1 jxijp)1=p and bi = jyij=(
Pn

i=1 jyijq)1=q.
Then we have

P
i a

p
i = 1 and

P
i b

q
i = 1. By Young's inequality

nX
i=1

jxijjyij � (
nX
i=1

jxijp)1=p(
nX
i=1

jyijq)1=q:

�

The unit balls of (R2; k:k1); (R2; k:k2) and (R2; k:k1) indicate the
di�erent nature of these norms.

Proof. Positivity and homogeneity are consequences of the corre-
sponding properties of the absolute value of a real number. The trian-
gle inequality is the non-trivial assertion that we split up in three cases
p = 1, p = 1 and p 2 (1;1). Let x = (x1; :::; xn) and y = (y1; :::; yn)
be points in Rn.

(1) For p = 1 we have

kx+yk1 = jx1+y1j+� � �+jxn+ynj � jx1j+jy1j+� � �+jxnj+jynj � kxk1+kyk1
.

(2) For p =1 the argument is similar:

kx+ yk1 = maxfjx1 + y1j; :::; jxn + ynjg
� maxfjx1j+ jy1j; :::; jxnj+ jynjg
� maxfjx1j; :::; jxnjg+maxfjy1j; :::; jynjg = kxk1 + kyk1:
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(3) The general case p 2 (1;1): The triangle inequality follows
from H�older's inequality.

kx+ ykpp =
nX
i=1

jxi + yijp

�
nX
i=1

jxi + yijp�1(jxij+ jyij)

�
nX
i=1

jxi + yij)p�1jxij+
nX
i=1

jxi + yijp�1jyij

�
� nX

i=1

jxi + yijp
�1=q�� nX

i=1

jxijp
�1=p

+
� nX

i=1

jyijp
�1=p�

= kx+ yk1=qp (kxkp + kykp)

Dividing by kx+ yk1=qp and using 1� 1=q = 1=p we obtain the
triangle inequality:

kx+ ykp � kxkp + kykp:
Thus the space Rn with the p-norm k:kp is a normed space for
p 2 [1;1].

�

The triangle inequality for p-norms on Rn is also known asMinkowski's

inequality:

(
nX
i=1

jxi + yijp)1=p � (
nX
i=1

jxijp)1=p + (
nX
i=1

jyijp)1=p:

There are variations of the (Rn; k:kp) with relevance in engineer-
ing, physics and mathematics. (i) Replace the real scalars by complex
scalars (Cn; k:kp); (ii) Replace Rn by the vector space of sequences
s; (iii) Deal with complex-valued sequences, (iv) Consider continuous
functions and de�ne norms in terms of integrals instead of sums for
sequences.

Before we present these classes of normed spaces, we show that the
vector space of m� n-matrices is a normed spaces, too.

De�ne a norm on Mm�n(F) by picking a norm on Fmn: For 1 �
p < 1 we de�ne kAk(p) = (

Pm
i=1

Pn
j=1 jaijjp)1=p or kAk(1) = max jaijj

for A 2 Mm�n(F). The case p = 2 is of special interest and is known
as the Frobenius norm.
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Proposition 2.2.6. For 1 � p � 1 we have that (Mm�n(F); k:kp)
is a normed space.

The identi�cation of Mm�n(F) with the vector space Fmn gives us
this result.

Proposition 2.2.7. Let Cn be the vector space of complex n-tuples
z = (z1; :::; zn)

T , zi 2 C for i = 1; :::; n. For 1 � p <1 we de�ne

kzkp = (
nX
i=1

)jzijp)1=p; z 2 Cn

and for p = 1 we have kzk1 := max jzij : i = 1; :::; n. where zi 2 C
and jzij = (zizi)

1=2 denotes the modulus of zi. Then (Cn; k:k)p is a
normed space for 1 � p � 1. The proof of Rn goes through without
any changes.

Proof. Young's inequality is a statement about non-negative num-
bers which in this case are modulus of complex numbers. Hence Young's
inequality is valid in this case as well and consequently H�older's inequal-
ity. The later is the key to prove the triangle inequality. �

Recall that s denotes the vector space of all sequences with values
in R or C. We de�ne for 1 � p < 1 the space `p as the set of all
sequences x = (x1; x2; :::) satisfying

kxkp := (jx1jp + jx2jp + � � � )1=p <1;

and `1 denotes the space of all bounded sequences (s; k:k1) with
kxk1 := sup

i2N
jxij;

where j:j denotes the absolute value of a real number or the modulus
of a complex number, respectively.

Lemma 2.13 (H�older's inequality). For 1 � p � 1 and q its con-
jugate index we have for x 2 `p and y 2 `q

1X
i=1

jxijjyij � (
1X
i=1

jxijp)1=p(
1X
i=1

jyijq)1=q:

Since H�older's inequality is true for all n 2 N we deduce that the
limits of the partial sums in question also satisfy these inequalities.
Hence we deduce the desired inequality for sequences instead of n-
tuples.

Proposition 2.2.8. For 1 � p � 1 we have that `p is a normed
vector space.
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Proof. First we show that `p is a vector space for p 2 [1;1): For
� 2 F and x 2 `p we have �x 2 `p. One has to work a little bit to see
that for x; y 2 `p also x+ y 2 `p:

kx+ ykpp =
1X
i=1

jxi + yijp

� 2p
1X
i=1

maxfjxij; jyijgp

= 2p
1X
i=1

jmaxfjxij; jyijgjp

� 2p(
1X
i=1

jxijp +
1X
i=1

jyijp) = 2p(kxkpp + kykpp) <1:

The norm properties may be deduced as in the case of Fn since we have
H�older's inequality at our disposal. �

For 1 � p < 1 the spaces (`p; k:kp) are subspaces of the vector
space of sequences converging to zero, c0. In contrast (`1; k:k1) is the
space of bounded sequences and is much larger than the other `p-spaces.
We have the following inclusions:

Lemma 2.14. For p1 < p2 the space `p1 is a proper subspace of `p2,
i.e.

`1 � `2 � `1:

Proof. See problem set 4. �

For example (1=n)n is in `p for p � 2, but not in `1.

We �nish this section with normed spaces based on continuous func-
tions.

Definition 2.2.9. For f 2 C[a; b] we de�ne its p-norm for 1 � p <
1 by

kfkp = (

Z b

a

jf(x)jpdx)1=p

and kfk1 = supx2[a;b] jf(x)j. We denote by (C[a; b]; k:kp) the set of all
functions satisfying kfkp <1.

Lemma 2.15 (H�older's inequality). For 1 � p � 1 and its conju-
gate exponent q we haveZ b

a

jf(x)jjg(x)jdx � kfkpkgkq:
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Proof. We assume without loss of generality that kfkp = 1 =
kgkq. By Young's inequality we have

jf(x)jjg(x)j � jf(x)jp=p+ jg(x)jq=q
and thusZ b

a

jf(x)jjg(x)j � 1

p

Z b

a

jf(x)jpdx+ 1

q

Z n

a

jg(x)jqdx = kfkpkgkq:
As in the case of Fn we are able to turn this inequality in the desired
one. �

Proposition 2.2.10. The space (C[a; b]; k:kp) is a normed space
for p 2 [1;1].

Proof. As for `p-spaces we deduce that the k:kp is a vector space.
The norm part is based on the validity of H�older's inequality as above.

