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Introduction

The goal of this course is to present basic facts about vector spaces
and mappings between vector spaces in a form suitable for engineers,
scientists and mathematicians. The presentation is addressed to stu-
dents with variying backgrounds.

A special emphasis is put towards general methods and on abstract
reasoning. The material in this course is supposed to prepare you for
the advanced courses in your respective study program. You might en-
counter for the first time rigorous reasoning and there will be a particu-
lar focus on definitions, statements (=lemmas, propositions, theorems)
and proofs.

In the first chapter we discuss basic notions such as sets, functions
and the cardinality of a set.

These notes are accompanying the course TMA4145 Linear met-

hods.






CHAPTER 1

Sets and functions

Basic definitions and theorems about sets and functions are the
content of this chapter and are presented in the setting of Naive Set
Theory. These notions set the stage for turning our intuition about
collections of objects and relations between these objects.

1.1. Sets

DEFINITION 1.1.1. A set is a collection of distinct objects, its ele-
ments. If an object x is an element of a set X, we denote it by z € X.
If z is not an element of A, then we write x ¢ X.

A set is uniquely determined by its elements. Suppose X and Y are
sets. Then they are identical, X =Y, if they have the same elements.
More formalized, X =Y if and only if for all x € X we have x € Y,
and for all y € Y we have y € X.

DEFINITION 1.1.2. Suppose X and Y are sets. Then Y is a subset
of X, denoted by Y C X, if for all y € Y we have y € X.

IfY C X, one says that Y is contained in X. If Y C X and X # Y,
then Y is a proper subset of X and we use the notation Y C X. The
most direct way to prove that two sets X and Y are equal is to show
that

reX < zxzeY
for any element z. (Another way is to prove a double inclusion: if
x € X then x € Y, establishing that X C Y andifx € Y, then z € X,
establishing that Y C X.)
The empty set is a set with no elements, denoted by 0.

PRrROPOSITION 1.1.3. There is only one empty set.

PROOF. Suppose E; and Fs are two empty sets. Then for all ele-
ments = we have that z ¢ E; and © ¢ E,. Hence Fy = Ej. d

Some familiar sets are given by the various number systems:
(1) N=1{1,2,3,...} the set of natural numbers, Ny = {0, 1,2, 3, ...};
(2) Z=1{...,—2,-1,0,1,2, ...} the set of integerr;
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4 Chapter 1

(3) Q={p/q: p,q € Z} the set of rational numbers;
(4) R denotes the set of real numbers;
(5) C denotes the set of complex numbers.

For real numbers a,b with a < b < oo we denote by [a,b] the closed
bounded interval, and by (a,b) the open bounded interval. The length
of these bounded intervals is b — a.

Here are a few constructions related to sets.

DEFINITION 1.1.4. Let X and Y be sets.
e The union of X and Y, denoted by X UY, is defined by
XUY ={z2]z€e X orzeY}
e The intersection of X and Y, denoted by X NY, is defined by
XNY ={zlz€ X andzeY}.
e . The difference set of X from Y, denoted by X\Y, is defined
by
X\Y={z€eX:2zeX andz#Y}.
If all sets are contained in one set X, then the difference set
X\Y is called the complement of Y and denoted by Y.

e The Cartesian product of X and Y, denoted by X x Y, is the
set

X xY ={(z,y)|z € X,y e Y},
i.e the set of all ordered pairs (z,y), with x € X and y € Y.
Recall an ordered pair has the property that (z1,41) = (22, y2)

if and only if 21 = x5 and y; = y».
e P(X) denotes the set of all subsets of X.

Here are some basic properties of sets.

LEMmMA 1.1. Let XY and Z be sets.

HXNYUuZ)=XnNnY)u(XNZ)and XU(YNZ)= (XU
Y)N (X UZ) (distribution law)
(2) (XUY)=XNY®and (XNY) = X°UY® (de Morgan’s

laws)
B) X\(YUZ) = (X\Y)N(X\Z) and X\ (Y NZ) = (X\Y) U
(X\Z)
(4) (X = X.
PROOF. (1) Let us prove one of de Morgan’s relations. Let us

use the most direct approach. Keep in mind that x € E°¢ <—
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x ¢ E. We then have:

rE€(XUY) «—= ¢ XUY <= ¢ Xandzx ¢V
<— g€ XandzeY® << rec X°NY"“

This proves the identity.

(2)

€ (X)) <= ¢ X <= zrelX.
O
Note that if you have a statement involving U and N. Then you get

another true statement if you interchange U with N and N with U, as
one can see in the lemma. This is part of the field Boolean algebra.

1.2. Functions

Let X and Y be sets. A function with domain X and codomain 'Y,
denoted by f : X — Y, is a relation between the elements of X and Y
satisfying the properties: for all x € X, there is a unique y € Y such
that (z,y) € f, we denote it by: f(z) = y.

By definition, for each x € X there is exactly one y € Y such that
f(z) =y. We say that y the image of z under f. The graph G(f) of a
function f is the subset of X x Y defined by

G(f) ={(z, f(z))|z € X}.

The range of a function f : X — Y, denoted by range(f), or f(X),

is the set of all y € Y that are the image of some =z € X:
range(f) = {y € Y| there existsx € X such that f(z) = y}.

The pre-image of y € Y is the subset of all z € X that have y as their
image. This subset is often denoted by f~'(y):

7 y) ={z e X[ f(x) =y}
Note that f~!(y) = 0 if and only if y € Y'\ran(f).

Here are some simple examples of functions.

x if x >0,
lz] =40 if z =0,
—x ifx <.

Note that |z| = max{x, —x}. We define the positive, 2 and negative
part, x~ of x € R:

rT = max{z,0}, and 2~ = max-—z,0,
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so we have z = ¥ — 2~ and |z| = 2" + 2~.

The following notions are central for the theory of functions.

DEFINITION 1.2.1. Let f: X — Y be a function.

(1) We call f injective or one-to-one if f(x1) = f(xq) implies z; =
Zo, i.e. no two elements of the domain have the same image.
Equivalently, if x1 # x9, then f(z1) # f(x2).

(2) We call f surjective or onto if ran(f) =Y, i.e. each y € Y is
the image of at least one xz € X.

(3) We call f bijective if f is both injective and surjective.

Note that a bijective function matches up the elements of X with
those of Y so that in some sense these two sets have the same number
of elements.

Let f: X - Y and g: Y — Z be two functions so that the range
of f coincides with the domain of g. Then we define the composition,
denoted by go f, as the function go f : X — Z, defined by x — g(f(z)).

For every set X, we define the identity map, denoted by idx or id
where id(z) = z for all x € X.

LEMMA 1.2. Let f: X — Y and g :Y — Z be two bijections. Then
go f is also a bijection and (go f)™' = fLog™L

LEMMA 1.3. Let f: X — Y be a function and let C; D CY. Then

fHCuD) = fHC)UfHD).

PROOF.

r€ fH(CUD) < f(r)eCUD <= f(r)eCor f(x)€D
= zcfHCorze YD) < z¢c fHC)Uf D).
O

If one has a function f that maps elements in X to Y, then it
is often desirable to reverse this assignment. Let us introduce some
notions to address this basic problem.

DEFINITION 1.2.2. Let f be a function from X to Y.

e The mapping f is said to be left invertible if there exists a
function g : Y — X such that go f = idx. We call g a left
inverse of f and denote it by f; .

e The mapping f is said to be right invertible if there exists a
function A : Y — X such that f oh =idy. We call h a right
inverse of f and denote it by f 1.
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e The mapping f is said to be invertible if there existsa g : Y —
X such that go f = f o g = id, the so-called inverse of f and
denoted by f~1.

One may think of a left and right inverse in layman terms: (i) If
you map an element of the domain via a function to an element in the
target space, then the left inverse tells you how to go back to where
you started from;(ii) If one wants to get to a point in the target, then
the right inverse tells you a possible place to start in the domain. The
inverse of a function has some important properties.

LEMMA 1.4. Given an invertible function f: X — Y.

(1) The inverse function f~':Y — X is unique.
(2) The inverse function is also invertible and we have (f~1)~! =

f.

PROOF. (1) Suppose there are two inverse functions g; : Y —
X, 1 = 1,2. By assumption we have that f o g; = id and
g2 o f =id. Hence we have

92(y) = g2(f91(y)) = g2 f (91 (y)) = g1(y) forally €,
ie. g1 = go.
(2) Exercise.
0

Let us give a description of left, right invertibility and invertibility
in more concrete terms.

PrOPOSITION 1.2.3. Given a function f: X — Y.
(1) f is left invertible if and only if it is injective.
(2) f is right invertible if and only if it is surjective.
(3) f is invertible if and only if it is injective and surjective, i.e.
if fis bijective.

PROOF. (1) Let us assume that f is injective. Then [ : 2 —
ran(f) is invertible with f~! : ran(f) = X. Let g : Y — X be
any extension of this inverse. Then g o f = idy.

Suppose f is left invertible. Assume there are x1, x5 € X such

that f(z1) = f(z2) =y. Then
z1= [ (f(x) = 71 (f(22)) = 2o,

i.e. f is injective.

(2) Let us assume that f is surjective. Pick an arbitrary element
z € Y, wich is by assumption an element of ran(f). Hence
z has at least one pre-image in X and thus f~!(z) # (. Take
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Y1 # y2. Then the sets f~1({y1}) and f~'({y2}) in X are
disjoint. Let us pick from each set f~'({y}) an element x and

define x := h(y). Then h: Y — X and f o h =idy.
Suppose that f is right invertible. Then we have for y € Y
that f(f71)(y) = f(z) where we set x to be x = f1(y). In
other words, y is in the range of f.
(3) Follows from the other assertions.
O

A consequence of the characterizations of left and right invertibility
is the observation:

REMARK 1.2.4. If f: X — Y is left invertible such that ran(f) #
Y, then there are many left inverses. However the restriction of any
left inverse of f to ran(f) is unique.
One the other hand if f : X — Y is right invertible such that f is
surjective but not injective, then f will have many right inverses.

Our study of linear mappings will provide ample examples of the
aforementioned notions. Here we just give one example.

EXAMPLE 1.2.5. Given the linear mapping 7 : R?* — R? given by
T = Ax with
-3 —4

Then the matrix
1 /-11 —10 16
-1 _ *
A= 9 < 7 8 —11>
induces a left inverse 7, of T
This left inverse is not unique, for example

1(0 -1 6
2\0 1 —4

also gives a left inverse. One can turn this example into one for right
inverses as well, see problem set 1.

1.3. Cardinality of sets

Bijective functions provide us with a way to compare the size of
two sets. We start with the case of finite sets.

DEFINITION 1.3.1. Two sets X and Y have equal cardinality, if
there is a bijective map f : X — Y. If there is an injective map from
X to Y, then we say that the cardinality of X is less than or equal to
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the cardinality of Y.

A set X has n elements if there is a bijection between X and the set
{0,1,...,n — 1}. We denote the set {0,1,....n — 1} by n. A set X is
countable if there is a bijection with N. In other words, X is countable
if we can arrange its elements in an infinite sequence {z1,xs,x3, ...}
such that eqch element occurs exactly once in the sequence.

REMARK 1.3.2. There is some more terminology that we will not
use in the course. A set X is called at most countable if there is an
injection from X to N.

ExXAMPLES 1.3.3. We give some examples based on the set of na-
tural numbers.

(1) The set of squares X = {1,4,9,...,n% ...} is countable, since
f: N = X defined by f(n) = n? is bijective.

(2) The set of odd numbers X = {1,3,5,...,2n—1, ...} is countable,
since f: N — X defined by f(n) =2n — 1 is a bijection.

Let us state a characterization of countable sets.

LEMMA 1.5. A set X is countable. < There exists a surjective map
fN—=X.

PROOF. (=) Suppose X is countable. Then there is a surjection
f N — X which is in addition injective.

