Justify all the steps in your answers.

01 Let $V$ be a vector space and let $S \subset V$ be a non-empty subset.
a) Show that $S$ is a basis in $V$ if and only if every vector $v \in V$ has a unique representation as a linear combination $v=\lambda_{1} v_{1}+\ldots+\lambda_{n} v_{n}$ with vectors $v_{1}, \ldots, v_{n} \in S$.
b) Consider the vector space $\mathbf{P}_{2}$ of polynomials of degree $\leq 2$.

For each of the following sets, determine if it is linearly independent in $\mathbf{P}_{2}$, if it spans $\mathbf{P}_{2}$ and if it is a basis in $\mathbf{P}_{2}$ :
(i) $\left\{1-x, 1+x, x^{2}\right\}$.
(ii) $\left\{1+x, 1+x^{2}, x-x^{2}\right\}$.

02 Consider the vector space $\mathbf{M}_{2}$ of all $2 \times 2$ matrices with real entries. Let

$$
A_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], A_{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right], A_{3}=\left[\begin{array}{ll}
0 & 3 \\
0 & 0
\end{array}\right], A_{4}=\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right]
$$

a) Find $\operatorname{span}\left\{A_{1}, A_{2}\right\}$.
b) Does the set $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ span $\mathbf{M}_{2}$ ? Is this set linearly independent? Is this set a basis in $\mathbf{M}_{2}$ ?

3 Let $\mathbf{P}_{4}$ be the vector space of real polynomials of degree at most 4 .
a) Show that the sets $U, V \subset \mathbf{P}_{4}$ defined by

$$
\begin{aligned}
U & :=\left\{p \in \mathbf{P}_{4}: p(-1)=p(1)=0\right\} \\
V & :=\left\{p \in \mathbf{P}_{4}: p(1)=p(2)=p(3)=0\right\}
\end{aligned}
$$

are subspaces of $\mathbf{P}_{4}$.
b) Determine the subspace $U \cap V$.
c) Describe bases for $U, V$ and $U \cap V$.

4 Consider the vector space $\mathbb{R}^{n}$ and let $1 \leq p \leq \infty$.
Recall that the function $\|\cdot\|_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined, for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, by

$$
\begin{aligned}
\|x\|_{p} & :=\left(\left|x_{1}\right|^{p}+\ldots+\left|x_{n}\right|^{p}\right)^{1 / p} \quad \text { if } 1 \leq p<\infty \\
\|x\|_{\infty} & :=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}
\end{aligned}
$$

This problem asks that you complete the remaining steps in proving that $\|\cdot\|_{p}$ is a norm on $\mathbb{R}^{n}$.
a) For all $1 \leq p \leq \infty$, prove the positivity axiom of the norm.
b) For all $1 \leq p \leq \infty$, prove the homogeneity axiom of the norm.
c) For $p=1$ and $p=\infty$ prove the triangle inequality axiom of the norm.

5 a) Draw the unit balls of $\left(\mathbb{R}^{2},\|\cdot\|_{1}\right),\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)$ and of $\left(\mathbb{R}^{2},\|\cdot\|_{\infty}\right)$.
b) Let $p \geq 1$. Prove that every ball (of any center and radius) of ( $\mathbb{R}^{n},\|\cdot\|_{p}$ ) contains a ball of $\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right)$; vice-versa, prove that every ball of $\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right)$ contains a ball of $\left(\mathbb{R}^{n},\|\cdot\|_{p}\right)$.