�

We close with a way to construct a normed space out of given

normed spaces. Let fX1; k:kX1
); :::; (X1; k:kX1

)
o
be given normed spaces.

Then the direct product X1 � � � � �Xn is a normed space for

k(x1; :::; xn)k := kx1kX1
+ � � �+ kxnkXn

:

2.3. Innerproduct spaces

In this section we consider innerproduct spaces and we start with
the case of real vector spaces and afterwards treat complex vector
spaces.

For vectors in R3 we have the `dot product` aka `scalar product`
that assigns to a pair of vectors x = (x1; x2; x3) and y = (y1; y2; y3) the
number

hx; yi = x1y1 + x2y2 + x3y3:

Pythagoras' theorem gives the length of x = (x1; x2; x3) as
p
x21 + x22 + x23.

Note that hx; xi =
p
x21 + x22 + x23: Innerproduct spaces are a general-

ization of these basic facts from Euclidean geometry to general vector
spaces.

Definition 2.3.1. Let X be a real vector space. An innerproduct
on X is a map h:; :i : X �X ! R satisfying:

(1) (Linearity) For vectors x1; x2; y 2 X and scalars �1; �2 2 R we
have h�1x1 + �2x2; yi = �1 hx1; yi+ �2 hx2; yi.

(2) (Symmetry) For vectors x; y 2 X we have hx; yi = hy; xi.
(3) (Positive de�niteness) For any x 2 X we have hx; xi � 0 and

hx; xi = 0 if and only if x = 0.
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We call (X; h:; :i) an innerproduct space and de�ne by kxk := hx; xi1=2.
Here is a reformulation of the positive de�niteness of innerproducts.

Lemma 2.16. Suppose X is an innerproduct space. If hx; yi = 0 for
all y 2 X, then x = 0.

Proof. Since hx; yi = 0 holds for all y 2 X, in particular for y = x
and thus hx; xi = 0. Hence x = 0. �

Note that the symmetry and linearity in the �rst entry gives that
h:; :i is bilinear: For vectors x; y1; y2 2 X and scalars �1; �2 2 R we
have hx; �1y1 + �2y2i y = �1 hx; y1i+ �2 hx; y2i.

Example 2.3.2. The family of p-norms on Rn, the space of se-
quences s and on the space of continuous functions C[a; b] include for
p = 2 important examples of innerproduct spaces.

There is a link between innerproducts and the length of x. Namely

hx; xi1=2 is the length kxk of x. The proof of this fact is based on a
well-known inequality.

Proposition 2.3.3 (Cauchy-Schwarz). Suppose X is a real inner-
product space. Then for all x; y 2 X we have

j hx; yi j � kxkkyk:
We have j hx; yi j = kxkkyk if and only if x = �y for some � 2 R.

Proof. For any t 2 R and x; y 2 X we have kx � tyk � 0. More
explicitly, we have

kx� tyk = hx� ty; x� tyi = hx; xi � t(hy; xi+ hx; yi) + t2 hy; yi
= hx; xi � 2t hx; yi+ t2 hy; yi

Suppose y 6= 0, otherwise there is nothing to show.
Hence we have

t2 hy; yi � 2t hx; yi+ hx; xi = hy; yi
�
t2 � 2t

hx; yi
hy; yi +

hx; xi
hy; yi

�

= hy; yi
 �

t� hx; yi
hy; yi

�2
� hx; yi2
hy; yi2 +

hx; xi
hy; yi

!

= hy; yi
 �

t� hx; yi
hy; yi

�2
+
hx; xi hy; yi � hx; yi2

hy; yi2
!
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Hence we have hx; xi hy; yi � hx; yi2 � 0, i.e.

j hx; yi j � hx; xi1=2 hy; yi1=2 :
The assertion about the equality follows from the proof of the Cauchy-
Schwarz inequality, since kx � tyk = 0 if and only if x = �y for some
� 2 R. �

As a consequence we deduce that innerproduct spaces (X; h:; :i) are
normed spaces for kxk = hx; xi1=2.

Proposition 2.3.4. For (X; h:; :i) the expression kxk = hx; xi1=2
de�nes a norm on X.

Proof. Homogeneity follows from the linearity of the innerprod-
uct. The triangle inequality requires some work:

kx+ yk2 = kxk2 + kyk2 + 2 hx; yi � kxk2 + kyk2 + 2kxkkyk;
so the right side is (kxk+ kyk)2, where we applied Cauchy-Schwarz to
bound the innerproduct in terms of the norms of its elements. Thus
we have kx+ yk � kxk+ kyk. �

Example 2.3.5. (1) The sequence space `2 is an innerproduct
space for real-valued sequences (xi); (yi)

hx; yi =
1X
i=1

xiyi:

The sequence space `2 was the �rst example of an innerproduct
space, studied by D. Hilbert in 1901 in his work on Fredholm
operators.
H�older's inequality for p = 2 gives j hx; yi j � kxk2kyk2, which
is the Cauchy-Schwarz inequality in this case.

(2) The 2-norm k:k2 for the space of continuous functions on the
interval C[a; b] is inducded from the innerproduct

hf; gi =
Z b

a

f(x)g(x)dx:

The Cauchy-Schwarz inequality for (C(R); h:; :i is due to Karl
H. A. Schwarz in 1888.

The innerproduct h:; :i and its associated norm k:k = h:; :i1=2 are
related by the polarization identity.

Lemma 2.17 (Polarization identity). Let (X; h:; :i) be an innerprod-

uct space with norm k:k = h:; :i1=2. For a real innerproduct space we
have hx; yi = 1

4
(kx+ yk2 � kx� yk2) for all x; y 2 X.
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Proof. The arguments are based on the properties of innerprod-
ucts. kx+ (�1)kyk2 = kxk2 + kyk2 + (�1)k hx; yi for k = 0; 1. Adding
these two identities yields the desired polarization identity. �

Jordan and von Neumann gave an elementary characterizations of
norms that arise from innerproducts.

Theorem 2.18 (Jordan-von Neumann). Suppose (X; k:k) is a com-
plex normed space. If the norm satis�es the parallelogram identity

kx� yk2 + kx+ yk2 = 2kxk2 + 2kyk2 forall x; y 2 X;

then X is an innerproduct space for the innerproduct

hx; yi = 1

4

4X
k=1

ikkx+ ikyk2:

Proof. One direction is just a computation like the one done for
the polarization identity. The reverse direction is based on de�ning
an innerproduct in terms of the norms by turning the parallelogram
identity into a de�nition and show that this is indeed an innerproduct.
In the course of the argument one takes advantange of the paralellogram
identity. �

Innerproduct spaces are the in�nite-dimensional counterparts of
(Rn; k:k2) and share many properties with these �nite-dimensional spaces,
in contrast to general normed spaces such as C(I) with the sup-norm
or `p for p 6= 2.

Example 2.3.6. The supremum norm of C[0; 1] does not come from
an innerproduct. Use the polarization identity to show this fact.

We consider the case of complex innerproduct spaces that are of
relevance in quantum mechanics and signal analysis as well as mathe-
matics.