(<) Given a surjective map f : N — X. We have to turn this map
into an bijection g. The idea is to omit the repeated values of f. We
proceed in a recursive manner. Define g(1) := f(1). Suppose we have
chosen n distinct values g(1), g(2), ..., g(n). We collect the set of natu-
ral numbers where the values of f are not already included among the

lst {g(1),g(2), .. o(n)}:
X, :={keN: f(k)#g(j) for every j =1,2,...,n}.

The set X,, can either be empty or not. Suppose X,, = (). Then g :
{1,2,...,n} — X is a bijection and thus X is finite. Otherwise, if X, #
(), then we denote by k,, the least integer in X,, and set g,41 := f(ky,).
Note that by construction g(n + 1) differs from ¢(1), g(2), ..., g(n). We
continue in this manner. If the process terminates, then X is finite, or
we go through all the values of f and obtain a surjectiong : N — X. [

The assignment of the number of elements of {0, 1,...,n — 1} with
the set n yields that for any set X, there is at most one natural number
n such that X is bijective with the set n.
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PROPOSITION 1.3.4. If there is a bijection between the sets n and
m, then they have the same number of elements.

PROOF. We proceed by induction. Forn = 0theset n = {0,1,...,n—
1} is the empty set, and thus the only set bijective with it is the empty
set. Suppose that n > 0 and that the result is true for n — 1. Hence
there is a bijection f: {0,1,...,n —1} — {0,1,....m — 1}. We assume
that f(n—1) = m—1. Then the restriction of f to the set {0, 1,...,n—2}
gives a bijection to {0, 1,...,m — 2}. By the induction hypothesis we
have n—1 = m—1. Let us now look at the case when f(n—1) # m—1.
We have that f(n—1) = a for some a and f(b) = m—1 and we define a
function f by f(z) = f(z)ifz # b,n—1; f(k) = aand f(n—1) = m—1.
Then f is a bijection and we conclude as before that n = m. 0

We move on to sets that are bijective to the set of natural numbers
N={1,..}.

PROPOSITION 1.3.5. A set is at most countable it is finite or coun-
table.

PROOF. Suppose f : X — N is an injective function. We construct
a function g : X — N as follows: g(x) = n if f(x) is the nth element
in the image of f. U

ProPOSITION 1.3.6. N X N 4s countable.

PrRoOOF. The argument starts out with decomposing N x N into
finite sets Fy, F1, ..., where

F,={(,j) e NxN|i+j=k}

and the cardinality of Fy is £ + 1. Now we arrange these sets: first
writing the one element of Fj, then the two elements of F; and so
forth. Hence, we have established the assertion. In other words, we
have arranged N x N in a table:

(1,1

(2
(3
(4

—_ = =

and list the elements along sucessive (anti-)diagonals from bottom-left
to top-right as

(1,1),(2,1)(1,2),(3,1),(2,2), (1,3), ....
We define f : N — N x N by f(n) := nth pair in this order. Note that
f is a bijection. 0
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Here are some facts about countable sets.

PROPOSITION 1.3.7. We have the following assertions:

(1) The Cartesian product of two countable sets is countable.
(2) The union of countably many countable sets is countable.

PROOF. (1) We show that the Cartesian product of two coun-
table sets is countable which reduces to the statement that the
set N x N is countable which we have shown in 1.3.6.

(2) Let Xo, Xy,... be a countable family of countable sets. We
denote the elements of X; by {zo;, z1;,...} for i = 0,1,... and
define a map by f(i,j) = ;5. Note that f: N x N — U2 X,
and thus the union U2, X;. is countable. The map f is not
injective in general, because the X;’s need not to be disjoint.
Proposition ?7? yields the desired claim.

O

PROPOSITION 1.3.8. The sets Z. of integers and Q of rational num-
bers are countable.

PROOF. One of the problems of problem set 1. 0

Bernstein and Schroder observed an elementary characterization of
two sets having the same cardinality, we state it without proof.

THEOREM 1.6. Let X andY be two sets. Suppose there are injective
maps f : X =Y and g: Y — X. Then there exists a bijection between
X andY.

We give some examples of a non-countable sets.

THEOREM 1.7 (Cantor). The set R of real numbers is not counta-
ble.

If a set is not countable, then one often calls it uncountable.

ProOF. We argue by contradiction and assume that R is countable.
Then a subset of R is also countable. Thus the open interval (0,1) is a
countable set, i.e.

(0, 1) = {270,1’1, }
Any a; € (0,1) has an infinite decimal expansion (possibly terminating,
in which case we let it continue forever with zeros):

a; = O.Qigail..., Q45 S {0, 1, ,9}

We set b; to be
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By construction we have b; # a;i and thus the number
a = 0b1b2

differs from a;. Note that a € (0,1) which is not included in the given
enumeration of (0,1). Hence we have deduced a contradiction to the
countability of (0,1). The number b; € (0,1) and differs from a;, since
the ith place of a; and b; are by construction not the same digit. [

PROPOSITION 1.3.9. Let X be the set of all binary sequences: X =
{(a1,as,as,...) : a; € {0,1}}. Then X is not countable.

Proor. We apply the method from the preceding theorem, aka
diagonal argument.
Suppose X = {(x1,xa,3,...) : z; € {0,1}} is countable. Then we have

x1 = 010100....
ro = 101111....

Then we define a sequence x ¢ X by moving down the diagonal and
switching the values from 0 to 1 or from 1 to 0. Hence X is uncountable.
O

PROPOSITION 1.3.10. The power set P(N) of the natural numbers
N is uncountable.

PROOF. Let C' = U,en be a countable collection of subsets of N.
Define X C N by
X={neN:nelX,}
. Claim: X # X, for every n € N. Since either n € X and n ¢ X,, or
n¢ X andn e X,.
Thus X ¢ C and so no countable collection of subsets of N includes all
of the subsets of N. O

We introduce two crucial notions: the infimum and supremum of a
set. First we provide some preliminaries.

DEFINITION 1.3.11. Let A be a non-empty subset of R

e If there exists M € R such that a < M for all a € A, then M
is an upper bound of A. We call A bounded above.

e If there exists m € R such that m < a for all a € A, then m
is a lower bound of A.

o If there exist lower and upper bounds, then we say that A is
bounded. We call A bounded below.
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DEFINITION 1.3.12 (Infimum and Supremum). Let A be a subset
of R.

e If m is a lower bound of A such that m > m/' for every lower
bound m’, then m is called the infimum of A, denoted by
m = inf A. Furthermore, if inf A € A, then we call it the
minimum of A, min A.

e If M is an upper bound of A such that M’ > M for every upper
bound M’, then M is called the supremum of A, denoted by
M = sup A.Furthermore, if sup A € A, then we call it the
maximum of A, max A.

Note that the infimum of a set A, as well as the supremum, are
unique. The elementary argument is left as an exercise.
If A C R is not bounded above, then we define sup A = oo. Suppose
that a subset A of R is not bounded below, then we assign —oo as its
infimum.
We state a different formulation of the notions inf A and sup A that is
just a reformulation of the definition.

LEMMA 1.8. Let A be a subset of R.

e Suppose A is bounded above. Then M € R is the supremum
of A if and only if the following two conditions are satisfied:
(1) For every a € A we have a < M.
(2) Given e > 0, there exists a € A such that M — ¢ < a.

e Suppose A is bounded below. Then m € R 1is the infimum of
A if and only if the following two conditions are satisfied:
(1) For every a € A we have m < a.
(2) Given € > 0, there exists a € A such that a < m +¢.

LEMMA 1.9. Suppose A is a bounded subset of A. Then inf A <
sup A

For ¢ € R we define the dilate of a set A by cA:={beR: b=
ca fora € A}.

LEMMA 1.10 (Properties). Suppose A is a subset of R.

(1) For ¢ > 0 we have sup cA = ¢ sup A and inf cA = ¢ inf A.

(2) For ¢ <0 we have supcA = ¢ inf A and inf cA = ¢ sup A.

(3) Suppose A is contained in a subset B. Ifsup A and sup B ezist,
then sup A < sup B. In words, making a set larger, increases
its supremum.

(4) Suppose A is contained in a subset B. Ifinf A and inf B ezist,
then inf A > inf B. In words, making a set smaller increases
its infimum.
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(5) Suppose A C B are non-empty subsets of R such that x <y
forallx € A andy € B. Then sup A < inf B.

(6) If A and B are non-empty subsets of R, then sup(A + B) =
sup A +sup B and inf(A+ B) = inf A +inf B

PROOF. (1) We prove that supcA = csup A for positive c.
Suppose ¢ > 0. Then cx < M < x < M/c. Hence M is an
upper bound of cA if and only if M/c is an upper bound of A.
Consequently, we have the desired result.

(2) Without loss of generality we set ¢ = —1. Let a € A (we as-
sume that the set A is non-empty, otherwise there is nothing
interesting here). Then as a lower bound for A, inf A < a.
Moreover, as an upper bound for A, a < sup A. Using transi-
tivity, we conclude that inf A < sup A.

We now prove the second identity. Keep in mind that
the supremum of a set is its least upper bound, while the
infimum is its greatest lower bound.

For any a € A, infA < a, so —inf A > —a, showing
that —inf A is an upper bound for —A. Therefore, —inf A >
sup(—A), which implies [inf A < —sup(—A4) |

For any a € A we have —a € —A, so —a < sup(—A4),
which implies a > —sup(—A). Therefore, —sup(—A) is a
lower bound for A, so | —sup(—A) <inf A|.

The two boxed inequalities prove the identity inf A = — sup(—A).

(3) Since sup B is an upper bound of B, it is also an upper bound
of A, ie. supA <supB.

(4) Analogously to (iii).

(5) Since x < y forall z € A and y € B, y is an upper bound of A.
Hence sup A is a lower bound of B and we have sup A < inf B.

(6) By definition A+ B = {c: ¢ = a + bfor somea € A,b € B}
and thus A + B is bounded above if and only if A and B
are bounded above. Hence sup(A + B) < oo if and only if
sup A and sup B are finite. Take a € A and b € B, then
a+b<supA+supB. Thus sup A + sup B is an upper bound
of A+ B:

sup(A + B) <sup A + sup B.

The reverse direction is a little bit more involved. Let € > 0.
Then there exists a € A and b € B such that

a>supA—¢e/2, b>supB—¢e/2.
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Thus we have a + b > sup A + sup B — ¢ for every € > 0, i.e.
sup(A + B) > sup A + sup B.
The other statements are assigned as exercises. U

One reason for the relevance of the notions of supremum and infi-
mum is in the formulation of properties of functions.

DEFINITION 1.3.13. Let f be a function with domain X and range
Y C R. Then

sup f =sup{f(x): = € X}, il)q(ff:inf{f(x): re X}
X

If supy f is finite, then f is bounded from above on A, and if infx f
is finite we call f bounded from below. A function is bounded if both
the supremum and infimum are finite.

LEMMA 1.11. Suppose that f,g: X — R and f < g, i.e. f(x) <
g(x) for all x € X. If g is bounded from above, then supy f < supy g.
Assume that [ is bounded from below. Then infx f <infy g.

PRroor. Follows from the definitions. O

The supremum and infimum of functions do not preserve strict in-
equalities. Define f,g:[0,1] - R by f(z) = x and g(z) = 2+ 1. Then
we have f < g and

supf=1, inf f=0, supg=2, infg=1.
[0,1] [0,1] [0,1] [0,1]

Hence we have supy ;) f > infjo 1] 9.
LEMMA 1.12. Suppose f,g are bounded functions from X to R and
¢ a positive constant. Then

sup(f +cg) <sup f +csupg inf(f +cg) > inf f + cinfg.
X X X X X X

The proof is left as an exercise. Try to convice yourself that the
inequalities are in general strict, since the functions f and g may take
values close to their suprema/infima at different points in X.

