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Problem 1 Let A be a non-empty subset of the real line R.

a) Define the following notions: (a) the infimum of A; (b) the supremum of
A; (3) the closure of A; (4) the interior of A; (5) the boundary of A.

Solution:

1. If m is a lower bound of A such that m ≥ m′ for every lower bound m′,
then m is called the infimum of A, denoted by m = inf A.

2. If M is an upper bound of A such that M ′ ≥ M for every upper bound
M ′, then M is called the supremum of A, denoted by M = sup A.

3. The closure of A, denoted by A, is the intersection of all closed sets
containg A.

4. The interior of a subset of A of R, denoted by intA, is the union of all
open subsets of R contained in A.

5. The boundary of a subset A of R, denoted by bdA, is the set A\intA.

b) Assume that A is bounded from above. Show that the supremum of A lies in
the closure of A.

Solution:
Let A ⊂ R be bounded from above. By the axiom of completeness, the
supremum of A exists (as a real number), that is, sup A ∈ R.

Let ε > 0. Since sup A is the least upper bound of A, we have that sup A − ε

cannot be an upper bound for A, so there is some element aε ∈ A such that
aε > sup A − ε. Furthermore, since sup A is an upper bound of A, and since
aε ∈ A, we must have that aε ≤ sup A. Thus

sup A − ε < aε ≤ sup A .

For every n ≥ 1 we may choose ε = 1

n
. Using the above, there is some

element an ∈ A such that

sup A − 1

n
< an ≤ sup A .

We have obtained a sequence (an) ⊂ A such that sup A − 1

n
< an ≤ sup A

for all n ≥ 1. Subtracting sup A from all sides of this inequality, we get that

− 1

n
< an − sup A ≤ 0 ,
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which implies

|an − sup A| ≤ 1

n
→ 0 as n → ∞, so an → sup A .

Problem 2 Consider the initial value problem:

dx

dt
= f(t, x), and x(t0) = x0,

where f is a function f : U × V → R defined on U × V of R2 such that t0 lies in
the interior of the interval U and x0 in the interior of the interval V , respectively.

a) Formulate the theorem of Picard-Lindelöf. Assume that f is continuous in t

and uniformly Lipschitz in x:

|f(t, x) − f(t, x′)| ≤ L|x − x′| for all t ∈ U, x, x′ ∈ V.

Then the IVP has a unique local solution, i.e. there exists a δ > 0 such that
the IVP has a solution x on (x0 − δ, x0 + δ).

b) Solve the initial value problem

dx

dt
= 2t(1 + x), and x(0) = 0,

by applying the theorem of Picard-Lindelöf. Compute the first three Picard
iterations x1(t), x2(t) and x3(t) starting from x0(t) = 0.

Solution:
In this problem f(x, t) = 2t(1 + x), which is continuous in t and uniformly
continuous on the closed interval [−B, B] for any B > 0. Hence there exists
a unique local solution. The formula for the Picard iteration is

xn+1(t) =
∫ t

0

2s(1 + xn(s))ds = t2 +
∫ t

0

2sxn(s)ds.

Since x0(t) = 0 we have

x1(t) = t2, x2(t) = t2 +
t4

2!
, x3(t) = t2 +

t4

2!
+

t6

3!
.

Note that xn(t) is the Taylor expansion of e−t2 − 1. Hence xn(t) → e−t2 − 1
and thus the solution actually exists for all t ∈ R.
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Problem 3 Given the matrix

A =







1 2
2 2
2 1





 .

a) Compute the singular value decomposition of A.

Solution:

1. A∗A =

(

9 8
8 9

)

has as characteristic polynomial x2 − 18x + 17 = (x −
17)(x − 1). Hence the eigenvalues of A∗A are λ1 = 17 and λ2 = 1.

The corresponding normalized eigenvectors are v1 = 1√
2

(

1
1

)

and v2 =

1√
2

(

1
−1

)

. Consequently, we have

(

1√
2

1√
2

1√
2

− 1√
2

)

.

2. The singular values of A are σ1 =
√

17 and σ2 = 1. Thus

Σ =







√
17 0
0 1
0 0





 .

3. The first two columns of U are given by

u1 =
1√
17

1√
2

Av1 =
1√
34







1 2
2 2
2 1







(

1
1

)

=
1√
34







3
4
3







and by

u2 =
1

1
Av2 =

1√
2







1 2
2 2
2 1







(

1
−1

)

=
1√
2







−1
0
1





 .

Consequently, U has the form









3√
34

−1√
2

x1

4√
34

0 x2

3√
34

1√
2

x3








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The last column is determined by the assumption that it has to be
orthogonal to the first two columns. The choice

u3 =
1√
17







2
−3
2







satisfies these conditions, but there are many other ways to complete
the first two columns to become an orthonormal basis for C

3,








3√
34

−1√
2

2√
17

4√
34

0 −3√
17

3√
34

1√
2

2√
17









.