For vectors in C2 we have the `dot product` aka `scalar product` that
assigns to a pair of vectors z = (z1; z2) and z0 = (z01; z

0
2) the complex

number

hz; z0i = z1z1
0 + z2z2

0:

The reason for adding the complex conjugates to the de�nition of the
real case is to get the length of z = (z1; z2) 2 C2:

kzk2 = hz; zi = z1z1 + z2z2 = jz1j2 + jz2j2:
Definition 2.3.7. Let X be a complex vector space. An inner-

product on X is a map h:; :i : X �X ! C satisfying:
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(1) (Linearity) For vectors x1; x2; y 2 X and scalars �1; �2 2 F we
have h�1x1 + �2x2; yi = �1 hx1; yi+ �2 hx2; yi.

(2) (Conjugate Symmetry) For vectors x; y 2 X we have hx; yi =
hy; xi.

(3) (Positive de�niteness) For any x 2 X we have hx; xi � 0 and
hx; xi = 0 if and only if x = 0.

We call (X; h:; :i) an innerproduct space and de�ne by kxk := hx; xi1=2.
Note that the conjugate symmetry and linearity in the �rst en-

try gives that h:; :i is conjugate linear in the second entry: For vec-
tors x; y1; y2 2 X and scalars �1; �2 2 R we have hx; �1y1 + �2y2i y =
�1 hx; y1i+ �2 hx; y2i.

Proposition 2.3.8 (Cauchy-Schwarz). Suppose X is a complex
innerproduct space. Then for all x; y 2 X we have

j hx; yi j � kxkkyk:
We have j hx; yi j = kxkkyk if and only if x = �y for some � 2 C.

Proof. Suppose x and y are non-zero vectors of X.

0 �hx� y; x� yi = hx; xi+ hy; yi � hy; xi � hx; yi
= hx; xi+ hy; yi � 2Re hx; yi ;

and we obtain an additive inequality:

Re hx; yi � 1

2
hx; xi+ 1

2
hy; yi :

The normalization method turns this one into a multiplicative one:
We set ~x = x=hx; xi1=2 and ~y = y=hy; yi1=2 and plug ~x and ~y into the
preceding inequality:

Re hx; yi � hx; xi1=2 hy; yi1=2 :
We want to have a bound on j hx; yi j based on the one on the real part
of hx; yi via pre-multiplication. By the later one means that one pre-
multiplies by a well-chosen complex number in order to guarantee that
some quantity will be real. In our case we use the polar decomposition
of hx; yi: hx; yi = j hx; yi jei' for some ' 2 [0; 2�). We set ~x := e�i'x

j hx; yi j = Re~xy � h~x; ~xi1=2 hy; yi1=2 = hx; xi1=2 hy; yi1=2 ;
which yields the complex Cauchy-Schwarz inequality. The case of
equality is a consequence of the argument. �
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Example 2.3.9. (1) The space `2 of square-integrable complex-
valued sequences (zi); (z

0
i) is an innerproduct space:

hz; z0i =
1X
i=1

ziz0i:

H�older's inequality for p = 2 gives j hx; yi j � kxk2kyk2, which
is the Cauchy-Schwarz inequality in this case.

(2) The 2-norm k:k2 for the space of continuous complex-valued
functions on the interval C[a; b] is induced from the innerprod-
uct

hf; gi =
Z b

a

f(x)g(x)dx:

This innerproduct is of utmost importance in Schr�odinger's
approach to quantum mechanics and in signal analysis. In
physics one often denotes hf; gi by hf jgi and they tend to have
it conjugate linear in the �rst entry and linear in the second.

By the same reasoning as for real innerproduct spaces X we de-

duce that kzk := hz; zi1=2 is a norm on X Innerproducts provide a
generalization of the notion of orthogonality of elements.

Definition 2.3.10. Two elements x; y in an innerproduct space
(X; h:; ; i) are orthogonal to each other if hx; yi = 0

The theorem of Pythagoras is true for any innerproduct space (X; h:; :i).
Proposition 2.3.11 (Pythagoras's Theorem). Let (X; h:; :i) be an

innerproduct space. For two orthogonal elements x; y 2 X we have

kx+ yk2 = kxk2 + kyk2:
Proof. The argument is based on the fact that hx; xi is a norm.

By assumption we have hx; yi = 0

kx+ yk2 = kxk2 + 2Re hx; yi+ kyk2 = kzk2 + kyk2:
�

As an example we consider some orthogonal vectors in (C([0; 1]); h:; :i.
For m 6= n we de�ne the exponentials em(x) = e2�imx and en(x) =
e2�inx. Then

hem; eni =
Z 1

0

e2�i(m�n)xdx = (2�i(m� n))�2(e2�i(m�n) � 1) = 0:

Note that hen; eni = 1 for any n 2 Z. With the help of Kronecker's
delta function we may express this as hem; eni = �m;n.
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The theorem of Pythagoras is now at our disposal in any innerproduct
spaces such as `2.

Definition 2.3.12. A set of vectors feigi2I in an innerproduct
space (X; h:; ; i) is called an orthogonal family if hei; eji = 0 for all
i 6= j. In case that the orthogonal family feigi2I in X satis�es in
addition keik = 1 for any i 2 I, then we refer to it as orthonormal
family.

The exponentials fe2�nxgn2Z is an orthonormal family in C[0; 1]
with respect to h:; :i and is a system of utmost importance, e.g. it lies
at the heart of Fourier analysis or more generally harmonic analysis.





CHAPTER 3

Banach and Hilbert spaces

We extend the topological notions introduced for the real line to
general normed spaces and we focus on completeness in this section.
Complete normed spaces are nowadays called Banach spaces, after the
numerous seminal contributions of the Polish mathematician Stefan
Banach to these objects. The class of complete innerproduct spaces are
named after David Hilbert, who introduced the sequence space `2. His
students made numerous contributions to the theory of innerproduct
spaces, e.g. Erhard Schmidt, Hermann Weyl, Otto Toeplitz,... .

3.1. Sequences in normed spaces

Norms on a vector space are the tool that provides us with a way
to merge linear algebra and analysis, which is known as functional
analysis. We will discuss some of the basic aspects of functional analysis
in this course. We start with the notion of convergent sequences and
will work our way up to completeness.

Definition 3.1.1. Let (X; k:k) be a normed space. A sequence
(xn)n2N in X is said to converge to x 2 X if for a given " > 0 there
exists a N such that kx � xnk < " for n � N . The vector x is called
the limit of the sequence (xn)n2N.

Suppose A is a subset of X. Given a convergent sequence (an)n2N
in A, meaning all the an's are elements of A. Then the limit of the
sequence (an)n2N is also known as a limit point of A. We denote the
union of A and all its limit points by A.

This notion of convergence for sequences in normed spaces is a nat-
ural generalization of the one for real and complex numbers. Note that
the elements of the sequences are vectors in a normed space. For exam-
ple, a sequence in `2 is a sequence where the elements themselves are
also sequences. A more geometric view towards this notion of conver-
gence is that for any " > 0 there exists an N such that (xN ; xN+1; :::)
lies in the ball, B"(x), of radius " around the limit x. Sometimes
(xN ; xN+1; :::) is called the tail of the sequence (xn)n2N. Hence conver-
gence of xn ! x means that for arbitrary small balls around the limit

37
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x the tail of (xn)n2N lies in B"(x).

Note that x 2 A if there exists a sequence (an)n2N in A such that
an ! x.