LEMMA 1.13. Suppose f,g are bounded functions from X to R.
Then

|sup f —supg| <sup|f —g|, |inff—infg| <sup|f— g
X X X X X X

LEMMA 1.14. Suppose f, g are bounded functions from X to R such
that

|f(x) = f(y)] < g(x) —g(y)| forall v,y € X.
Then

—inf f < —infg.
sglfpf 1_1;(f_81)1(pg inf g
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Recall that a sequence (x,) of real numbers is an ordered list of
numbers x,,, indexed by the natural numbers. In other words, (z,) is a
function f from N to R with f(n) = z,. A sequence is a function from
N to R or C, so the properties of the inf and sup for functions apply
to sequences as well.
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Normed spaces and innerproduct spaces

In order to measure the length of a vector and to define a distance
between vectors we introduce the notion of a norm of a vector. Norms
may be a tool to specify properties of a class of vectors in a convenient
form. We review basic aspects of vector spaces before we define normed
vector spaces.

2.1. Vector spaces

Vector spaces and linear mappings between them are a useful tool
for engineers, scientists and mathematicians, aka Linear Algebra.

Vector spaces formalize the notion of linear combinations of objects
that might be vectors in the plane, polynomials, smooth functions, se-
quences. Many problems in engineering, mathematics and science are
naturally formulated and solved in this setting due to their linear na-
ture. Vector spaces are ubiquitous for several reasons, e.g. as linear
approximation of a non-linear object, or as building blocks for more
complicated notions, such as vector bundles over topological spaces.
We restrict our discussion to complex and real vector spaces.

A set V is a vector space if it is possible to build linear combinations
out of the elements in V. More formally, on V' we have the operations
of addition of vectors and multiplication by scalars. The scalars will
be taken from a field IF, which is either the real numbers R or C. In
various situations F might also be a finite field or a field different from
R and C. If it is necessary we will refer to these vector spaces as real
or complex vector spaces.

Developing an understanding of these vector spaces is one of the main
objectives of this course. The axioms for a vector space specify the
properties that addition of vectors and scalar multiplication.

DEFINITION 2.1.1. A wvector space over a field F is a set V' together
with the operations of addition V' x V' — V and scalar multiplication
F x V' — V satisfying the following properties:

17
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(1) Commutativity: v+ v = v + u for all u,v € V and (Auv) =
A(pw) for all A\, u € T,
(2) Associativity: (u+v) 4+ w =u+ (v+ w) for all u,v,w € V;
(3) Additive identity: There exists an element 0 € V such that
O+v=vforallveV:;
(4) Additive inverse: For every v € V', there exists an element
w € V such that v +w = 0;
(5) Multiplicative identity: lv = v for allv € V' ;
(6) Distributivity: A(u +v) = Au+ Av and (A + p)u = Au + pu
for all w,v € V and A\, u € F.
The elements of a vector space are called vectors. Given vy, ..., v, be in
V and A\, ..., \, € F we call the vector

v= MU+ A,
a linear combination.
Our focus will be on three classes of examples.

ExXAMPLES 2.1.2. We define some useful vector spaces.

e Spaces of n-tuples: The set of tuples (zy,...,2,) of real
and complex numbers are vector spaces R" and C" with re-
spect to component-wise addition and scalar multiplication:
(X1, ey Tn)F (Y1, oy Yn) = (T14Y1, ooy TnFyn) and Nz, ..., z,) =
(Ax1, .y ATy,).

e The set of functions F(X,Y) of a set X to a set Y: Af +
wug(x) = (Af + pg)(z) for all x € X.

e The space of polynomials of degree at most n, denoted by P,
where we define the operations of multiplication and addition
coeflicient-wise: For p(z) = ag + a1z + -+ - a,2™ and ¢(z) =
bo + bix + - - - b,x™ we define

(p+q)(x) = (ag+bo)+(a1+by)z+- - - (ap+b,)z" and (Ap)(x) = Aag+Aajz+- - - Aa,z"
for A e .

The space of all polynomials P is the vector space of poly-
nomials of arbitrary degrees.

e Sequence spaces: s denotes the set of sequences, ¢ the set of
all convergent sequences, cq the set of all convergent sequences
tending to 0, c¢; the set of all sequences with finitely many
non-zero elements.

e Function spaces: The set of continuous functions C'(I) on an
interval of R, popular choices for I are [0, 1] and R. We define
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addition and scalar multiplication as follows: For f, g € C(I)
and A e F

(f +9)(x) = f(x) + g(z) and (Af)(z) = Af(x).

We denote by C™(I) the space of n-times continuously diffe-
rentiable functions on I and the space C*°(I) of smooth functi-
ons on [ is the space of functions with infinitely many conti-
nuous derivatives. More generally, the set F(X) of functions
from a set X to I is a vector space for the operations defined
above. Note that F({1,2,...,n}) is just F" and hence the first
class of examples.

e Spaces of matrices: Denote by M,,«,(C) the space of com-
plex m x n matrices where we define addition and scalar mul-
tiplication entry-wise: For A = (a;;);; and B = (a;;);; where
1=1,....,mand j =1,..n we define

A+ B := (CLij + bij)i,j and Oé((lz'j)ij = (oza,»j)ij, a€el.

There are relations between the vector spaces in the aforementioned
list. We start with clarifying their inclusion properties.

DEFINITION 2.1.3. A subset W of a vector space V is called a
subspace if W is a vector subspace with respect to addition and scalar
multiplication of V.

One way to express this more concretely is stated in the next lemma:

LEMMA 2.1. A subset W of a vector space V is a subspace if and
only if W is closed under linear combinations: For any o, € F and
wy, wy € W we have aywy + asw?2 € W. Equivalently, we have that the
subset W of a vector space V' is a subspace if and only if

(1) 0e W;
(2) wy +wy € W for any wy,wy € W;
(3) aw for any a € F and any w € W.

Consequently, we have a way to decide when a subset of a vector
space is not a subspace.

LEMMA 2.2. A subset W of a vector space V' is a not a subspace if
one of the following conditions holds:
(1) 0¢ W;
(2) There are some wy,wy € W such that wy +wy € W ;
(3) There is a vector w € W such that —w is not in = W.
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This is the contrapositve of the preceding lemma.

Here are some examples of vector subspaces:
P, CPCF, o)y cCc™()ycCO(I), ¢ CepCecCs

We define the linear span, spanS, of a subset S of a vector space V
to be the intersection of all subspaces of V' containing S.

Linear transformations T between vector spaces V' and W are map-
pings T that respect linear transformations:

T (v + avg) = anT(v1) + T (v9) for any vy,v9 € V,a, 8 € F.

We denote by L(V, W) the set of all linear transformations between V/
and W and it is a subset of the vector space of all functions f : V — W.
Furthermore L(V, W) is a vector space:

LV, W) C F(V,W).

EXAMPLE 2.1.4. Let D denote the differentiation operator D f = f’.
Then D : CW(a,b) — C(a,b) is a linear transformation.

Linear transformations have some useful properties.
LEMMA 2.3. For any T € L(V,W) we have T'(0) = 0.

PrOOF. We have that v +0 = v for any v € V; in particular for

v =0:
T(0)=T(0+0)=T(0)+T(0)

and after subtracting 7°(0) we get 7°(0) = 0.

The kernel of T € L(V, W) is the set

ker(T') := {v € V|Tv = 0},

i.e. ker(T) =T-%0).

LEMMA 2.4. For a linear transformation T : V. — W the kernel of
T is a subspace of V.

PROOF. Suppose vy, vy € ker(T). Then for any scalars aq, s we
have

T(avy + agvy) = anT(v1) + T (ve) =1 - 0+ ay-0=0
and thus av; + asvs € ker(T). O
The range of T' is a subspace of W, too.

LEMMA 2.5. The range of a linear transformation T’ : V — W s a
subspace of W.
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PROOF. Exercise, see problem set 2. 0
There is some natural operations for vector spaces.

DEFINITION 2.1.5. Let V and W be subspaces of Z.
(1) The sum of V and W is defined by V + W = {2z € Z|z =
v+wveV,we W}
(2) The intersection of V' and W is defined by VN W = {z €
Zlze VNW}

From the definitions we see that V +W and V NI are subspace of
7. We introduce some more notions: If the sum of the subspaces V' and
W equals Z, then we say that Z is the sum of V and W, ie. V4+W = Z.
If in addition, the subspaces are disjoint subsets, U NV = {0}, then
we refer to the sum of V and W as the direct sum.

LEMMA 2.6. Let I be an index set. Given vector spaces V; for any
1€ 1. Then N Vi is a vector space.

PrROOF. Exercise, see problem set 2. O

DEFINITION 2.1.6. Let S be a nonempty subset of a vector space
V. Then we define the span of S, span(S), as the intersection of all
subspaces of V' that contain S.

LEMMA 2.7. Let S C V' be a nonempty subset. Then
span(S) ={A\vi+...+ Ao, v1,...,0, €S and Ay, ..., \, € F}.

By definition, span(S) is the intersection of all subspaces W of V'
that contain the set S. From the preceding lemma, it follows that
span(S) is a subspace of V', hence it is the smallest subspace of V' that
contains S.

Let us denote

Wi={ v +...+ v, v1,...,0, €S and A\y,..., A\, € F},

so W is the set of all linear combinations with elements in S.
Being a subspace of V', span(S) must contain all such linear com-
binations, so we must have that
W C span(S).

All we have left to show is that W is a subspace of V. This is not
hard to see, since linear combinations of linear combinations are linear
combinations as well.

Indeed, let a,b € F and let wy,wy, € W, so

wlz/\1v1+...+>\nvn with ’Ul,...,UnES,
Wo = g Uy + « oo+ flp Uy, With wy, ... Uy, € 5.
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Then
awy +bwy =a\ivy + ...+ ar, v, + 0 uy + ..o 4 by, Uy,

and since vy, ..., Upn, U, ..., Uy € 5, it follows that aw; + bwy € W.
Therefore, W is a subspace of V' that contains S, so we must have

span(S) C W.

Together with the previous inclusion, this proves the equality of the
two sets.

2.2. Normed spaces

The norm on a general vector space generalizes the notion of the
length of a vector in R? and R3.

DEFINITION 2.2.1. A normed space is a vector space X together
with a function [|.|| : X — R, the norm on X, such that for all z,y € X
and A € R:
(1) Positivity: 0 < ||z|| < oo and ||z|| = 0 if and only if z = 0;
(2) Homogeneity: ||ax| = |a|||z| for a € F;
(3) Triangle inequality: ||z + y|| < ||| + ||ly||-

We denote this normed space by (X, ||.||)

A norm gives a way to measure the distance between two vectors
by d(z,y) := ||lx — y|]|. We refer to d as the metric associated to the
norm ||.||.

ProPOSITION 2.2.2. Let (X, ||.||) be a normed space. Then d :
X x X — R defined by d(x,y) = ||z — y|| satisfies for all x,y,z € X
(i) d(z,y) > 0 for all z,y € X and d(z,y) = 0 if and only if
x =y (positivity);

(i) d(z,y) = d(y, ) (symmetry);
(iii) d(z,z) < d(z,y) + d(y, z) (triangle inequality).

PROOF. The properties (i)-(iii) are direct consequences of the axi-
oms for a norm. In particular, (i) follows from property (1) of a norm,
(ii) is derived from property (ii) of a norm for A = —1 and (iii) is
deduced from property (3) of a norm. O

The metric d on X is also compatible with the linear structure of
a vector space:
e Translation invariance: d(x+z,y+z) = d(x,y) for all z,y, z €
X;
o Symmetry: d(ax,ay) = |a|d(y,z) for all z,y € X and a € F.
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The function d(x,y) = ||z — y|| on the vector space R is an example
of a distance function on R, aka as a metric.

The metric d on X gives us a way to generalize intervals in R to
so-called balls.