4. The SVD of A is








3√
34

−1√
2

2√
17

4√
34

0 −3√
17

3√
34

1√
2

2√
17















√
17 0
0 1
0 0







(

1√
2

1√
2

1√
2

− 1√
2

)

.

b) Use the result of a) to find:
(1) Bases for the following vector spaces: ker(A), ker(A∗), ran(A), ran(A∗).

Solution:

ker(A∗) = {u3}, ker(A) = {0}, ran(A∗) = {v1, v2}, ran(A) = {u1, u2}.

(3) The pseudo-inverse of A.

Solution:

A† =

(

1√
2

1√
2

1√
2

− 1√
2

)(

1√
17

0 0

0 1 0

)









3√
34

4√
34

3√
34

−1√
2

0 1√
2

2√
17

−3√
17

2√
17









.

Problem 4 Let ‖.‖a and ‖.‖b be two norms on a vector space X.

a) Show that ‖x‖ := (‖x‖2
a + ‖x‖2

b)
1/2 is a norm on X. Furthermore, show if

a sequence (xn) converges in (X, ‖.‖), then it converges in (X, ‖.‖a) and in
(X, ‖.‖b).

Solution:
‖x‖ := (‖x‖2

a + ‖x‖2
b)

1/2 is a norm, because
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1. ‖x‖ = 0 if and only if ‖x‖a = 0 and ‖x‖b = 0, which is the case only if
x = 0.

2. ‖λx‖ = (‖λx‖2
a + ‖‖ax‖2

b)
1/2 = (λ2‖x‖2

a + λ2‖x‖2
b)

1/2 = |λ|(‖x‖2
a +

‖x‖2
b)

1/2 = |λ|‖x‖.

3. Let us compute ‖x + y‖2 and (‖x‖ + ‖y‖)2.

(‖x‖ + ‖y‖)2 = (‖x‖a + ‖x‖b)
2 + (‖y‖a + ‖y‖b)

2

= ‖x‖2

a + ‖x‖2

b + ‖y‖2

a + ‖y‖2

b+

2‖x‖a‖y‖a + 2‖y‖a‖x‖b + 2‖x‖a‖y‖b + 2‖x‖b‖y‖b

‖x + y‖2 = ‖x + y‖2

a + ‖x + y‖2

b

≤ (‖x‖a + ‖y‖a)2 + (‖x‖b + ‖y‖b)
2 = ‖x‖2

a + ‖x‖2

b + ‖y‖2

a + ‖y‖2

b+

2‖x‖a‖x‖b + 2‖y‖a‖y‖b,

which gives us

(‖x‖ + ‖y‖)2 − ‖x + y‖2 = 2‖y‖a‖x‖b + 2‖x‖a‖y‖b ≥ 0

and consequently
‖x + y‖ ≤ ‖x‖ + ‖y‖.

For the convergence statement, we just observe that ‖x‖a ≤ ‖x‖ and ‖x‖a ≤
‖x‖, which yields the desired assertions.

b) Suppose there exist constants C1, C2 > 0 such that

C1‖x‖b ≤ ‖x‖a ≤ C2‖x‖b

holds for all x ∈ X, i.e. ‖.‖a and ‖.‖b are equivalent norms on X.

Show that there exist constants C ′
1, C ′

2 > 0 such that

C ′
1‖x‖a ≤ ‖x‖b ≤ C ′

2‖x‖a

holds for all x ∈ X.

Solution:

C1‖x‖b ≤ ‖x‖a ≤ C2‖x‖b

implies that C1‖x‖b ≤ ‖x‖a, hence

‖x‖b ≤ C−1

1 ‖x‖a,
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and from ‖x‖a ≤ C2‖x‖b we deduce

C−1

2 ‖x‖a ≤ ‖x‖b

. Consequently, we have

C−1

2 ‖x‖a ≤ ‖x‖b ≤ C−1

1 ‖x‖a,

so C ′
1 = C−1

2 , C ′
2 = C−1

1 .

Determine the constants C1 and C2 for the sup-norm ‖.‖∞ and ‖.‖p-norm,
1 ≤ p < ∞. on R

n:
C1‖x‖∞ ≤ ‖x‖p ≤ C2‖x‖∞.

We have C1 = 1 and C2 = n1/p, because max{|xi| : i = 1, ..., n} =
max{|xi|p : i = 1, ..., n}1/p ≤ (

∑n
i=1 |xi|p)1/p and (

∑n
i=1 |xi|p)1/p ≤ (

∑n
i=1 max{|xi| :

i = 1, ..., n}p)1/p ≤ n1/p max{|xi| : i = 1, ..., n}.

Problem 5 Let M be the subspace of ℓ2 defined by

M = {x = (xk)k∈N ∈ ℓ2 : x2k = 0 for k = 1, 2, ...}.

a) Show that M is a closed subspace of ℓ2 and determine its orthogonal com-
plement M⊥.