Lemma 3.1. Suppose the sequence (xn)n2N in (X; k:k) converges to
a x 2 X. Then ��� kxnk � kxk ���! 0:

Proof. By assumption we have that for any " > 0 there exists an
N 2 N such that kxn � xk < " for all n � N . By the reverse triangle
inequality we have that��� kxnk � kxk ��� � kxn � xk
but the right hand side goes to zero by the convergence of (xn) and
thus we have that kxn � xk ! 0. �

The notion of convergence depends on the norm the vector space is
equipped with!

Example 3.1.2. Consider the sequence (fn)n2N in C[0; 1] de�ned
by fn(t) = e�nt. Then we have that fn converges to 0 in (C[0; 1]; k:k1):

kfn � 0k1 =
Z 1

0

e�ntdt =
1

n
(1� e�n)! 0

as n!1. Let us now discuss the convergence of (fn)n2N in (C[0; 1]; k:k1).
Since kfmk1 = supt2[0;1] je�ntj = 1, so (fn)n2N does not converge to the
zero function with respect to k:k1.

This example has a further feature.

Example 3.1.3. Let A be the set of positive functions in C[0; 1],
i.e. A = ff 2 C[0; 1] : f(t) > 0; t 2 [0; 1]g. Then the convergence of
(fn)n2N in (C[0; 1]; k:k1) of (e�nt)n2N to zero, gives us a sequence in A
with a limit not contained in A; the zero function is the very example
of a function attaining zero in [0; 1].

As for real sequences we have that limits of convergent sequences
are unique.

Lemma 3.2. Let (xn)n2N be a convergent sequence in the normed
space (X; k:k). Then its limit is unique.

Proof. Suppose there exist two limits x; y of (xn)n2N. Then for
any " > 0 there exist N1; N2 2 N such that for all n � N1 kxn � xk �
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"=2 and for all n � N � 2 we have kxn � yk � "=2. Hence for all
n � maxN1; N2 we have

kx� yk = kx� xn + xn � yk � kx� xnk+ kxn � yk � "=2 + "=2 = ":

�

A convergent sequence of real numbers is bounded, i.e. there exists
a constant M > 0 such that janj � M for all n 2 N. Convergent
sequences in normed spaces are also bounded if one de�nes the bound-
edness of a subset of this space in an analogous manner.

Definition 3.1.4. A subset A of (X; k:k) is called bounded if A is
contained in some ball Br0(x0) for some radius r0 and point x0 2 X. In
this case we de�ne the diameter of A, diam(A), to be the real number
supfkx� yk : x; y 2 Xg.

Let us state some reformulations of the notion of boundedness of a
set.

Lemma 3.3. For a subset A of a normed space X the following
statements are equivalent:

(1) A is bounded.
(2) There exists a constant M > 0 such that kx� yk �M for all

x; y 2 A.
(3) diam(A) <1
(4) For every x 2 X there exists a radius r > 0 such that A �

Br(x).
(5) There exists a m > 0 such that kxk � m for all x 2 A.

Proof. We show (i) ) (ii) ) (iii) ) (iv) ) (i), and �nally
(v)) (i).

If (i) holds, then for some x0 2 X and r0 > 0 we have A � Br0(x0):

kx� yk � kx� x0k+ kx0 � yk � 2r0 for all x; y 2 A;

i.e. kx� yk �M = 2r0 for all x; y 2 A.

If (ii) holds, then by the de�nition of supremum, as least upper bound,
of the set fkx�yk : x; y 2 Ag is less than or equal to the �nite constant
M , i.e. the diameter of A is �nite.

If (iii) holds, then for all x; y 2 A we have kx � yk � diam(A) < 1.
Choose an element a1 2 A. Then given any x 2 X and a 2 A we
have kx � ak � kx � x1k + kx1 � ak � d(x; a1) + diam(A) =: r and
A � Br(x). Hence we have shown that (iii)) (iv).
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The assertion (iv)) (i) by de�nition of boundedness.

If (v) holds, then A � Bm(0). Thus we have A is contained in a
ball of radius m around the origin which is possible since in vector
spaces we can translate its elements by a given vector such that the set
gets centered at the origin. �

Further results about boundedness are posed as problems on the
next problem set: (i) Any ball Br(x) � (X; k:k) is bounded and
diam(Br(x)) � 2r. (ii) If A is a bounded subset, then for any a 2 A
we have A � Bdiam(A)(a).

Lemma 3.4. A convergent sequence in a normed space X is bounded.

Proof. See problem set. �

The de�nition of convergence of a sequence has one aw: Namely
one needs to have a candidate for the limit beforehand to actually
set up the proof that the sequence converges to this particular object.
Cauchy has noted that it is much more suitable to have a condition
that only involves the sequence elements.

Definition 3.1.5. Let (xn)n2N be a sequence in (X; k:k). Then
we call (xn)n2N a Cauchy sequence if for any " > 0 there exists an
N 2 N such that for all m;n � N we have

kxn � xmk < ":

Lemma 3.5. Any Cauchy sequence in (X; k:k) is bounded.
Proof. See problem set. �

Lemma 3.6. Every convergent sequence in (X; k:k) is a Cauchy
sequence.

Proof. Let xn ! x in (X; k:k). Then for any " > 0 there exists
an N 2 N such that kxn�xk < "=2 for all n � N . Hence for m;n � N
we have

kxn � xmk � kxn � xk+ kx� xmk � ":

�

Example 3.1.6. We de�ne a sequence in (C[a; b]; k:k1) by a se-
quence of piece-wise continuous functions fn:

fn(t) =

8><
>:
0 for a � t � a+b

2
;

n(t� a+b
2
) for a+b

2
< t � a+b

2
+ 1

n
;

1 for a+b
2

+ 1
n
� t � b:
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(fn) is a Cauchy sequence in (C[:a; b]; k:k1).
For m > n the slope of fm is greater than of fn and thus the area of
the function fm � fn can be bounded by the triangle with sides 1 and
1=n, i.e. kfm � fnk1 � 1=2n.

There are Cauchy sequences in (C[a; b]; k:k1) that have no continu-
ous limit function.

Proposition 3.1.7. (C[a; b]; k:k1) is not complete.

Proof. The sequence (fn) de�ned by

fn(t) =

8><
>:
0 for a � t � a+b

2
;

n(t� a+b
2
) for a+b

2
< t � a+b

2
+ 1

n
;

1 for a+b
2

+ 1
n
� t � b:

is Cauchy sequence in (C[a; b]; k:k1) with discontinuous limit func-
tion: (

0 for a � t � a+b
2
;

1 for a+b
2
� t � b:

Suppose fn ! f in k:k1 with f 2 C[a; b]. Let us analyze the implica-
tions of kfn � fk1 ! 0 as n!1.Z b

a

jfn(t)� f(t)jdt =
h Z a+b

2

a

+

Z a+b
2

+
1
n

a+b
2

+

Z b

a+b
2

+
1
n

i
jfn(t)� f(t)jdt

breaks up into three integrals:

(1)
R a+b

2
a

jfn(t)� f(t)jdt! 0 only if f = 0 on [a; a+b
2
];

(2)
R a+b

2
+
1
n

a+b
2

jfn(t) � f(t)jdt ! 0. Since fn is continuous for all

n 2 N and f is continuous on [a; b] we haveZ a+b
2

+
1
n

a+b
2

jfn(t)� f(t)jdt � (max
t2[0;1]

jf(t)j+ 1)
1

n
! 0

as n ! 1. Hence this imposes no condition on the limit
function f .