DEFINITION 2.2.3. For r > 0 and = € X we define the open ball
B,.(x) of radius r and center x as the set

By(z) ={ye X: [z —yll <r},
and the closed ball B,(z) of radius r and center x as
Bi(x)={yeX:|lz—yl <r}

The translation invariance and the homogeneity imply that the ball
B, (x) is the image of the unit ball By(0) centered at the origin under
the (affine) mapping f(y) = ry + x.

The balls B,(z) have another peculiar feature. Namely, these are con-
vex subsets of X.

DEFINITION 2.2.4. Let X be a vector space.
e For two points x,y € X the interval [x,y] is the set of points
{zl]z=Xx+(1-ANy0< A< 1}
e A subset E of X is called convez if for any two points z,y € F
the interval [z, y] is also in E.

The notion of convexity is central to the theory of vector spaces and
enters in an intricate manner in functional analysis, numerical analysis,
optimization, etc. .

LEMMA 2.8. Let (X, ||.||) be a normed vector space. Then the unit
ball B1(0) = {x € X|||z|| < 1} is a convex set.

PROOF. For z,y € B1(0) we have that || Az + (1 — N)y|| < [Nz +
11— Al||y|| = 1, because ||z]|, ||y|| are both less than or equal to 1. Thus
Ax 4+ (1 =Ny € B1(0). O

The real numbers with the absolute value is a normed space (R, |.|)
and the open ball B,(x) is the open interval (x —r,x +r) and B,(x) is
the closed interval [z — 7,z + r].

LEMMA 2.9 (Reverse triangle inequality). Let (X, ||.||) be a normed
space. Then we have

izl =Nyl < llz =yl forallz,y € X.

PROOF. See problem set 3. O
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A fundamental class of normed spaces is R™ with the /P-norms.

DEFINITION 2.2.5. For p € [1,00) we define the p-norm, denoted
by [|.|l,, on R™ by assigning to x = (z1, ..., x,) € R” the number ||z||,:

lzllp = (& + [l + - -« )7
. For p = oo we define the /*-norm ||.||.c on R by
|Z||o = max |z1], ..., |Ty].

The notation for ||.|| is justified by the fact that it is the limit of
the ||.||,-norms.

LEMMA 2.10. For z € R™ we have that
Jlle = Timn ],
Proor. Without loss of generality we assume that the largest com-
ponent of z, the ||z]|«, to be x,. For 1 < p < oo we have

|1 |25
[ m— |
;|

since H) <1lfori=1,..,n—1 we have lim, , ‘||T\>p = 0. Thus we

el = (21l + |2l - |2 )P = llloo ()7 + )P -+ D)2,

have

Jim o, = 1]
O

In the proof of the triangle inequality for the p-norms we have to
rely on some inequalities: Holder’s inequality and Young’s inequality.

For p € (1,00) we define its conjugate g as the number such that

1 1
4 =1
P q
If p = 1, then we define its conjugate ¢ to be co and vice versa for

p =00 we set g =1.

LEMMA 2.11 (Young’s inequality). For p € (1,00) and q its conju-
gate we have
ab? b
ab < — + —
p q’

for any non-negative real numbers a,b.
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PROOF. Consider the function f(z) = zP~! and integrate this with
respect to x from zero to a. Now take the inverse function of f given
by f~'(y) = y7!, where we used that 1/(p — 1) = ¢ — 1 for conjugate
exponents p and ¢q. Let us integrate f~! from zero to b. Then the
sum of these two integrals always exceeds the product ab, see figure.
Note that the two integrals are given by a” /p and b?/q. Hence we have
established Young’s inequality. 0

A consequence of Young’s inequality is Holder’s inequality.

LEMMA 2.12. Suppose p € (1,00) and v = (x1,...,x,) and y =
(Y1, -, Yn) are vectors in R™. Then

| Z iy < (Z |J,‘i|p> 1/p<z |yi|q> 1/q.
i=1 i=1 =1

PROOF. Set a; = |a;|/ (320, |2if")'/? and by = [yal/ (320 |yl )7,
Then we have >, af =1 and ), b7 = 1. By Young’s inequality

n n

Z i [ys| < (Z |xi|p)1/1’(z ly;|9) .

i=1 i=1

O

The unit balls of (R?, ||.||1), (R?, ||.||z) and (R?,]|.||s) indicate the
different nature of these norms.

PRroOOF. Positivity and homogeneity are consequences of the corre-
sponding properties of the absolute value of a real number. The triangle
inequality is the non-trivial assertion that we split up in three cases
p=1p=occandp € (1,00). Let z = (z1,...,x,) and y = (Y1, ..., Yn)
be points in R".

(1) For p =1 we have

letylly = ety [+ Flentynl < ey el +ya] < llzfli+ylh

(2) For p = oo the argument is similar:
[+ ylloo = max{lzy +yil, .o |20 + yal}
< max{|zy| + |yl -, [2al + [ynl}
< max{|z], ..., |znl} + max{lpal], ., [ynl} = 2]l + [[¥loo-
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(3) The general case p € (1,00): The triangle inequality follows
from Holder’s inequality.
lz+ ol = Yl +wil?

i=1
n

<Yl (L)
=1

e ) et o S E e L 1
=1 =1

<

(g |z; + yi|p>l/q<<g |$i|p>1/p n (g ‘yi|p)1/p>

= llz+ gl "(lzllp + llyll,)

Dividing by ||z + y|[;'* and using 1 — 1/¢ = 1/p we obtain the
triangle inequality:

1z +yllp < llzlly + [1yll,-

Thus the space R" with the p-norm ||.||, is a normed space for
p € [1,00].
U

The triangle inequality for p-norms on R™ is also known as Min-
kowski’s inequality:

(Z |z + y¢|p)1/p < (Z |Ii|p)1/p + (Z |yz"p)1/p-
i=1 i=1 i=1

There are variations of the (R", ||.||,,) with relevance in engineering,
physics and mathematics. (i) Replace the real scalars by complex sca-
lars (C™, ||.||,); (ii) Replace R™ by the vector space of sequences s; (iii)
Deal with complex-valued sequences, (iv) Consider continuous functi-
ons and define norms in terms of integrals instead of sums for sequences.

Before we present these classes of normed spaces, we show that the
vector space of m X n-matrices is a normed spaces, too.

Define a norm on M,,y,(IF) by picking a norm on F™: For 1 <
p < 00 we define [[ ]l = (S0, S0, lag )77 or Al = max|a
for A € M,,xn(IF). The case p = 2 is of special interest and is known
as the Frobenius norm.
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PROPOSITION 2.2.6. For1 < p < oo we have that (Mxn(F), ||-]l5)
s a normed space.

The identification of M, (F) with the vector space F™" gives us
this result.

PROPOSITION 2.2.7. Let C™ be the vector space of complex n-tuples

z=(z21,.,20)7, 2% €C fori=1,...n. For 1 <p < oo we define
2l = (SO, 2 e C
i=1

and for p = oo we have ||z||oo := max|z|: i =1,....n. where z; € C
and |z = (2%)Y? denotes the modulus of z;. Then (C"|.|), is a
normed space for 1 < p < oo. The proof of R™ goes through without
any changes.

PrOOF. Young’s inequality is a statement about non-negative num-
bers which in this case are modulus of complex numbers. Hence Young’s
inequality is valid in this case as well and consequently Holder’s ine-
quality. The later is the key to prove the triangle inequality. U

Recall that s denotes the vector space of all sequences with values
in R or C. We define for 1 < p < oo the space P as the set of all
sequences © = (x1, Ta, ...) satisfying

2llp := (|1[” + 2l + - )17 < oo,
and ¢ denotes the space of all bounded sequences (s, ||.||) Wwith
el = sup ],
ieN

where |.| denotes the absolute value of a real number or the modulus
of a complex number, respectively.

LEMMA 2.13 (Hoélder’s inequality). For 1 < p < oo and q its con-
jugate index we have for x € (P and y € (4

D lallyal < Q=) lwl )Y
i=1 i=1 i=1

Since Hélder’s inequality is true for all n € N we deduce that the
limits of the partial sums in question also satisfy these inequalities.
Hence we deduce the desired inequality for sequences instead of n-
tuples.

ProproSITION 2.2.8. For 1 < p < oo we have that (P is a normed
vector space.



28 Chapter 2

PRrOOF. First we show that ¢? is a vector space for p € [1,00): For
a € F and z € P we have ax € . One has to work a little bit to see
that for x,y € P also x + y € (P:

o0

e +yllp =D |z + il

i=1

< 27> " max{|zi|, ly;|}*
i=1

=27 [max{|z], [y}
=1

<23 failP + ) lwil) = 27Nl llh + lyllp) < oo

i=1 i=1
The norm properties may be deduced as in the case of F” since we have
Holder’s inequality at our disposal. [l

For 1 < p < oo the spaces (¢7,].||,) are subspaces of the vector
space of sequences converging to zero, c¢g. In contrast (£, ||.||o) is the
space of bounded sequences and is much larger than the other /P-spaces.
We have the following inclusions:

LEMMA 2.14. For p; < po the space IP* is a proper subspace of (P2,
1.€.
tc?ce.
PROOF. See problem set 4. O
For example (1/n),, is in 2 for p > 2, but not in £*.
We finish this section with normed spaces based on continuous functi-

ons.

DEFINITION 2.2.9. For f € Cla,b] we define its p-norm for 1 < p <
oo by

b
1l = ( / (@) )

and | f[loo = Sup,e(qy [f(7)]. We denote by (Cla, ], ||.||,) the set of all
functions satistying || f||, < oo.

LEMMA 2.15 (Hoélder’s inequality). For 1 < p < oo and its conju-
gate exponent q we have

/ |[F@)llg(@)ldz < (| Fllpllglq-
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PrOOF. We assume without loss of generality that ||f]|, = 1 =
llgll,;- By Young’s inequality we have

[f(@)[lg()| < |f (@) /p+19(x)["/q
and thus
b 1 b 1 n
[ i@l < [1r@pds+ - [lg@itds = 171l
As in the case of F" we are able to turn this inequality in the desired
one. t

PROPOSITION 2.2.10. The space (C[a,b],||.]|,) is a normed space
forp e [1,00].

PROOF. As for (P-spaces we deduce that the ||.||, is a vector space.

The norm part is based on the validity of Holder’s inequality as above.
O

We close with a way to construct a normed space out of given nor-
med spaces. Let {Xy, ||.||x,),---, (X1, ||||X1)} be given normed spaces.
Then the direct product X; x --- x X, is a normed space for

(@1, za) o= llzallxy + -+ 2l x,
2.3. Innerproduct spaces

In this section we consider innerproduct spaces and we start with
the case of real vector spaces and afterwards treat complex vector spa-
ces.

For vectors in R3 we have the ‘dot product‘ aka ‘scalar product
that assigns to a pair of vectors x = (x1, x9, x3) and y = (y1,y2,y3) the
number

(T,y) = 191 + T2y2 + T3Y3.
Pythagoras’ theorem gives the length of x = (xq, 22, z3) as /a2 + 22 + z2.
Note that (z,x) = \/2? + 2% + 3. Innerproduct spaces are a generali-
zation of these basic facts from Euclidean geometry to general vector
spaces.

DEFINITION 2.3.1. Let X be a real vector space. An innerproduct
on X isamap (.,.): X x X — R satisfying:
(1) (Linearity) For vectors x, 2,y € X and scalars ag, as € R we
have (a1 + asxe, y) = ay (x1,y) + ag (X9, y).
(2) (Symmetry) For vectors z,y € X we have (z,y) = (y, z).
(3) (Positive definiteness) For any € X we have (z,z) > 0 and
(x,xz) = 0 if and only if z = 0.
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We call (X, (.,.)) an innerproduct space and define by ||z|| := (z, )"/

Here is a reformulation of the positive definiteness of innerproducts.

LEMMA 2.16. Suppose X is an innerproduct space. If (x,y) = 0 for
all y € X, then x = 0.

