

TMA4145 Linear Methods Fall 2016

Exercise set 3

Justify all the steps in your answers.

1 Let V be a vector space and let $S \subset V$ be a non-empty subset.

- a) Show that S is a basis in V if and only if every vector $v \in V$ has a unique representation as a linear combination $v = \lambda_1 v_1 + \ldots + \lambda_n v_n$ with vectors $v_1, \ldots, v_n \in S$.
- b) Consider the vector space \mathbf{P}_2 of polynomials of degree ≤ 2 . For each of the following sets, determine if it is linearly independent in \mathbf{P}_2 , if it spans \mathbf{P}_2 and if it is a basis in \mathbf{P}_2 :
 - (i) $\{1-x, 1+x, x^2\}.$
 - (ii) $\{1+x, 1+x^2, x-x^2\}.$

2 Consider the vector space \mathbf{M}_2 of all 2×2 matrices with real entries. Let

$$A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, A_2 = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}, A_3 = \begin{bmatrix} 0 & 3 \\ 0 & 0 \end{bmatrix}, A_4 = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$$

- **a)** Find span $\{A_1, A_2\}$.
- b) Does the set $\{A_1, A_2, A_3, A_4\}$ span \mathbf{M}_2 ? Is this set linearly independent? Is this set a basis in \mathbf{M}_2 ?

3 Let \mathbf{P}_4 be the vector space of real polynomials of degree at most 4.

a) Show that the sets $U, V \subset \mathbf{P}_4$ defined by

$$U := \{ p \in \mathbf{P}_4 : \ p(-1) = p(1) = 0 \},\$$

$$V := \{ p \in \mathbf{P}_4 : \ p(1) = p(2) = p(3) = 0 \}$$

are subspaces of \mathbf{P}_4 .

- **b)** Determine the subspace $U \cap V$.
- c) Describe bases for U, V and $U \cap V$.

4 Consider the vector space \mathbb{R}^n and let $1 \le p \le \infty$. Recall that the function $\|\cdot\|_p \colon \mathbb{R}^n \to \mathbb{R}$ is defined, for $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, by

$$||x||_p := (|x_1|^p + \ldots + |x_n|^p)^{1/p} \text{ if } 1 \le p < \infty,$$

$$||x||_{\infty} := \max\{|x_1|, \ldots, |x_n|\}.$$

This problem asks that you complete the remaining steps in proving that $\|\cdot\|_p$ is a norm on $\mathbb{R}^n.$

- a) For all $1 \le p \le \infty$, prove the positivity axiom of the norm.
- **b)** For all $1 \le p \le \infty$, prove the homogeneity axiom of the norm.
- c) For p = 1 and $p = \infty$ prove the triangle inequality axiom of the norm.
- **5** a) Draw the unit balls of $(\mathbb{R}^2, \|\cdot\|_1)$, $(\mathbb{R}^2, \|\cdot\|_2)$ and of $(\mathbb{R}^2, \|\cdot\|_\infty)$.
 - **b)** Let $p \geq 1$. Prove that every ball (of any center and radius) of $(\mathbb{R}^n, \|\cdot\|_p)$ contains a ball of $(\mathbb{R}^n, \|\cdot\|_{\infty})$; vice-versa, prove that every ball of $(\mathbb{R}^n, \|\cdot\|_{\infty})$ contains a ball of $(\mathbb{R}^n, \|\cdot\|_p)$.