(3) By the continuity of f we have thatZ b

a+b
2

+
1
n

jfn(t)� f(t)jdt =
Z b

a+b
2

+
1
n

j1� f(t)jdt!
Z b

a+b
2

j1� f(t)jdt;

as n!1. Hence this limit is zero, we must have 1�f(t) = 0,
i.e. f(t) = 1 for all t 2 [a+b

2
; b].
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In summary, the limit function f on [a; b] has a jump discontinuity at
a+b
2
. �

3.2. Completeness

The di�erence between the the normed space (Q; j:j) and the real
numbers (R; j:j) viewed as normed space is that not all Cauchy se-
quences in Q converge to a rational number but that is the case for
R. Cauchy established that any Cauchy sequence in R converges and
its limit is again a real number. In order to show this we assume a
property of the set of real numbers without proof, a so-called axiom.
Namely, R is supposed to have the least upper bound property:

Any non-empty subset S that is bounded from above has a

supremum supS and supS is a real number.

For example the set fa 2 Q : a <
p
3g is bounded above byp3, butp

3 is not a rational number. We include the proof of this important
fact.

Proposition 3.2.1. The equation

x2 � 3 = 0

has no solutions in Q.

Proof. We assume by contradiction that there is a rational num-
ber r such that r2 � 3 = 0:

We represent r as a reduced fraction. That is, we write r = p
q
where

p; q are integers, q 6= 0 and gcd(p; q) = 1. We then have:

r2 � 3 = 0 =) r2 = 3 =) p2

q2
= 3 =) p2 = 3 q2:

The last identity says that p2 is a multiple of 3. Then p itself must
be a multiple of 3 as well (why?), which means that p = 3m for some
integer m.

Substituting this into the identity p2 = 3q2 we get 9m2 = 3q2, which
implies 3m2 = q2, and so q2 must be a multiple of 3. But then q must
also be a multiple of 3.

Let us step back and look at what we have: we started of with a
completely reduced fraction r = p

q
, assumed that r2 � 3 = 0, which

through a series of derivations led to the conclusion that both p and q
must be multiples of 3. This contradicts the fraction p

q
being reduced.

Therefore, the equation x2�3 = 0 cannot have any rational number
as solution. �
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Theorem 3.7. A sequence of real numbers (an)n2N converges if and
only if for any " > 0 there exists an index N such that for all m;n 2 N
we have jam � anj < ".

Proof. The statement about convergent sequences satisfying the
Cauchy property is one of the problems of problem set 5. The other im-
plication is much more intricate. Suppose we have a Cauchy sequence
(an)

1
n=1. Then we claim it converges to a real number. The argument

is elementary but a little bit involved. Let A be the set of elements
of our sequence (an), A = fa1; a2; :::g. Then A is a bounded subset of
R: there exists an M > 0 such that an 2 [�M;M ] for n = 1; 2; ::: .
Take " = 1 in the Cauchy condition: Then there exists an integer N1

such that for all m;n � N1 such that jan � aN1
j < 1 and thus the set

fa1; a2; :::; aN1
; aN1+1g is bounded by a constant M .

Now we consider the set

S := fs 2 [�M;M ] : there exist in�nitely many n 2 N for which an � sg;
in other words we collect all the numbers s in [�M;M ] such that an � s
in�nitely often. De�nitely �M 2 S and S is bounded above by M .
Thus by the least upper bound property of R there exists a real number
a such that a = supS.

Claim: an ! a as n!1.
For any " > 0 the Cauchy condition provides an N2 s.t. for all
m;n � N2:

jam � anj < "=2:

All elements of S are less than or equal to a, so the larger number
a+ "=2 does not belong to S, and hence only �nitely many often does
an exceed a + "=2. That is for some N3 � N2 we have for all n � N3

that

an � a+ "=2:

Since a is a least upper bound for S, the smaller number a�"=2 cannot
also be an upper bound for S. Hence, there is some s 2 S such that
s � a� "=2. Consequently, we have in�nitely many sequence elements
such that

a� "=2 < s � an:

In particular, there exists an N � N3 such that

aN > a� "=2
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. Since N � N3 we have aN � a+ "=2 and so aN 2 (a� "=2; a+ "=2).
Now recall that N � N2 which yields that

jan � aj � jan � aN j+ jaN � aj < "

for all n � N , i.e. an ! a as n!1.
�

The property of R that any Cauchy sequence converges in R is
a favorable property that we would like to have for general normed
spaces.

Definition 3.2.2. A normed space (X; k:k) is called complete if
every Cauchy sequence (xk) in X has a limit x belonging to X. More-
over, a complete normed space is referred to as Banach space and a
complete innerproduct space is known as Hilbert space.

Let us start with an elementary observation that is a straightfor-
ward consequence of the de�nitions.

Theorem 3.8. (Rn; k:k1) is a Banach space.

The completeness of the normed space (R; j:j) has numerous rami-
�ctions.

Proof. The k:k1-convergence of (xn)n2N implies the coordinate
wise convergence. Since any Cauchy sequence in (Rn; k:k1) gives Cauchy
sequences in each coordinate. Since R is complete we deduce that all
these coordinate Cauchy sequences converge in R. Thus we have that
(Rn; k:k1) is complete. �

Theorem 3.9. The space of absolutely summable sequences is a
Banach space with respect to k:k1-norm; i.e. (`1; k:k1) is a Banach
space.

Proof. The argument is split into three steps.
Step 1: Find a candidate for the limit. Let (xn)n be a Cauchy se-
quence in `1. We denote the n-th element of the sequence by xn =

(x
(n)
1 ; x

(n)
2 ; :::).

Note that jx(m)
1 �x(n)1 j � kxm�xnk1, so the �rst coordinates (x(n)1 )n are a

Cauchy sequence of real numbers and hence converge to some real num-

ber z1. Similarly, the other coordinates converge: zj = limn!1 x
(n)
j .

Hence our candidate for the limit of (xn) is the sequence z = (z1; z2; :::).
Step 2: Show that z is in `1. We have that

NX
j=1

jzjj =
NX
j=1

lim
n
jx(n)j j = lim

n

NX
j=1

jx(n)j j;
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where the interchange of the limit with the sum of a �nite number
of real numbers is no problem. Since Cauchy sequences are bounded,
there is a constant C > 0 such that kxnk1 < C for all n. Thus for any
N

NX
j=1

jx(n)j j �
1X
j=1

jx(n)j j = kxnk1 < C:

Letting n!1 we �nd that

NX
j=1

jzjj � kxnk1 < C

for arbitrary N . Hence we have z 2 `1.
Step 3: Show the convergence. We want to prove that kxn � zk1 ! 0
for n!1.
Given " > 0, pick N1 so that if m;n > N1 then kxm�xnk1 < ". Hence
for any �xed N and m;n > N1, we �nd

NX
j=1

jx(m)
j � x

(n)
j j �

1X
j=1

jx(m)
j � x

(n)
j j = kxn � xmk < ":

Fix n > N1 and N , let m!1 to obtain

NX
j=1

jx(n)j � zjj = lim
n!1

jx(n)j � x
(m)
j j � ":

Since this is true for all N we have demonstrated that

kxn � zk1 < ":

That is our desired conclusion. �

Theorem 3.10. The space of bounded sequences is a Banach space
with respect to k:k1-norm; i.e. (`1; k:k1) is a Banach space.