Solution:
Suppose (xn)n∈N, where xn = (xn

k)k∈N, is a sequence in M converging to
x = (xk)k∈N in ℓ2. Since xn

2j = 0 for j = 1, 2, ... we have

|x2j| = |x2j − xn
2j| = (|x2j − xn

2j|2)1/2 ≤ (
∑

j∈N

|xj − xn
j |2)1/2 = ‖x − xk‖2

for all j, j ∈ N. Hence in the limit as k → ∞ we get that |x2j| = 0 for all
j ∈ N. Thus x ∈ M and M is a closed subspace of ℓ2.

The natural candidate for the orthogonal complement of M is the subspace

N = {(xk)k∈N| x2j−1 = 0, j = 1, 2, ...}.

Now, for x ∈ M and y ∈ N we have 〈x, y〉 = 0. Hence N ⊆ M⊥.
Suppose y ∈ M⊥. Then 〈x, y〉 = 0 for all x ∈ M . Let us take the standard
basis {ek : k ∈ N}. Then we e2j−1 ∈ M for all j and we have for x = e2j−1

that 〈x, e2j−1〉 = x2j−1 = 0. Consequently, y ∈ N and thus M⊥ = N .
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b) Determine the orthogonal projection P from ℓ2 onto M without using the
projection theorem and show that P = P ∗ and its operator norm ‖P‖ = 1.

Solution:
The orthogonal projection Px of x onto M is the best approximation of x
in M such that its error is in the orthogonal complement. Hence x − Px ∈
M⊥, i.e 〈x − Px, y〉 = 0 for all y ∈ M . Hence x − Px = (x2j−1), so
Px = (x2j) = (x2, x4, x6, ...). We also have that M ∩ M⊥ = {0} since
(x1, x2, x3, ...) = (x2, x4, ...) + (x1, x3, ...) for all x ∈ ℓ2. Hence P 2 = P and

〈Px, y〉 =
∞
∑

k=1

x2ky2k = 〈x, Py〉,

i.e. P = P ∗.
By Pythagoras we have ‖x‖2

2 = ‖Px‖2
2 + ‖y‖2

2 where y ∈ M⊥. Thus ‖Px‖ ≤
‖x‖. On the other hand there exists an x ∈ ℓ2 such that Px 6= 0, but
P (Px) = Px. Thus ‖P (Px)‖ = ‖Px‖, so we have ‖P‖ ≥ 1. Hence ‖P‖ = 1.

Now for x ∈ ℓ2 to M .

Problem 6 Let X be a separable Hilbert space and {ek : k = 0, 1, 2, ...} an
orthonormal basis for X. We define the linear operator S by S(ek) = ek+1 for
k = 0, 1, 2, ... .

a) Suppose a = (a0, a1, ...) ∈ ℓ2 is the coefficient sequence of x ∈ X:

x =
∞
∑

k=0

akek.

Describe the operator S in terms of the coefficient sequence (a0, a1, ...), i.e.
as an operator on ℓ2. Determine S∗ on ℓ2 and find S∗(ek) for k = 0, 1, ....
Compute the operator norm of S.

Solution:
By definition we have

S(x) =
∞
∑

k=0

akS(ek) =
∞
∑

k=0

akek+1.

In order to get the action of S on ℓ2 we have to change the summation index:

∞
∑

k=0

akS(ek) =
∞
∑

k=1

ak−1ek = 0e0 + a0e1 + a1e2 + · · ·

.
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Hence for a = (a0, a1, ...) we have

S(a0, a1, ...) = (0, a0, a1, a2, ...)

is a shift operator. Then we have that the adjoint of S is defined by

〈Sa, b〉 =
∞
∑

k=0

ak−1bk =
∞
∑

k=0

akbk+1 = 〈a, S∗b〉.

Hence S∗ is the other shift operator on ℓ2

S∗(a0, a1, ...) = (a1, ...),

and in terms of the basis elements S∗ is defined by S∗e0 = 0 and S∗ek = ek−1 for
k = 1, 2, ... .The operator norm of S equals

‖S‖ = sup{‖Sa‖2 : a ∈ ℓ2 with ‖a‖2 = 1}.

Since ‖Sa‖2
2 = |a0|2 + |a1|2 + |a2|2 + · · · = ‖a‖2

2 we have that ‖S‖ = 1.

b) Determine if S and S∗ are injective and/or surjective, respectively. Deter-
mine S∗S and SS∗, their kernels and ranges, respectively.

Solution:
We consider S and S∗ as linear operators on ℓ2. S∗ is not injective, (1, 0, 0, ...)
gets mapped to (0, 0, ...), and it is surjective: any a ∈ ℓ2 lies in the range of
S∗: S∗(0, a0, a1, ...) = (a0, a1, ...). The map S is injective and not surjective:
Sa = (0, a0, a1, ...) = 0 if and only if a = 0; and (1, 0, 0, ..) does not lie in the
range of S.

S∗Sa = (a0, a1, a2, ...) and SS∗ = (0, a1, a2, ...).

Hence the kernel of SS∗ is {(α, 0, 0, ...) : α ∈ C} and the range of SS∗ is ℓ2.
Since S∗S = I its kernel is just {0} and its range is ℓ2.