PROOF. Since (x,y) = 0 holds for all y € X, in particular for y = z
and thus (z,z) = 0. Hence z = 0. O

Note that the symmetry and linearity in the first entry gives that
(.,.) is bilinear: For vectors z,y;,y, € X and scalars oy, a0 € R we
have (z, a1y1 + aya) y = ay (T, 41) + a2 (7, y2).

EXAMPLE 2.3.2. The family of p-norms on R", the space of sequen-
ces s and on the space of continuous functions C|a, b] include for p = 2
important examples of innerproduct spaces.

There is a link between innerproducts and the length of z. Namely
(z,z)"? is the length |z|| of 2. The proof of this fact is based on a
well-known inequality.

PROPOSITION 2.3.3 (Cauchy-Schwarz). Suppose X is a real inner-
product space. Then for all x,y € X we have

|Gy | < l=llllyll-
We have | (z,y) | = ||z||||y|| if and only if x = ay for some o € R.

PROOF. For any ¢t € R and =,y € X we have ||z — ty|| > 0. More
explicitly, we have

|z —ty|| = (& — ty,x — ty) = (x,x) — t({y,z) + (z,y)) + t* (y,)
= (z,x) — 2t (z,y) + > (y, )

Suppose y # 0, otherwise there is nothing to show.
Hence we have

2 2 <3§’,y> <£L‘,$>
2l =2 Gy + (o) = ) (£ =20 5+ )
_ () ey’ ()
— <(t <y,y>> Wy’ <y,y>)
B (w2 | (@) (yy) — (3,y)
- <y7y> ((t <y7y>) + <y7y>2
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Hence we have (z,x) (y,y) — (x,y)2 >0, i.e.

() | < {a,0)' " (g, )"
The assertion about the equality follows from the proof of the Cauchy-

Schwarz inequality, since ||z — ty|| = 0 if and only if 2 = ay for some
a e R. 0

As a consequence we deduce that innerproduct spaces (X, (.,.)) are
normed spaces for ||z| = (z, z)"/?.

PROPOSITION 2.3.4. For (X, {.,.)) the expression ||z|| = (z,z)"
defines a norm on X.

PROOF. Homogeneity follows from the linearity of the innerpro-
duct. The triangle inequality requires some work:

Iz + yll* = ll=ll® + [yl* + 2 (2, ) < 2 l* + lyl* + 2l |y,
so the right side is (||z| + [|y||)?, where we applied Cauchy-Schwarz to

bound the innerproduct in terms of the norms of its elements. Thus
we have ||z 4y < [|lzf| + [Jy]l O

EXAMPLE 2.3.5. (1) The sequence space 2 is an innerproduct
space for real-valued sequences (x;), (y;)

i=1

The sequence space £2 was the first example of an innerproduct
space, studied by D. Hilbert in 1901 in his work on Fredholm
operators.
Holder’s inequality for p = 2 gives | (z,y) | < ||z||2|ly||2, which
is the Cauchy-Schwarz inequality in this case.

(2) The 2-norm ||.||5 for the space of continuous functions on the
interval Cla, b] is inducded from the innerproduct

U@—/meMm

The Cauchy-Schwarz inequality for (C(R), (.,.) is due to Karl
H. A. Schwarz in 1888.

The innerproduct (.,.) and its associated norm |[.|| = (.,.)"/* are
related by the polarization identity.

LEMMA 2.17 (Polarization identity). Let (X, {(.,.)) be an innerpro-

duct space with norm ||.|| = (., .>1/2. For a real innerproduct space we
have (z,y) = 3 ([ + ylI* = [l — y[?) for all z,y € X.
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PrROOF. The arguments are based on the properties of innerpro-
ducts. ||z + (=1)ky||? = [|z]]?+||y|> + (=1)F (z,y) for k = 0,1. Adding
these two identities yields the desired polarization identity. 0

Jordan and von Neumann gave an elementary characterizations of
norms that arise from innerproducts.

THEOREM 2.18 (Jordan-von Neumann). Suppose (X, ||.||) is a com-
plex normed space. If the norm satisfies the parallelogram identity

lz = ylI* + Il + yl* = 2[|z]* + 2lly|*  forall .y € X,

then X is an innerproduct space for the innerproduct

4
1 .
(w.y) = 7 > il + ity
k=1

PROOF. One direction is just a computation like the one done for
the polarization identity. The reverse direction is based on defining
an innerproduct in terms of the norms by turning the parallelogram
identity into a definition and show that this is indeed an innerproduct.
In the course of the argument one takes advantange of the paralellogram
identity. 0

Innerproduct spaces are the infinite-dimensional counterparts of
(R™, ||.||l2) and share many properties with these finite-dimensional spa-
ces, in contrast to general normed spaces such as C'(I) with the sup-
norm or /7 for p # 2.

EXAMPLE 2.3.6. The supremum norm of C'[0, 1] does not come from
an innerproduct. Use the polarization identity to show this fact.

We consider the case of complex innerproduct spaces that are of
relevance in quantum mechanics and signal analysis as well as mathe-
matics.

For vectors in C? we have the ‘dot product aka ‘scalar product that
assigns to a pair of vectors z = (21, 22) and 2’ = (21, 2}) the complex
number

(z,2") = 2121 + 2075 .
The reason for adding the complex conjugates to the definition of the
real case is to get the length of 2z = (21, 25) € C%

1212 = (2, 2) = 2171 + 2275 = |21 ]” + |22,

DEFINITION 2.3.7. Let X be a complex vector space. An innerpro-
duct on X is a map (.,.) : X x X — C satisfying:
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(1) (Linearity) For vectors z1, 2,y € X and scalars ay, ay € F we
have (a121 + aot2,y) = a1 (21,Y) + a2 (22, 9).

(2) (Conjugate Symmetry) For vectors x,y € X we have (z,y) =
(y, ).

(3) (Positive definiteness) For any x € X we have (z,z) > 0 and
(z,xz) = 0 if and only if z = 0.

We call (X, (.,.)) an innerproduct space and define by ||z|| := (z, z)"/%.

Note that the conjugate symmetry and linearity in the first en-
try gives that (.,.) is conjugate linear in the second entry: For vec-
tors z,y1,y2 € X and scalars oy, as € R we have (r, a1y + agy2) y =

a_1<x7y1> +a—2<x7y2>

PROPOSITION 2.3.8 (Cauchy-Schwarz). Suppose X is a complex
innerproduct space. Then for all z,y € X we have

|z, y) [ < [l llflyll-

We have | (x,y) | = ||z||||ly]| if and only if x = ay for some a € C.

PROOF. Suppose x and y are non-zero vectors of X.

0<(z—-yz—y) = (v,2) +(y,y) — (y,2) — (z,9)
=(z,x) + (y,y) — 2Re (z,y),

and we obtain an additive inequality:

1 1

Re (7,y) < §<x,fc>+§<y,y>-

The normalization method turns this one into a multiplicative one:
We set & = x/(z,z)"/? and § = y/{y,y)"/? and plug & and § into the
preceding inequality:

Re (z,y) < (z,2)"* (y,y)"/*.

We want to have a bound on | (z,y) | based on the one on the real part
of (x,y) via pre-multiplication. By the later one means that one pre-
multiplies by a well-chosen complex number in order to guarantee that
some quantity will be real. In our case we use the polar decomposition
of (z,y): (x,y) = | (z,y)|e for some p € [0,27). We set 7 := e ¥x

| (z,y) | = Redy < (z,3)"* (y, )" = (z,2)"* (y,9)"/*,

which yields the complex Cauchy-Schwarz inequality. The case of equa-
lity is a consequence of the argument. 0
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EXAMPLE 2.3.9. (1) The space £? of square-integrable complex-

valued sequences (z;), (z/) is an innerproduct space:

)

[ee]
(2,2') = Z Zi2).
i=1

Holder’s inequality for p = 2 gives | (z,y) | < ||z||2||ly||2, which
is the Cauchy-Schwarz inequality in this case.

(2) The 2-norm ||.||o for the space of continuous complex-valued
functions on the interval Cf[a,b] is induced from the innerpro-
duct

(f,9) —/ f(x)g(z)dz.

This innerproduct is of utmost importance in Schrodinger’s
approach to quantum mechanics and in signal analysis. In
physics one often denotes (f, g) by (f|g) and they tend to have
it conjugate linear in the first entry and linear in the second.

By the same reasoning as for real innerproduct spaces X we de-
duce that ||z|| := (z,2)"* is a norm on X Innerproducts provide a
generalization of the notion of orthogonality of elements.

DEFINITION 2.3.10. Two elements x,y in an innerproduct space
(X, (.,,)) are orthogonal to each other if (z,y) =0

The theorem of Pythagoras is true for any innerproduct space (X (., .)).

PropoSITION 2.3.11 (Pythagoras’s Theorem). Let (X, (.,.)) be an
innerproduct space. For two orthogonal elements x,y € X we have

Iz +ylI* = [lzlI* + llyl*

PROOF. The argument is based on the fact that (z,z) is a norm.
By assumption we have (x,y) =0

lz + ylI* = [l2]” + 2Re (z,y) + lylI* = [l2I* + y*.
O

As an example we consider some orthogonal vectors in (C([0, 1]), (., .).
For m # n we define the exponentials e,,(x) = €™ and e,(z) =
e?™n%  Then

1
(em, €n) = / 2T g — (2mi(m — n)) "2 (e2m) 1) = 0.
0

Note that (e,,e,) = 1 for any n € Z. With the help of Kronecker’s
delta function we may express this as (e, €,) = Opmn-



Normed spaces 35

The theorem of Pythagoras is now at our disposal in any innerpro-
duct spaces such as ¢2.

DEFINITION 2.3.12. A set of vectors {e;}ic; in an innerproduct
space (X, (.,,)) is called an orthogonal family if (e;,e;) = 0 for all
i # j. In case that the orthogonal family {e;};c; in X satisfies in
addition ||e;|]] = 1 for any ¢ € I, then we refer to it as orthonormal
family.

The exponentials {€*™*}, 7 is an orthonormal family in C0, 1]
with respect to (.,.) and is a system of utmost importance, e.g. it lies
at the heart of Fourier analysis or more generally harmonic analysis.






CHAPTER 3

Banach and Hilbert spaces

We extend the topological notions introduced for the real line to
general normed spaces and we focus on completeness in this section.
Complete normed spaces are nowadays called Banach spaces, after the
numerous seminal contributions of the Polish mathematician Stefan
Banach to these objects. The class of complete innerproduct spaces are
named after David Hilbert, who introduced the sequence space £2. His
students made numerous contributions to the theory of innerproduct
spaces, e.g. Erhard Schmidt, Hermann Weyl, Otto Toeplitz,... .

3.1. Sequences in normed spaces

Norms on a vector space are the tool that provides us with a way
to merge linear algebra and analysis, which is known as functional
analysis. We will discuss some of the basic aspects of functional analysis
in this course. We start with the notion of convergent sequences and
will work our way up to completeness.

DEFINITION 3.1.1. Let (X,].||) be a normed space. A sequence
(Zn)nen in X is said to converge to z € X if for a given € > 0 there
exists a N such that ||z — x,|| < e for n > N. The vector z is called
the limit of the sequence (x,),en.

Suppose A is a subset of X. Given a convergent sequence (a,)nen
in A, meaning all the a,’s are elements of A. Then the limit of the
sequence (an)nen is also known as a limit point of A. We denote the
union of A and all its limit points by A.

This notion of convergence for sequences in normed spaces is a na-
tural generalization of the one for real and complex numbers. Note that
the elements of the sequences are vectors in a normed space. For exam-
ple, a sequence in 2 is a sequence where the elements themselves are
also sequences. A more geometric view towards this notion of conver-
gence is that for any ¢ > 0 there exists an N such that (zy,zn41,-..)
lies in the ball, B.(z), of radius ¢ around the limit xz. Sometimes
(xn,TN11,---) is called the tail of the sequence (z,),en. Hence conver-
gence of x,, — x means that for arbitrary small balls around the limit

37
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x the tail of (z,)nen lies in B.(x).