Proof. The argument is once more split into three steps.
Step 1: Find a candidate for the limit. Let (xn)n be a Cauchy se-
quence in `1. We denote the n-th element of the sequence by xn =

(x
(n)
1 ; x

(n)
2 ; :::).

Note that jx(m)
k �x

(n)
k j � kxm�xnk1 for all k and all m;n > N , so the

k-th coordinates (x
(n)
k )n are a Cauchy sequence of real numbers and

hence converge to some real number zk. Similarly, the other coordi-

nates converge: zk = limm!1 x
(n)
k .
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Hence our candidate for the limit of (xn) is the sequence z = (z1; z2; :::).
Step 2: Show that z is in `1. We have that

supfjzjj : j = 1; :::; Ng = supflim
n
jx(n)j jj = 1; :::; Ng = lim

n
fsup jx(n)j jj = 1; :::; Ng;

where the interchange of the limit with the sum of a �nite number
of real numbers is no problem. Since Cauchy sequences are bounded,
there is a constant C > 0 such that kxnk1 < C for all n. Thus for any
N

lim
n
fsup jx(n)j jj = 1; :::; Ngj � kxnk1 < C:

Thus we �nd that kxnk1 < C, i.e. we have z 2 `1.
Step 3: Show the convergence. We want to prove that kxn � zk1 ! 0
for n!1.
Given " > 0, pick N1 so that if m;n > N1 then

jx(k)m � x(k)n j � kzk � x(k)n k1 < "

for all k. Taking limits as m!1 we have

jzk � x(k)n j � "

Taking supremum in k, we obtain

sup
k
jzk � x(k)n j � "

for all n > N1, i.e. kxn � zk1 � " for all n > N . Consequently we
have that xn converges to z in (`1; k:k1).

�

Reasoning similar to the one for `1 gives us that all `p-spaces are
Banach spaces for k:kp when 1 � p <1.

Theorem 3.11. Let [a; b] be a bounded interval of real numbers.
Then the normed space C[a; b] with respect to the sup-norm k:k1 is a
Banach space.

The situation is di�erent for the function spaces (C[a; b]; k:kp), as
we have seen before for p = 1 this is not a complete space and this is
also true for 1 � p <1. In contrast (C[a; b]; k:k1) is a complete space.
Before we are able to proof this statement we have to discuss di�erent
notions of convergence for sequences of functions and properties of
continuous functions.

Lemma 3.12. For f; g 2 C[a; b] we have that supfjf(x)� g(x)jx 2
[a; b]g is �nite, and there is a y 2 [a; b] such that d1(f; g) = jf(y) �
g(y)j = maxfjf(x)� g(x)jx 2 [a; b]g.
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Proof. We show that d(x) = jf(x) � g(x)j is continuous on [a; b]
and thus by the Extreme Value Theorem the assertion follows. The
continuity of d is deduced from

jd(x)�d(y)j � jjf(x)�g(x)j�jf(y)�g(y)jj � jf(x)�f(y)j+jg(y)�g(x)j:
Since f and g are continuous at x there is for any given " > 0 a � > 0
such that jf(x)� f(y)j < "=2 and jg(x)� g(y)j < "=2 for jx� yj < �.
Hence

jd(x)� d(y)j � jf(x)� f(y)j+ jg(y)� g(x)j < "=2 + "=2 = "

for all y 2 [a; b] with jx� yj < �. Consequently d is continuous. �

Remark 3.2.3. Observe that the kf �gk1-norm measures the dis-
tance between the functions f and g by looking at the point in a[a; b]
they are the furthest apart.

Definition 3.2.4. Let (fn) be a sequence of functions on a set X.

� We say that (fn) converges pointwise to a limit function f if
for a given " > 0 and x 2 X there exists an N so that

jfn(x)� f(x)j < " for all n � N:

� We say that (fn) converges uniformly to a limit function f if
for a given " > 0 there exists an N so that

jfn(x)� f(x)j < " for all n � N

holds for all x 2 X.

There is a substantial di�erence between these two de�nitions. In
pointwise convergence, one might have to choose a di�erent N for each
point x 2 X. In the case of uniform convergence there is an N that
holds for all x 2 X. Note that uniform convergence implies pointwise
convergence. If one draws the graphs of a uniformly convergent se-
quence, then one realizes that the de�nition amounts for a given " > 0
to have a N so that the graphs of all the fn for n � N , lie in an "-band
about the graph of f . In other words, the fn's get uniformly close to f .
Hence uniform convergence means that the maximal distance between
f and fn goes to zero. We prove this assertion in the next proposition.

Proposition 3.2.5. Let (fn) be a sequence of continuous functions
on [a; b]. Then the following are equivalent:

(1) (fn) converges uniformly to f .
(2) supfjfn(x)� f(x)j : x 2 [a; b]g ! 0 as n!1.
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Proof. Assertion (i) ) (ii): Assume that (fn) converges uni-
formly to f . Then for any " > 0 there exists a N such that jfn(x) �
f(x)j < " for all x 2 [a; b] and all n > N . Hence supfjfn(x) � f(x)j :
x 2 [a; b]g � " for all n > N . Since this holds for all " > 0, we have
demonstrated that supfjfn(x)� f(x)j : x 2 [a; b]g ! 0 for n!1.
Assertion (ii)) (i): Assume that supfjfn(x)� f(x)j : x 2 [a; b]g ! 0
for n!1. Given an " > 0, there is a N such that supfjfn(x)�f(x)j :
x 2 [a; b]g < " for all n > N . Thus we have jfn(x) � f(x)j < " for all
x 2 [a; b] and all n > N , i.e. (fn) converges uniformly to f . �

A reformulation of this result is that a sequence converges in (C[a; b]; k:k1)
to f is equivalent to the uniform convergence of (fn) to f .

Proposition 3.2.6. A sequence (fn) converges to f in in (C[a; b]; k:k1)
if and only if (fn) converges uniformly to f .

Uniform convergence has an important property.

Theorem 3.13. Let (fn) be a uniformly convergent sequence in
C[a; b] with limit f . Then the limit function f is continuous on [a; b].

Proof. Let y 2 I and " > 0 be given. By the uniform convergence
of fn ! f , there exists an N such that n � N implies that

jfn(x)� f(x)j � "=3 for all x 2 I:

The continuity of fN implies that there exists a � > 0 such that

jfN(x)� f(y)j � "=3 for jx� yj � �:

We want to show that f is continuous. For all x such that jx� yj < �
we have that

jf(x)� f(y)j � jf(x)� fN(x)j+ jfN(x)� fN(y)j+ jfN(y)� f(y)j
< "=3 + "=3 + "=3 = ":

�

Theorem 3.14. (C[a; b]; k:k1)) is a Banach space.

Proof. Convergence of a sequence in (C[a; b]; k:k1) to f 2 C[a; b]
is equivalent to uniform convergence of the sequence to f .

Assume that (fn) is a Cauchy sequence in (C[a; b]; k:k1). Then we
have to show that there exists a function f 2 C[a; b] that has (fn) as
its limit.
Fix x 2 [a; b] and note that jfn(x) � fm(x)j � kfn � fmk1. Since
(fn) is a Cauchy sequence (fn(x)) is a Cauchy sequence in R. Since R
is complete, (fn(x)) converges to a point f(x) in R. In other words,
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fn ! f pointwise.
Next we show that f 2 C[a; b]. Since (fn) is a Cauchy sequence, we
have for any " > 0 a N such that kfn � fmk < "=2 for all m;n > N .
Hence we have jfn(x) � fm(x)j < "=2 for all x 2 [a; b] and for all
m;n > N . Letting m!1 yields for all x 2 [a; b] and all n > N :

jfn(x)� f(x)j = lim
m!1

jfn(x)� fm(x)j � "=2 < ":

Consequently, fn ! f converges uniformly. Now by the preceding
proposition f is a continuous function on [a; b]. In other words, we
have established that (C[a; b]; k:k1) is a Banach space. �

3.3. Banach's Fixed Point Theorem

In 1922 Banach established a theorem on the convergence of iter-
ations of contractions that has become a powerful tool in applied and
pure mathematics aka Contraction Mapping Theorem. Before we state
Banach's �xed point theorem we de�ne continuous functions between
normed spaces. A natural and far-reaching generalization of the notion
of continuous functions de�ned on R.We will have much more to say
about continuous functions in the next chapter.

Definition 3.3.1. Let (X; k�k) and (Y; k�k) be two normed spaces,
let A � X and let f : A! Y be a function.

(1) We say that f is continuous at a point a 2 A if for all " > 0
there is � > 0 such that for all x 2 A with kx � ak < � we
have kf(x)� f(a)k < ".

(2) We say that f is continuous on A if it is continuous at each
point of A. Here is a useful criterion for continuity of a func-
tion.

A class of continuous functions on normed spaces is given by func-
tions satisfying: There exists a �nite constant L such that

kf(x)� f(x0)k � L kx� x0k for all x; x0 2 A:

One calls such functions Lipschitz continuous, after the German
mathematician R. Lipschitz, and often one refers to L as Lipschitz
constant. On Problem set 6 you will show that any Lipschitz contin-
uous function is continuous.

We have come across Lipschitz continuous functions in our discussion
of normed spaces. Namely, the reverse triangle inequality shows that
a norm k; k : X ! R on a vector space X is Lipschitz continuous with
constant 1.
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Proposition 3.3.2. Let f : A ! Y be a function, where A � X
and X; Y are normed spaces. Let a 2 A. Then the following two
statements are equivalent.

(i) f is continuous at a.
(ii) For every sequence (xn) � A, if xn ! a then f(xn)! f(a).

Proof. i) ) (ii): We assume that f is continuous at a.
Let (xn) � A be a sequence such that xn ! a. We prove that

f(xn)! f(a).
Let " > 0. Since f is continuous at a, there is � > 0 such that if

kx� ak < � then kf(x)� f(a)k < ".
Since xn ! a, there is N 2 N such that for all n � N we have

kxn � ak < �. From the above, if n � N we must then have kf(xn)�
f(a)k < ".

As " was arbitrary, this proves that f(xn)! f(a).
(i) ( (ii): We assume by contradiction that f is not continuous at

a. Let us write down carefully what that means.
Firstly, we recall the de�nition of continuity. f is continuous at the

point a 2 A means:
for all " > 0 there is � > 0 such that for all x 2 A with kx� ak < � we
have kf(x)� f(a)k < ".

Next, we formulate the negation of this statement.
The function f is not continuous the point a 2 A means:

there is "0 > 0 such that for all � > 0 there is an element of A, which
we denote by x�, such that kx� � ak < � but kf(x�)� f(a)k � "0.

For every n � 1, we may choose � = 1
n
. Then for some element of A,

which we denote by xn, we have that kxn�ak < 1
n
but kf(xn)�f(a)k �

"0.
We have thus obtained a sequence (xn) � A such that kxn � ak <

1
n
! 0, so xn ! a. However, since kf(xn) � f(a)k � "0, the sequence

f(xn) 6! f(a), which is a contradiction.
Hence f must be continuous at a. �

Suppose we have a continuous function f on a normed space X.
Take a point x0 in X and build the sequence of iterates

x0; x1 = f(x0); x2 = f(x1) = f 2x0; :::; xn+1 = f(xn):

The existence of the limit of this sequence x = limn xn = limn f
n(x0)

is the basic question that underlies Banach's �xed point theorem. The
limit x of the iterates (xn) is a �xed point of the continuous map T :

f(x) = f(lim
n
xn) = lim

n
f(xn) = lim

n
xn+1 = limxn = x:
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A mapping f on a normed space X is called a contraction if there
exists a 0 < K < 1 such that

kf(x)� f(y)k � Kkx� yk x; y 2 X;

a contraction is a Lipschitz continuous function with Lipschitz constant
L < 1. Recall that kx� yk = d(x; y) is the distance between x and y.

Theorem 3.15 (Banach's Fixed Point). Let X be a Banach space
X. Any contraction f : X ! X has a unique �xed point ~x and the �xed
point is the limit of every sequence generated from an arbitrary nonzero
point x0 2 X by iteration (xn)n, where xn+1 = f(xn) for n � 1.

Proof. Let x0 2 M be arbitrary. De�ne xn+1 = f(xn) for n =
1; 2; ::: . By the contractivity of T we have

kxn � xn�1k = kf(xn�1)� f(xn�2)k � Kkxn�1 � xn�2k
and iterations yields

kxn � xn�1k � Kn�1kxn�1 � xn�2k:
The existence of a �xed point is based on the completeness of X. Hence
we proceed to show that (xn)n is a Cauchy sequence. Let m;n be
greater thanN and we choosem � n. Then by the preceding inequality
and the triangle inequality we have

kxm � xnk � kxm � xm�1k+ kxm�1 � xm�2k+ � � �+ kxn+1 � xnk
� (Km�1 +Km�2 + � � �Kn)kx1 � x0k
� (KN +KN+1 + � � � )kx1 � x0k
= KN(1�K)�1kx1 � x0k:

Since 0 � K < 1, limN KN = 0 and thus (xn) is a Cauchy sequence.
Consequently, (xn) converges to a point ~x by the completeness of X.
Furthermore ~x is a �xed point by the contractivity of T .
Uniqueness: Suppose there is another �xed point ~y of f . Then k~x�~yk =
kf(~x) � f(~y)k � Kk~x � ~yk and k~x � ~yk > 0. Thus we deduce that
K � 1 which is a contradiction to f being a contraction. �

Lipschitz maps with constant 1 are not eligible in this �xed point
theorem. Since the map f(x) = x + 1 on [0; 1] has no �xed point, but
the map f(x) = x on [0; 1] has in�nitely many �xed points.

Corollary 3.3.3. Under the assumption in Banach's �xed point
theorem we have the following estimates about the rate of convergence
of the iterates (xn) towards the �xed point ~x:

kxn � ~xk � Kn

1�K
kx0 � f(x0)k;
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tells us, in terms of the distance between x0 and f(x0) how many times
we need to iterate f starting from x0 to be certain that we are within a
speci�ed distance from the �xed point.

kxn � ~xk � kxn�1 � ~xk;
is called an a priori estimate, meaning that it gives us an upper bound
on how long we need to compute to reach the �xed point.

kxn � ~xk � K

1�K
kxn�1 � xnk;

tells us, after each computation, how much closer we are to the �xed
point in terms of the previous two iterations. This kind of estimate,
called an a posteriori estimate, is very important because if two suc-
cessive iterations are nearly equal, guarantees that we are very close to
the �xed point.