Note that # € A if there exists a sequence (a,)ney in A such that
ay —> T.

LEMMA 3.1. Suppose the sequence (z,)nen in (X, ||.||) converges to
ax € X. Then
[zl = llall | 0.

PROOF. By assumption we have that for any € > 0 there exists an
N € N such that ||z, — x| < ¢ for all n > N. By the reverse triangle
inequality we have that

[zl = el | < llzw - 2l

but the right hand side goes to zero by the convergence of (x,) and
thus we have that ||z, — z|| — 0. O

The notion of convergence depends on the norm the vector space is
equipped with!

EXAMPLE 3.1.2. Consider the sequence (f,,)nen in C[0, 1] defined
by f.(t) = e ™. Then we have that f,, converges to 0 in (C[0, 1], |.]]1):

1
1

Il fn — 0|1 = / e Mdt==(1—e ™) =0
0 n

asn — 00. Let us now discuss the convergence of ( f,)nen in (C0, 1], ||.]/c0)-
Since || finlloo = SUP;eo1] €7 = 1, 50 (fn)nen does not converge to the
zero function with respect to ||.||oo.

This example has a further feature.

EXAMPLE 3.1.3. Let A be the set of positive functions in C|0, 1],
ie. A={feC0,1]: f(t) >0, t €[0,1]}. Then the convergence of
(fa)nen in (C0, 1], ||-|l1) of (e7™),en to zero, gives us a sequence in A
with a limit not contained in A; the zero function is the very example
of a function attaining zero in [0, 1].

As for real sequences we have that limits of convergent sequences
are unique.

LEMMA 3.2. Let (x,)nen be a convergent sequence in the normed
space (X, ||.||). Then its limit is unique.

PROOF. Suppose there exist two limits =,y of (z,)nen. Then for
any € > 0 there exist Ny, Ny € N such that for all n > Ny ||z, — z| <
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£/2 and for all n > N — 2 we have ||z, — y|| < ¢/2. Hence for all
n > max Ny, Ny we have

[z =yl = llz = 20 + 20 —yll <o = znll + llzn -yl <e/2+/2=e.
O

A convergent sequence of real numbers is bounded, i.e. there exists
a constant M > 0 such that |a,| < M for all n € N. Convergent
sequences in normed spaces are also bounded if one defines the boun-
dedness of a subset of this space in an analogous manner.

DEFINITION 3.1.4. A subset A of (X ||.||) is called bounded if A is
contained in some ball B, (zq) for some radius rq and point zo € X. In
this case we define the diameter of A, diam(A), to be the real number
sup{[lz —yl| : =,y € X}.

Let us state some reformulations of the notion of boundedness of a
set.

LEMMA 3.3. For a subset A of a normed space X the following
statements are equivalent:

(1) A is bounded.

(2) There exists a constant M > 0 such that ||z — y|| < M for all
x,y € A.

(3) diam(A) < oo

(4) For every x € X there exists a radius r > 0 such that A C
B, (x).

(5) There exists a m > 0 such that ||z|] < m for all x € A.

Proor. We show (i) = (it) = (iii) = (iv) = (i), and finally

(v) = (@).

If (i) holds, then for some zy € X and ry > 0 we have A C B,,(xo):
lz =yl < llz = 2ol + [[xo — yl| < 2ro for all z,y € A,
iLe. ||l —y| < M =2r for all z,y € A.

If (ii) holds, then by the definition of supremum, as least upper bound,
of the set {||xr—y|| : x,y € A} isless than or equal to the finite constant
M, i.e. the diameter of A is finite.

If (iii) holds, then for all z,y € A we have ||z — y|| < diam(A) < oco.
Choose an element a; € A. Then given any x € X and a € A we
have ||z — a|]| < ||l — z1|| + ||z1 — a]| < d(z,a1) 4+ diam(A) =: r and
A C B,(x). Hence we have shown that (iii) = (iv).
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The assertion (iv) = (i) by definition of boundedness.

If (v) holds, then A C B,,(0). Thus we have A is contained in a
ball of radius m around the origin which is possible since in vector
spaces we can translate its elements by a given vector such that the set
gets centered at the origin. 0

Further results about boundedness are posed as problems on the
next problem set: (i) Any ball B,(x) C (X,].|]|) is bounded and
diam(B,(x)) < 2r. (ii) If A is a bounded subset, then for any a € A
we have A C Bgiam(a)(a)-

LEMMA 3.4. A convergent sequence in a normed space X is boun-

ded.
PROOF. See problem set. 0

The definition of convergence of a sequence has one flaw: Namely
one needs to have a candidate for the limit beforehand to actually
set up the proof that the sequence converges to this particular object.
Cauchy has noted that it is much more suitable to have a condition
that only involves the sequence elements.

DEFINITION 3.1.5. Let (z,)nen be a sequence in (X, |.|]). Then
we call (z,),en @ Cauchy sequence if for any € > 0 there exists an
N € N such that for all m,n > N we have

|xn — zml|| < e.
LEMMA 3.5. Any Cauchy sequence in (X, ||.||) is bounded.
PROOF. See problem set. O

LEMMA 3.6. Every convergent sequence in (X, |.|]) is a Cauchy
sequence.

PRrROOF. Let x,, — x in (X, ||.||). Then for any ¢ > 0 there exists
an N € N such that ||z, —z|| < &/2 for all n > N. Hence for m,n > N
we have
[0 — Tl < N2 — 2l + lz — 2| < e

U

EXAMPLE 3.1.6. We define a sequence in (Cla,b],|.]1) by a se-
quence of piece-wise continuous functions f,:
0 fora<t< “T’Lb,
fa(t) = ¢ n(t — <) for o2 <y < ot g 1)
1 for &2 + 1L <¢ <.
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(fn) is a Cauchy sequence in (C[.a,b], ||.]]1).
For m > n the slope of f,, is greater than of f,, and thus the area of
the function f,, — f, can be bounded by the triangle with sides 1 and

1/n,ie || fon — fulh < 1/2n.

There are Cauchy sequences in (C[a, b], ||.]|1) that have no continu-
ous limit function.

PROPOSITION 3.1.7. (C[a,b], ||.|l1) is not complete.

PROOF. The sequence (f,) defined by

0 fora <t <ot
Ja(t) = ¢ n(t — <) for =2 <t < “+b +4
1 for“;b+n§t§b.
is Cauchy sequence in (Cla, b], ||.||1) with discontinuous limit function:

0 foragtgc%b,
1 for‘%bgtgb.

Suppose f, — fin ||.||; with f € Cl[a,b]. Let us analyze the implicati-
ons of an—fH1—>0asn%oo
atb

/ablfn(t)— (0)dt = / /_+% /

breaks up into three integrals:

ath

(1) [ 2 |fn( ) — f(t)|dt — 0 only if f =0 on [a, %E*];
a+b

(2) fa+b n U fa(t) — f()|dt — 0. Since f, is continuous for all

[1a8) = £l

SI»—‘

n 6 N and f is continuous on [a, b] we have

) 1
/a_+b |fa(t) — f(B)|dE < (félo”f fOI+1)— =0

as n — oo. Hence this imposes no condition on the limit
function f.
(3) By the continuity of f we have that

b b b
Jos s |l = FC)t = S = 0l [ 1= s
2 n 2

2

as n — oo. Hence this limit is zero, we must have 1 — f(¢) = 0,
ie. f(t)=1forallt € [%tb b].
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In summary, the limit function f on [a,b] has a jump discontinuity at

a+b
ath 0

3.2. Completeness

The difference between the the normed space (Q, |.|) and the real
numbers (R, |.|) viewed as normed space is that not all Cauchy se-
quences in Q converge to a rational number but that is the case for
R. Cauchy established that any Cauchy sequence in R converges and
its limit is again a real number. In order to show this we assume a
property of the set of real numbers without proof, a so-called axiom.
Namely, R is supposed to have the least upper bound property:
Any non-empty subset S that is bounded from above has a
supremum sup S and sup S is a real number.

For example the set {a € Q : a < v/3} is bounded above by v/3, but
v/3 is not a rational number. We include the proof of this important
fact.

ProproSITION 3.2.1. The equation
2 —=3=0
has no solutions in Q.

PrRoOOF. We assume by contradiction that there is a rational num-
ber r such that r? — 3 = 0.

We represent r as a reduced fraction. That is, we write r = P where
p,q are integers, ¢ # 0 and ged(p, ¢) = 1. We then have:

2
P2_3=0 — 12=3 — %:3 — =342

The last identity says that p? is a multiple of 3. Then p itself must
be a multiple of 3 as well (why?), which means that p = 3m for some
integer m.

Substituting this into the identity p? = 3¢ we get 9m? = 3¢?, which
implies 3m? = ¢2, and so ¢> must be a multiple of 3. But then ¢ must
also be a multiple of 3.

Let us step back and look at what we have: we started of with a
completely reduced fraction r = §, assumed that 7?2 — 3 = 0, which
through a series of derivations led to the conclusion that both p and ¢

must be multiples of 3. This contradicts the fraction § being reduced.

Therefore, the equation 22 —3 = 0 cannot have any rational number
as solution. O
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THEOREM 3.7. A sequence of real numbers (a,)nen converges if and
only if for any € > 0 there exists an index N such that for allm,n € N
we have |a, — a,| < e.

ProOF. The statement about convergent sequences satisfying the
Cauchy property is one of the problems of problem set 5. The other im-
plication is much more intricate. Suppose we have a Cauchy sequence
(a,)5. Then we claim it converges to a real number. The argument
is elementary but a little bit involved. Let A be the set of elements
of our sequence (a,), A = {ay,as,...}. Then A is a bounded subset of
R: there exists an M > 0 such that a, € [-M,M] for n = 1,2, ... .
Take ¢ = 1 in the Cauchy condition: Then there exists an integer Ny
such that for all m,n > Nj such that |a, — an,| < 1 and thus the set
{ai1,as,...,an,,an,+1} is bounded by a constant M.

Now we consider the set
S :={s e [-M,M]: there exist infinitely many n € N for which a,, > s},

in other words we collect all the numbers s in [—M, M| such that a,, > s
infinitely often. Definitely —M € S and S is bounded above by M.
Thus by the least upper bound property of R there exists a real number
a such that a = sup S.

Claim: a,, — a as n — oo.
For any ¢ > 0 the Cauchy condition provides an N, s.t. for all
m,n > Ny:

lam — an| < /2.
All elements of S are less than or equal to a, so the larger number
a + /2 does not belong to S, and hence only finitely many often does

a, exceed a + /2. That is for some N3 > Ny we have for all n > Nj
that

a, > a+¢e/2.

Since a is a least upper bound for S, the smaller number a —e/2 cannot
also be an upper bound for S. Hence, there is some s € S such that
s > a — /2. Consequently, we have infinitely many sequence elements
such that

a—ce/2<s<ay.
In particular, there exists an N > N3 such that

ay >a—¢/2
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. Since N > N3 we have ay < a+¢/2 and so ay € (a —¢/2,a +¢/2).
Now recall that N > N, which yields that

lan, —a| <la, —an|+ |lay —a| < ¢

foralln > N, ie. a, — a as n — oo.
O

The property of R that any Cauchy sequence converges in R is
a favorable property that we would like to have for general normed
spaces.

DEFINITION 3.2.2. A normed space (X, |.||) is called complete if
every Cauchy sequence (xy) in X has a limit  belonging to X. Mo-
reover, a complete normed space is referred to as Banach space and a
complete innerproduct space is known as Hilbert space.

Let us start with an elementary observation that is a straightfor-
ward consequence of the definitions.

THEOREM 3.8. (R™, ||.||o) is @ Banach space.

The completeness of the normed space (R, |.|) has numerous rami-
fictions.

PROOF. The ||.||s-convergence of (z,),en implies the coordinate
wise convergence. Since any Cauchy sequence in (R, ||.||~) gives Cau-
chy sequences in each coordinate. Since R is complete we deduce that
all these coordinate Cauchy sequences converge in R. Thus we have
that (R",|.||«) is complete. O

THEOREM 3.9. The space of absolutely summable sequences is a
Banach space with respect to ||.|[1-norm; i.e. (Y ].|l1) is a Banach
space.

PROOF. The argument is split into three steps.
Step 1: Find a candidate for the limit. Let (z,), be a Cauchy se-

quence in ¢, We denote the n-th element of the sequence by z, =

(=, 27 ).

Note that |2™ —2\")| < ||zm—2n||1, so the first coordinates (z{™), are a
Cauchy sequence of real numbers and hence converge to some real num-

ber z;. Similarly, the other coordinates converge: z; = lim,_, :cg-").

Hence our candidate for the limit of (x,,) is the sequence z = (z1, 2, ...).
Step 2: Show that z is in ¢*. We have that
N N N
Yo lzl = lim e = lim Y |2,
Jj=1 Jj=1

j=1
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where the interchange of the limit with the sum of a finite number
of real numbers is no problem. Since Cauchy sequences are bounded,
there is a constant C' > 0 such that ||z,|; < C for all n. Thus for any
N

N 00
S <Y ) = ] < C.
Jj=1 j=1

Letting n — oo we find that
N
Yo lzl <l < C
j=1

for arbitrary N. Hence we have z € /1.

Step 3: Show the convergence. We want to prove that ||z, — z|[; — 0
for n — oo.

Given € > 0, pick Ny so that if m,n > N; then ||z,, — x,|[1 < e. Hence
for any fixed N and m,n > Ny, we find

N [e'e)
Dol =2 <Y ™ = 2 =l — awl| <&
j=1 j=1

Fix n > Ny and N, let m — oo to obtain
N
(n) _ 1 (n) (m)
Z]xj — 2] —nh_g)lo]w] —x; | <e.
J=1

Since this is true for all N we have demonstrated that
|z — 2|1 < e.
That is our desired conclusion. O

THEOREM 3.10. The space of bounded sequences is a Banach space
with respect to ||.||o-norm; i.e. (£°/].||s) i a Banach space.

PROOF. The argument is once more split into three steps.
Step 1: Find a candidate for the limit. Let (z,), be a Cauchy se-
quence in £*°. We denote the n-th element of the sequence by z, =
(=, 2 ).
Note that [2™ — 2| < ||Zm — @]l for all k and all m,n > N, so

the k-th coordinates (:1:,(9"))” are a Cauchy sequence of real numbers and

hence converge to some real number z;. Similarly, the other coordina-

. _ T (n)
tes converge: 2z = limy, o0 7, .
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Hence our candidate for the limit of (x,,) is the sequence z = (z1, 2, ...).
Step 2: Show that z is in £°°. We have that

sup{|z;| :j=1,..,N} = sup{lirlgn|x§-n)|j =1,.,.N} = liyrln{sup |w§n)|j =1,..

where the interchange of the limit with the sum of a finite number
of real numbers is no problem. Since Cauchy sequences are bounded,
there is a constant C' > 0 such that ||z,||- < C for all n. Thus for any
N

lim{sup |$§n)|j =1, N} <|lza]lo < C.

Thus we find that ||z,||. < C, i.e. we have z € (>°.

Step 3: Show the convergence. We want to prove that ||z, — 2| — 0
for n — oo.

Given € > 0, pick Ny so that if m,n > N; then

) — 2| < o — 2Pl < €
for all k. Taking limits as m — oo we have
|2 — P <e
Taking supremum in &, we obtain

sgp 2 —2®| < e

for all n > Ny, ie. ||z, — z]|oc < € for all n > N. Consequently we
have that x,, converges to z in (£, ||.||o0)-
U

Reasoning similar to the one for ¢! gives us that all fP-spaces are
Banach spaces for ||.|[, when 1 < p < oo.

THEOREM 3.11. Let [a,b] be a bounded interval of real numbers.
Then the normed space C|a,b] with respect to the sup-norm ||.||s @s a
Banach space.

The situation is different for the function spaces (Cla,b], ||.||,), as
we have seen before for p = 1 this is not a complete space and this is
also true for 1 < p < oco. In contrast (Cla, b], ||.||o) is a complete space.
Before we are able to proof this statement we have to discuss different
notions of convergence for sequences of functions and properties of
continuous functions.

LEMMA 3.12. For f,g € Cla,b] we have that sup{|f(z) — g(z)|x €
la,b]} is finite, and there is a y € [a,b] such that doo(f,9) = |f(y) —

9(y)| = max{[f(x) — g(x)|x € [a, b]}.

N}
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ProOF. We show that d(z) = |f(z) — g(x)| is continuous on [a, b]
and thus by the Extreme Value Theorem the assertion follows. The
continuity of d is deduced from

|d(z)=d(y)| < |If(x)=g(@)[=|f () —gW)I| < |f (@)= FW)+|g(y)—g(z)l.
Since f and g are continuous at x there is for any given e > 0a d > 0

such that |f(z) — f(y)| < e/2 and |g(z) — g(y)| < /2 for |x — y| < 0.
Hence

jd(z) = d(y)| < [f (@) = FW) +19(y) —g(2)| <e/2+e/2=¢
for all y € [a, b] with |z — y| < . Consequently d is continuous. O

REMARK 3.2.3. Observe that the || f — g||o-norm measures the dis-
tance between the functions f and g by looking at the point in ala, b]
they are the furthest apart.

DEFINITION 3.2.4. Let (f,) be a sequence of functions on a set X.

e We say that (f,) converges pointwise to a limit function f if
for a given € > 0 and x € X there exists an N so that

|fu(z) — f(x)] <& foralln> N.

e We say that (f,) converges uniformly to a limit function f if
for a given € > 0 there exists an N so that

|fu(z) — f(x)] <e foralln >N
holds for all z € X.

There is a substantial difference between these two definitions. In
pointwise convergence, one might have to choose a different N for each
point x € X. In the case of uniform convergence there is an N that
holds for all x € X. Note that uniform convergence implies pointwise
convergence. If one draws the graphs of a uniformly convergent se-
quence, then one realizes that the definition amounts for a given £ > 0
to have a N so that the graphs of all the f,, for n > N, lie in an e-band
about the graph of f. In other words, the f,,’s get uniformly close to f.
Hence uniform convergence means that the maximal distance between
f and f, goes to zero. We prove this assertion in the next proposition.

PROPOSITION 3.2.5. Let (f,) be a sequence of continuous functions
on la,b]. Then the following are equivalent:

(1) (fn) converges uniformly to f.
(2) sup{|fn(z) — f(x)| : z € [a,b]} = 0 as n — oo.
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PROOF. Assertion (i) = (i7): Assume that (f,) converges uni-
formly to f. Then for any £ > 0 there exists a N such that |f,(z) —
f(z)| <eforall x € [a,b] and all n > N. Hence sup{|f.(z) — f(z)] :
x € [a,b]} < e for all n > N. Since this holds for all € > 0, we have
demonstrated that sup{|f.(z) — f(z)| : = € [a,b]} — 0 for n — oo.
Assertion (ii) = (¢): Assume that sup{|f.(z) — f(z)|: = € [a,b]} — 0
for n — oco. Given an € > 0, there is a N such that sup{|f.(z)— f(z)| :
x € [a,b]} < e for all n > N. Thus we have |f,(z) — f(z)| < € for all
x € [a,b] and all n > N, i.e. (f,) converges uniformly to f. O

A reformulation of this result is that a sequence converges in (C|a, ], ||.||~)
to f is equivalent to the uniform convergence of (f,) to f.

PROPOSITION 3.2.6. A sequence (f,) converges to f in in (Cla,bl, ||.||c)
if and only if (f,) converges uniformly to f.

Uniform convergence has an important property.

THEOREM 3.13. Let (f,) be a uniformly convergent sequence in
Cla, b] with limit f. Then the limit function f is continuous on |a,b).

PRrROOF. Let y € I and € > 0 be given. By the uniform convergence
of f, — f, there exists an N such that n > N implies that

|fu(z) — f(z)] <e/3 forallz el
The continuity of fy implies that there exists a d > 0 such that

|fv(z) — f(y)| <e/3 for |z —y| <.

We want to show that f is continuous. For all x such that |z —y| < §
we have that

[f(@) = f(y)l < |f(@) = ()| + [fn (@) = In(m)] + | fn(y) = Fy)]
<e/3+¢/3+¢/3=c¢.

THEOREM 3.14. (Cla,b],||.||«)) is a Banach space.

PRrROOF. Convergence of a sequence in (Cla, b], ||.||) to f € C[a, b]
is equivalent to uniform convergence of the sequence to f.

Assume that (f,) is a Cauchy sequence in (C[a,b],|.]|s). Then we
have to show that there exists a function f € Cfa,b] that has (f,) as
its limit.

Fix z € [a,b] and note that |f,(z) — fi.(2)] < |[fn — finlleo- Since
(fn) is a Cauchy sequence (f,(x)) is a Cauchy sequence in R. Since R
is complete, (f,(z)) converges to a point f(z) in R. In other words,
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fn — f pointwise.

Next we show that f € Cla,b]. Since (f,) is a Cauchy sequence, we
have for any € > 0 a N such that || f, — fi| < /2 for all m,n > N.
Hence we have |f,(z) — fin(z)] < €/2 for all € [a,b] and for all
m,n > N. Letting m — oo yields for all x € [a,b] and all n > N:

[fa(2) = f(2)] = lim |fu(2) = fu(o)| S /2 <e.

Consequently, f, — f converges uniformly. Now by the preceding
proposition f is a continuous function on [a,b]. In other words, we
have established that (Cla,b], ||.||s) is & Banach space. O

3.3. Banach’s Fixed Point Theorem

In 1922 Banach established a theorem on the convergence of itera-
tions of contractions that has become a powerful tool in applied and
pure mathematics aka Contraction Mapping Theorem. Before we state
Banach’s fixed point theorem we define continuous functions between
normed spaces. A natural and far-reaching generalization of the notion
of continuous functions defined on R.We will have much more to say
about continuous functions in the next chapter.

DEFINITION 3.3.1. Let (X, [|-||) and (Y, ||-||) be two normed spaces,
let AC X and let f: A — Y be a function.

(1) We say that f is continuous at a point a € A if for all € > 0
there is 6 > 0 such that for all x € A with ||z — a|| < 0 we
have || f(z) — f(a)l| <e.

(2) We say that f is continuous on A if it is continuous at each
point of A. Here is a useful criterion for continuity of a
function.

A class of continuous functions on normed spaces is given by functi-
ons satisfying: There exists a finite constant L such that

| f(z) = f(2")|| < Lz —2'|| forall z,2' € A.

One calls such functions Lipschitz continuous, after the German
mathematician R. Lipschitz, and often one refers to L as Lipschitz
constant. On Problem set 6 you will show that any Lipschitz conti-
nuous function is continuous.

We have come across Lipschitz continuous functions in our discussion
of normed spaces. Namely, the reverse triangle inequality shows that
anorm ||, || : X — R on a vector space X is Lipschitz continuous with
constant 1.
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PROPOSITION 3.3.2. Let f: A — Y be a function, where A C X
and X,Y are normed spaces. Let a € A. Then the following two
statements are equivalent.

(i) f is continuous at a.

(i1) For every sequence (x,) C A, if x, = a then f(z,) — f(a).

PROOF. i) = (ii): We assume that f is continuous at a.

Let (z,) C A be a sequence such that x, — a. We prove that
F(a) = fla).

Let ¢ > 0. Since f is continuous at a, there is § > 0 such that if
|2 —al| <6 then |[f(z) — fla)]| <e.

Since x,, — a, there is N € N such that for all n > N we have
|zn, — al|| < d. From the above, if n > N we must then have || f(x,) —
f@)l <=

As e was arbitrary, this proves that f(z,) — f(a).

(i) <= (ii): We assume by contradiction that f is not continuous at
a. Let us write down carefully what that means.

Firstly, we recall the definition of continuity. f is continuous at the
point a € A means:
for all € > 0 there is § > 0 such that for all z € A with ||z —al| < J we
have || f(z) — f(a)| <e.

Next, we formulate the negation of this statement.

The function f is not continuous the point a € A means:
there is g9 > 0 such that for all § > 0 there is an element of A, which
we denote by zs, such that ||x5 — al| < ¢ but ||f(xzs) — f(a)]| > eo.

For every n > 1, we may choose § = % Then for some element of A,
which we denote by z,,, we have that ||z, —al| < £ but || f(z,)—f(a)|| >
£o-

We have thus obtained a sequence (z,,) C A such that ||z, — a| <
10, so z, — a. However, since || f(z,) — f(a)| > o, the sequence
f(z,) # f(a), which is a contradiction.

Hence f must be continuous at a. 0

Suppose we have a continuous function f on a normed space X.
Take a point 2y in X and build the sequence of iterates

To, v1 = f(20), 12 = f(21) = f2(370)a oy Tpgr = f(2n).

The existence of the limit of this sequence = lim,, z,, = lim,, f™(xo)
is the basic question that underlies Banach’s fixed point theorem. The
limit « of the iterates (x,) is a fixed point of the continuous map f:

f(z) = f(limz,) = lim f(z,) = limz,,; = limz, = .
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A mapping f on a normed space X is called a contraction if there
exists a 0 < K < 1 such that

1f() = fFl < Kllz =yl z,yeX,

a contraction is a Lipschitz continuous function with Lipschitz constant
L < 1. Recall that ||z — y|| = d(z,y) is the distance between z and y.

THEOREM 3.15 (Banach’s Fixed Point). Let X be a Banach space
X. Any contraction f : X — X has a unique fized point T and the fized
point 1s the limit of every sequence generated from an arbitrary nonzero
point zo € X by iteration (x,),, where x,,1 = f(x,) forn > 1.

PROOF. Let 2y € X be arbitrary. Define z,.; = f(x,) for n =
1,2, ... . By the contractivity of T" we have

[0 — |l = | (@n1) = f@n2)|| < Kllzn—1 — 2n—2|
and iterations yields
2 = @[] < K" Hw1 — aoll.

The existence of a fixed point is based on the completeness of X. Hence
we proceed to show that (x,), is a Cauchy sequence. Let m,n be
greater than N and we choose m > n. Then by the preceding inequality
and the triangle inequality we have

[Zm = all < 2m — Tl + [|Tm1 — Tma|| + -+ + |[Tpg1 — 24|
< (K™ P4+ K™ 2 4 K™ ||y — 0|
< (KN K¥ gy —
K1 - K)o

Since 0 < K < 1, limy K = 0 and thus (x,) is a Cauchy sequence.
Consequently, (x,) converges to a point & by the completeness of X.
Furthermore 7 is a fixed point by the contractivity of T

Uniqueness: Suppose there is another fixed point g of f. Then ||Z—g| =
1f(Z) — f@)| < K|z — || and ||Z — g|| > 0. Thus we deduce that
K > 1 which is a contradiction to f being a contraction. 0

Lipschitz maps with constant 1 are not eligible in this fixed point
theorem. Since the map f(z) =z + 1 on [0, 1] has no fixed point, but
the map f(z) = x on [0, 1] has infinitely many fixed points.

COROLLARY 3.3.3. Under the assumption in Banach’s fized point
theorem we have the following estimates about the rate of convergence
of the iterates (z,,) towards the fized point Z:
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n

[ — ]| <

< ——llzo — f(z)],

tells us, in terms of the distance between xo and f(xo) how
many times we need to iterate f starting from xy to be certain
that we are within a specified distance from the fized point.

|7 — 2| < K71 — 2],
18 called an a priori estimate, meaning that it gives us an upper
bound on how long we need to compute to reach the fized point.

[ — 2| < 201 = 2al],

1-K
tells us, after each computation, how much closer we are to the
fixed point in terms of the previous two iterations. This kind
of estimate, called an a posteriori estimate, is very important
because if two successive iterations are nearly equal, guarantees
that we are very close to the fixed point.

PRrOOF. From the proof we have that for m > n

K" K"

(31) o=zl < oo — mll = ol — fao)]|
The right side is independent of m and so m — oo gives
(3.2 e — & < ol — Fao)l|

The second inequality comes along like that: Since 7 is the unique fixed
point of f:

lzn = Z[ = [ f(2n) = f@)] < KlJ#n1 — .
Applying the triangle inequality to ||x,_1—Z|| gives the third inequality:
[2n = 2| < K(lzn-1 — 2nll + l2n — Z[]),

which gives

”xn—l - xn”

K
3.3 <
(33) lan — 3 < ——

O

Recall that we defined for a the closure A of A as the union of A
and the set of limit points of A.

DEFINITION 3.3.4. A subset A of (X, ||.||) is called closed if A = A.
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For example {y € X : [z —y|| < r} is a closed subset of X. We
will discuss properties of closed sets in the next chapter.

Here is a variant of Banach’s fixed point theorem:

THEOREM 3.16. Let A be a closed subset of a Banach space X . If
f A — X is a contraction, then f has a unique fixed point and the
fixed point is the limit of every sequence generated from an arbitrary
nonzero point ro € A by iteration (x,),, where x,.1 = f(x,) forn > 1.
If the contraction f: A — X satisfies in addition, f(A) C A, then the
fized point lies also in A.

PROOF. See problem set. O

Two well-known applications are Newton’s method for finding roots
of general equations, solving systems of linear equations and the the-
orem of Picard-Lindelof on the existence of solutions of ordinary dif-
ferential equations. We discuss the first item and postpone the other
items.

Newton’s method:

How does one compute V3 up to a certain precision, i.e. we are inte-
rested in error estimates? Idea: Formulate it in the form 22 —3 = 0 and
try to use a method that allows to compute zeros of general equations.

Newton came up with a method to solve g(z) = 0 for a differentia-
ble function g : I — R.

Suppose x is an approximate solution or starting point. Define recur-
sively

g(n)
g ()
Then (x,) converges to a solution Z, provided certain assumptions on

g hold.
If x, — Z, then by continuity of g we get g(z) = 0.

for n > 0.

Tnt+1 = Tp —

When does Netwon’s method lead to a convergent sequence of iterates?
Idea: Apply Banach’s Fixed Point Theorem.

Set f(z) := x—j,((?). Then given xy € I and x,,11 = xn—% = f(x,).
Moreover, f(z) = z if and only if g(z) = 0.

Let us restrict our discussion to the computation of v/3. The Banach
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space X is the space of real numbers R and g(z) = 2% — 3, so

-3 1 3
fla)=2———=g+-)
on [v/3,00) = [v/3,00). Note that [v/3,00) is a closed set of R contai-
ning /3. For z > 0 we have 1(z + 3/2) > \/3z/x = v/3. Compute
f" and note that a differentiable function f : I — R with a bounded
derivative, | f'(x)|L for x € I is Lipschitz continuous with constant L.

, 1 3
flla)=50--3)
and note that it’s range is contained in [0, 1/2] for > /3. Hence we
have L = 1/2 and by Banach’s Fixed Point Theorem 3 (z, + %) — /3.
Let’s pick 29 = 2 and thus z; = 7/4 and so |x; — zo| = 1/4. Further-
more, we have

(1/2)" 111
n— V3l < — = __.9.2 = )
[z, = V3l < 77 1l Tl =02y = g

Hence

1
|$n__\/§|§

2n+1'
For n = 4, we have |z,, — /3| < 1/1024 < 0.001.

Integral equations

Equations of the following type appear naturally in mathematics, phy-
sics and engineering: Given functions f : [a,b] — R and k : [a,b] x
la,b] — R, a parameter \, where [a,b] denotes a finite interval of R.
Solve the integral equation

f@ﬂzk/wﬂawfwmy+ﬂ@

for g. We will restrict our discussion to continuous functions f and k.
Note that the mapping

b
ﬂﬁ@:/k@wmwy

is a continuous analogue of matrix multiplication, where the function k
on the rectangle [a,b] X [a, b] is the continuous variant of a matrix (a;)
and one often calls T an integral operator and k£ its kernel. The
fixed point theorem of Banach allows us to solve this integral equation
for sufficiently small .
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Note that T : Cla,b] — Cla,b] respects the vector space structure
of Cla,b]: For any «, f € R and fi, fo € C[a, b] we have

T(afi+ Bf2) = oT(f1) + BT(f2).
LeEmMMA 3.17. Let f € Cla,b] and k € C([a, b] x [a,b]). Then
Tf e Cla,b).

PROOF. For each fixed x the function K (x,y) is a continuous function
of y on [a,b]. Hence K(x,y)f(y) is a continuous function of y and so
the integral in the definition of 7" makes sense. Claim: For f € Cla, b]
we also have T'f € Cla, b].

As a preparation we look at |T'(f)(z1) — T'(f)(x2)| for z1 # xo:

) =Tl < | [ (o) - Kea) 701

b
s/“wwhw—k@%wuﬂwuy

Since k is continuous on [a,b] X [a,b], we have that k is bounded on
[a,b] x [a,b]: |||l < ||k|lco- We also have more control over k as
one would have for a continuous function. Namely, it is uniformly
continuous on [a, b] X [a, b]: For any 6 > 0 so that |1 — 3| < § we have

b(@1,9) — k(@29 < /I fllb—a) for all y € [a, 1]
Using this estimate we obtain that for |z; — x9| < ¢
T(f) () ~ T(f)(w2)] < ¢ forall y € [a, 1]
Hence T'f is continuous on [a, b]. O

Furthermore T is also compatible with the norm structure on C'la, b],
which follows from the estimates in the preceding proof:

IT(f1) = T(f2)lloe < Kllc(b = a)[lfr = falloo-
Hence we are in the position to specify when T f(z) = g(x)+A f:k(x,y)f(y)dy

is a contraction on Cla, b]: Namely, when || < m

PROPOSITION 3.3.5. Suppose g € Cla,b] and k € C’([a, b] X [a, b])
Then

f@OZA/TMwa@My+M@

has a unique continuous solution f on [a,b] for |A| < 1/|k|lse(b — a).
The solution can be found by iteration.
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ProOOF. Consider the mapping f(z) — Taf(x) := g(x)+A ff k(z,y)f(y)dy.
For fi, fo € Cla,b] we have

b
I Tafi(2) = Tafo(2)| = lg(x) — g(2)| + |/\\/ k()1 (y) = f2(y)ldy

<A / k() fily) — Faly)ldy.

Since k is bounded on [a,b] X [a,b] we have |k(z,y)| < ||k]|s for all
z,y € [a,b]:

b b
T2 ful@) =T fola)] < A / k()| @) —Fo () dy < INIF] / i)~ faly) | dy.

By the boundedness of f; — f5 on [a,b] we have that |fi(y) — fo(y)| <
| f1 — f2||co. Thus we have

b
T3 fi(z) = Thfale)] < IAIHkHoollflloo/ ldy = Al(b—a)[[kllol f1 = fallse

Hence T} is a contraction on the Banach space (Cla,bl, ||.||«) if |A|(b—
a)”k”oo <1, ie.
A< (0= a)[Elloc) ™
and so Banach’s fixed point theorem completes the argument.
O

Mappings of the form T'(f)(z) = ff k(z,y)f(y)dy are called in-
tegral operators and one may impose various conditions on |[a, bl
the function f and the kernel k depending on your problem. We just
point out that a specific choice of kernels gives integral operators with
a one-dimensional range. Namely, if k(x,y) = k1 (2)ko(y), then

11(5) = [ BaaMhalo) )y = (ks £ (o),

is a scalar multiple of k;. We denote functions of the form ki (x)ks(y)
by (k1 @ ka)(z,y).