Proof. From the proof we have that for m > n

kxm � xnk � Kn

1�K
kx0 � x1k = Kn

1�K
kx0 � f(x0)k:

The right side is independent of m and so m!1 gives

kxn � ~xk � Kn

1�K
kx0 � f(x0)k:

The second inequality comes along like that: Since ~x is the unique �xed
point of f :

kxn � ~xk = kf(xn)� f(~x)k � Kkxn�1 � ~xk:
Applying the triangle inequality to kxn�1; ~xk gives the third inequality:

kxn � ~xk � K(kxn�1 � xnk+ kxn � ~xk);
which gives

kxn � ~xk � K

1�K
kxn�1 � xnk:

�

Recall that we de�ned for a the closure A of A as the union of A
and the set of limit points of A.

Definition 3.3.4. A subset A of (X; k:k) is called closed if A = A.

For example fy 2 X : kx � yk � rg is a closed subset of X. We
will discuss properties of closed sets in the next chapter.

Here is a variant of Banach's �xed point theorem:
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Theorem 3.16. Let A be a closed subset of a Banach space X. If
f : A ! X is a contraction, then f has a unique �xed point and the
�xed point is the limit of every sequence generated from an arbitrary
nonzero point x0 2 A by iteration (xn)n, where xn+1 = f(xn) for n � 1.
If the contraction f : A! X satis�es in addition, f(A) � A, then the
�xed point lies also in A.

Proof. See problem set. �

Two well-known applications are Newton's method for �nding roots
of general equations, solving systems of linear equations and the the-
orem of Picard-Lindel�of on the existence of solutions of ordinary dif-
ferential equations. We discuss the �rst item and postpone the other
items.

Newton's method:

How does one compute
p
3 up to a certain precision, i.e. we are inter-

ested in error estimates? Idea: Formulate it in the form x2�3 = 0 and
try to use a method that allows to compute zeros of general equations.

Newton came up with a method to solve g(x) = 0 for a di�erentiable
function g : I ! R.
Suppose x0 is an approximate solution or starting point. De�ne recur-
sively

xn+1 = xn � g(xn)

g0(xn)
for n � 0:

Then (xn) converges to a solution ~x, provided certain assumptions on
g hold.
If xn ! ~x, then by continuity of g we get g(~x) = 0:

When does Netwon's method lead to a convergent sequence of iter-
ates? Idea: Apply Banach's Fixed Point Theorem.
Set f(x) := x� g(x)

g0(x)
. Then given x0 2 I and xn+1 = xn� g(xn)

g0(xn)
= f(xn).

Moreover, f(~x) = ~x if and only if g(~x) = 0.

Let us restrict our discussion to the computation of
p
3. The Banach

space X is the space of real numbers R and g(x) = x2 � 3, so

f(x) = x� x2 � 3

2x
=

1

2
(x+

3

x
)

on [
p
3;1) ! [

p
3;1). Note that [

p
3;1) is a closed set of R con-

taining
p
3. For x � 0 we have 1

2
(x+ 3=x) �p3x=x =

p
3. Compute
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f 0 and note that a di�erentiable function f : I ! R with a bounded
derivative is Lipschitz continuous with constant L (Homework):

f 0(x) =
1

2
(1� 3

x2
)

and note that it's range is contained in [0; 1=2] for x � p
3. Hence we

have L = 1=2 and by Banach's Fixed Point Theorem 1
2
(xn+

3
xn
)! p

3.

Let's pick x0 = 2 and thus x1 = 7=4 and so jx1 � x0j = 1=4. Further-
more, we have

jxn �
p
3j � (1=2)n

1� 1=2
jx1 � x0j = 1

2n
� 2 � 1

4
=

1

2n+1
:

Hence

jxn �
p
3j � 1

2n+1
:

For n = 4, we have jxn �
p
3j � 1=1024 < 0:001:

Integral equations

Equations of the following type appear naturally in mathematics, physics
and engineering: Given functions f : [a; b]! R and k : [a; b]� [a; b]!
R, a parameter �, where [a; b] denotes a �nite interval of R. Solve the
integral equation

f(x) = �

Z b

a

k(x; y)f(y)dy + g(x)

for g. We will restrict our discussion to continuous functions f and k.
Note that the mapping

T (f)(x) =

Z b

a

k(x; y)f(y)dy

is a continuous analogue of matrix multiplication, where the function k
on the rectangle [a; b]� [a; b] is the continuous variant of a matrix (aij)
and one often calls T an integral operator and k its kernel. The
�xed point theorem of Banach allows us to solve this integral equation
for su�ciently small �.

Note that T : C[a; b] ! C[a; b] respects the vector space structure
of C[a; b]: For any �; � 2 R and f1; f2 2 C[a; b] we have

T (�f1 + �f2) = �T (f1) + �T (f2):

Lemma 3.17. Let f 2 C[a; b] and k 2 C
�
[a; b] � [a; b]

�
. Then

Tf 2 C[a; b].
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Proof. For each �xed x the function K(x; y) is a continuous func-
tion of y on [a; b]. Hence K(x; y)f(y) is a continuous function of y and
so the integral in the de�nition of T makes sense. Now we want to
show that for f 2 C[a; b] we also have Tf 2 C[a; b]. As a preparation
we look at jT (f)(x1)� T (f)(x2)j for x1 6= x2:

jT (f)(x1)� T (f)(x2)j �
��� Z b

a

�
k(x1; y)� k(x2; y)

�
f(y)dy

���
�
Z b

a

jk(x1; y)� k(x2; y)j jf(y)jdy:
Since k is continuous on [a; b] � [a; b], we have that k is bounded on
[a; b] � [a; b]: There exists a M > 0 such that jk(x; y)j � M for all
x; y 2 [a; b]�[a; b] and by taking a supremum over all x; y 2 [a; b]�[a; b]
we have

kkk1 �M:

We also have more control over k as one would have for a continuous
function. Namely, it is uniformly continuous on [a; b] � [a; b]: For any
� > 0 so that jx1 � x2j < � we have

jk(x1; y)� k(x2; y)j � "=M(b� a) for all y 2 [a; b]:

Using this estimate we obtain that for jx1 � x2j < �

jT (f)(x1)� T (f)(x2)j � " for all y 2 [a; b]:

�

Furthermore T is also compatible with the norm structure on C[a; b],
which follows from the estimates in the preceding proof:

kT (f1)� T (f2)k1 � j�jM(b� a)kf1 � f2k1:
Hence we are in the position to specify when T is a contraction: Namely,
when j�j < 1=M(b� a).

Proposition 3.3.5. Suppose g 2 C[a; b] and k 2 C
�
[a; b]� [a; b]

�
.

Then

f(x) = �

Z b

a

k(x; y)f(y)dy + g(x)

has a unique continuous solution ~f on [a; b] for j�j < 1=kkk1(b � a).
The solution can be found by iteration.

Proof. By assumption the mapping f 7! Tf = �
R b

a
k(x; y)f(y)dy+

g(x) is a contraction on the Banach space (C[a; b]; k:k1) and so Ba-
nach's �xed point theorem completes the argument. �




