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CHAPTER 1

Real numbers and its topology

1.1. Real Numbers

1.1.1. Notation. We introduce some notation:

(1) N = {1, 2, 3, ...} the set of natural numbers,
(2) Q = {p/q : p, q ∈ Z} the set of rational numbers,
(3) Z = {...,−2,−1, 0, 1, 2, ...} the set of integers.
(4) For real numbers a, b with a < b we denote by [a, b] the closed bounded

interval, and by (a, b) the open bounded interval. The length of these
bounded intervals is b− a.

1.1.2. Real numbers. The set Q of rational numbers does not contain all the
numbers one encounters in geometry or analysis, e.g. x2 − 5 = 0 has no ratinonal
solution or Euler’s number e is an irrational number.

For the moment we do not introduce the set of real number R in an informal
manner. In the chapter on metric spaces R will be constructed as the completion
of Q, as was originally done by A. L. Cauchy.

Real numbers may be realized as points on a line, the real line, where the
irrational numbers correspond to the points that are not given by rational numbers
R\Q.

The real numbers have the Archimedean property:

Lemma 1.1 (Archimedean property). For any x, y ∈ R there exists a natural
number n such that nx > y.

As a consequence we deduce a close relation between Q and R.

Proposition 1.1.1. For x, y ∈ R with x < y there exists a r ∈ Q such that
x < r < y.

Proof. Goal: Find m,n ∈ Z such that

(1.1) x <
m

n
< y.

First step: Choose the denominator of n large such that there exists an m ∈ Z such
that x ∈ (m−1n , mn ) are separating x and y. The Archimedean property of R allows
us to a n ∈ N with this property. More concretely, we pick n ∈ N large enough
such that 1/n < y − x or equivalently

(1.2) x < y − 1

n

Second step: Inequality (1.1) is equivalent to nx < m < ny. From the first step we
have n already chosen. Now we choose m ∈ Z to be the smallest integer greater
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than nx. In other words, we pick m ∈ Z such that m− 1 ≤ nx < m. Thus we have
m− 1 ≤ nx, i.e. m ≤ nx+ 1. By inequality (1.2)

m ≤ nx+ 1 < n(y − 1

n
) + 1 = ny,

hence we have m < ny, i.e. m/n < y. Once more by (1.2) we have x ≤ m/n. These
two inequalites yield the desired assertion: x < m/n < y. �

In an similiar manner one may deduce the statement for irrational numbers.

Proposition 1.1.2. For x, y ∈ R with x < y there exists a r ∈ R\Q such that
x < r < y.

Proof. Pick your favorite irrational number, a popular choice is
√

2. Then by
the density of the rational numbers there exists a rational number r ∈ (x/

√
2, y/
√

2).

Hence r
√

2 ∈ (x, y). Note that r
√

2 is an irrational number in (x, y) that completes
our argument. �

The absolute value of x ∈ R, denoted by |x|, is defined by

|x| =


−x if x < 0,

0 if x = 0,

x if x > 0.

Note that |x| = max{x,−x}. We define the positive, x+ and negative part, x− of
x ∈ R:

x+ = max{x, 0}, and x− = max−x, 0,
so we have x = x+ − x− and |x| = x+ + x−.
For x, y ∈ R we measure the distance between x and y in R by

(1.3) d(x, y) = |x− y|,

the standard distance. By definition of d we have d(x, y) = d(y, x).

Lemma 1.2 (Triangle inequality). For x, y in R we have |x+ y| ≤ |x|+ |y|.

Proof. For all x ∈ R we have x ≤ |x| and thus for x, y ∈ R we obtain
x + y ≤ |x + y|. By definition of |.| we also get that −x − y ≤ |x| + |y|. Thus we
have proved the desired assertion. �

The triangle inequality has numerous consequences, such as

(1.4) ||x| − |y|| ≤ |x− y|.

The triangle inequality for x = y+x−y yields |x|−|y| ≤ |x−y|, and the interchange
of x and y, i.e. y = x+y−x gives −(|x|− |y|) ≤ |x−y|. Hence we have the desired
assertion.
We introduce two crucial notions: the infimum and supremum of a set. First we
provide some preliminaries.

Definition 1.1.3. Let A be a subset of R
• If there exists M ∈ R such that a ≤M for all a ∈ A, then M is an upper

bound of A. We call A bounded above.
• If there exists m ∈ R such that m ≤ a for all a ∈ A, then m is a lower

bound of A.
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• If there exist lower and upper bounds, then we say that A is bounded. We
call A bounded below.

Definition 1.1.4 (Infimum and Supremum). Let A be a subset of R.

• If m is a lower bound of A such that m ≥ m′ for every lower bound m′,
then m is called the infimum of A, denoted by m = inf A. Furthermore,
if inf A ∈ A, then we call it the minimum of A, minA.

• If M is an upper bound of A such that m′ ≥M for every upper bound M ′,
then M is called the supremum of A, denoted by M = supA.Furthermore,
if supA ∈ A, then we call it the maximum of A, maxA.

Note that the infimum of a set A, as well as the supremum, are unique. The
elementary argument is left as an exercise.
If A ⊂ R is not bounded above, then we define supA =∞. Suppose that a subset
A of R is not bounded below, then we assign −∞ as its infimum.
We state a different formulation of the notions inf A and supA that is just a refor-
mulation of the definition.

Lemma 1.3. Let A be a subset of R.

• Suppose A is bounded above. Then M ∈ R is the supremum of A if and
only if the following two conditions are satisfied:
(1) For every a ∈ A we have a ≤M .
(2) Given ε > 0, there exists a ∈ A such that M − ε < a.

• Suppose A is bounded below. Then m ∈ R is the infimum of A if and only
if the following two conditions are satisfied:
(1) For every a ∈ A we have m ≤ a.
(2) Given ε > 0, there exists a ∈ A such that a < m+ ε.

Lemma 1.4. Suppose A is a bounded subset of A. Then inf A ≤ supA

For c ∈ R we define the dilate of a set A by cA := {b ∈ R : b = ca for a ∈ A}.

Lemma 1.5 (Properties). Suppose A is a subset of R.

(1) For c > 0 we have sup cA = c supA and inf cA = c inf A.
(2) For c < 0 we have sup cA = c inf A and inf cA = c supA.
(3) Suppose A is contained in a subset B. If supA and supB exist, then

supA ≤ supB. In words, making a set larger, increases its supremum.
(4) Suppose A is contained in a subset B. If inf A and inf B exist, then

inf A ≥ inf B. In words, making a set smaller increases its infimum.
(5) Suppose A ⊂ B are non-empty subsets of R such that x ≤ y for all x ∈ A

and y ∈ B. Then supA ≤ infB.
(6) If A and B are non-empty subsets of R, then sup(A+B) = supA+ supB

and inf(A+B) = inf A+ inf B

Proof. (1) We prove that sup cA = c supA for positive c. Suppose
c > 0. Then cx ≤ M ⇔ x ≤ M/c. Hence M is an upper bound of cA
if and only if M/c is an upper bound of A. Consequently, we have the
desired result.

(2) Analogously to (i).
(3) Since supB os an upper bound of B, it is also an upper bound of A, i.e.

supA ≤ supB.
(4) Analogously to (iii).
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(5) Since x ≤ y for all x ∈ A and y ∈ B, y is an upper bound of A. Hence
supA is a lower bound of B and we have supA ≤ inf B.

(6) By definition A + B = {c : c = a + b for some a ∈ A, b ∈ B} and thus
A+B is bounded above if and only if A and B are bounded above. Hence
sup(A + B) < ∞ if and only if supA and supB are finite. Take a ∈ A
and b ∈ B, then a + b ≤ supA + supB. Thus supA + supB is an upper
bound of A+B:

sup(A+B) ≤ supA+ supB.

The reverse direction is a little bit more involved. Let ε > 0. Then there
exists a ∈ A and b ∈ B such that

a > supA− ε/2, b > supB − ε/2.
Thus we have a+ b > supA+supB−ε for every ε > 0, i.e. sup(A+B) ≥
supA+ supB.

The other statements are assigned as exercises. �

A property of utmost importance is the completeness of the real numbers.

Theorem 1.6. Let A be a non-empty subset of R that is bounded above. Then
there exists a supremum of A. Equivalently, if A is a non-empty subset of R that
is bounded below, then A has an infimum.

We have noted above that the supremum of a bounded above set is unique. A
different form to express the completeness property of R is to consider the set of
all upper bounds of a bounded above set A and the Theorem asserts that this set
of upper bounds has a least element.

One reason for the relevance of the notions of supremum and infimum is in the
formulation of properties of functions.

Definition 1.1.5. Let f be a function with domain X and range Y ⊆ R. Then

sup
X
f = sup{f(x) : x ∈ X}, inf

X
f = inf{f(x) : x ∈ X}.

If supX f is finite, then f is bounded from above on A, and if infX f is finite we call
f bounded from below. A function is bounded if both the supremum and infimum
are finite.

Lemma 1.7. Suppose that f, g : X → R and f ≤ g, i.e. f(x) ≤ g(x) for all
x ∈ X. If g is bounded from above, then supX f ≤ supA g. Assume that f is
bounded from below. Then infX f ≤ infX g.

Proof. Follows from the definitions. �

The supremum and infimum of functions do not preserve strict inequalities.
Define f, g : [0, 1]→ R by f(x) = x and g(x) = x+ 1. Then we have f < g and

sup
[0,1]

f = 1, inf
[0,1]

f = 0, sup
[0,1]

g = 2, inf
[0,1]

g = 1.

Hence we have sup[0,1] f > inf [0,1] g.

Lemma 1.8. Suppose f, g are bounded functions from X to R and c a positive
constant. Then

sup
X

(f + cg) ≤ sup
X
f + c sup

X
g inf

X
(f + cg) ≥ inf

X
f + c inf

X
g.
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The proof is left as an exercise. Try to convice yourself that the inequalities
are in general strict, since the functions f and g may take values close to their
suprema/infima at different points in X.

Lemma 1.9. Suppose f, g are bounded functions from X to R. Then

| sup
X
f − sup

X
g| ≤ sup

X
|f − g|, | inf

X
f − inf

X
g| ≤ sup

X
|f − g|

Lemma 1.10. Suppose f, g are bounded functions from X to R such that

|f(x)− f(y)| ≤ |g(x)− g(y)| for all x, y ∈ X.

Then

sup
X
f − inf

X
f ≤ sup

X
g − inf

X
g.

Recall that a sequence (xn) of real numbers is an ordered list of numbers xn,
indexed by the natural numbers. In other words, (xn) is a function f from N to R
with f(n) = xn. Hence we may define the if a sequence (xn) is bounded from above,
bounded from below and bounded as a special case of the above definitions, i.e. if
there eixts M ∈ R such that xn ≤M for all n ∈ N, if there exists m ∈ R such that
xn ≥ m for all n ∈ N and if there exist m,M such that m ≤ xn ≤M .

We define the lim sup and lim inf of a sequence (xn). These notions reduce queb-
tions about the convergence of a sequence to ones about monotone sequences. We
introduce two sequences associated to (xn) by taking the supremum and infimum,
respectively of the tails of ((xk)k≥n)k:

yn = sup{xk : k ≥ n}, zn = inf{xk : k ≥ n}.

The sequences (yn) and (zn) are monotone sequences, because the supremum and
infimum are taken over smaller sets for increasing n. Moreover, (yn) is monotone
decreasing and (zn) is monotone decreasing. Hence the limits of these sequences
exist:

lim sup
n→∞

xn := lim
n→∞

yn = inf
n∈N

(sup
k≥n

xk),

lim inf
n→∞

xn := lim
n→∞

zn = sup
n∈N

( inf
k≥n

xk).

We allow lim sup and lim inf to be +∞ and −∞. Note that we have zn ≤ yn and
so by taking the limit as n→∞

lim inf
n→∞

xn ≤ lim sup
n→∞

xn

. We illustrate these notions with some examples.

Examples 1.1.6. Consider the sequences.

(1) (xn) =
(
(−1)n+1

)
has lim supxn = 1 and lim inf xn = −1.

(2) (xn) = (n2) has lim supxn =∞ and lim inf xn =∞.
(3) (xn) = (2− 1/n) has lim supxn = 2 and lim inf xn = 2.

Exercise 1.1.7. Let (xn) and (yn) be sequences in R.

(1) lim inf(xn + yn) ≥ lim inf xn + lim inf yn,
(2) lim sup(xn + yn) ≤ lim supxn + lim sup yn,
(3) lim sup(−xn) = − lim inf xn and lim inf(−xn) = − lim supxn.
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Note that for convergent sequences lim sup and lim inf are finte and equal. We
recommend to prove this property.

Proposition 1.1.8. Let (xn) be a sequence in R. Then (xn) converges if and
only if lim infn→∞ xn = lim supn→∞ xn.

Note that a sequence diverges to∞ if and only if lim infn→∞ xn = lim supn→∞ xn =
∞ and that it diverges to −∞ if and only if lim infn→∞ xn = lim supn→∞ xn = −∞.

These considerations suggests that for non-convergent seqences the difference lim infn→∞ xn−
lim supn→∞ xn measures the size of the oscillations in the sequene.

A central notion in analysis is the notion of a Cauchy sequence of objects, here
we define it for real numbers.

Definition 1.1.9. A sequence (xn) in R is a Cauchy sequence if for every ε > 0
there exists N ∈ N such that |xm − xn|ε for all m,n ≥ N .

A theorem of utmost importance is that every Cauchy sequence converges to a
real number.

Theorem 1.11. A sequence (xn) converges in R if and only if it is a Cauchy
sequence.

Proof. One direction: Suppose (xn) converges to a real number x. Then
for every ε > 0 there exists N ∈ N such that |xn − x| < ε/2 for all n > N . Hence
by the triangle inequality we have

|xn − xm| ≤ |xn − x|+ |x− xm| for m, n > N,

i.e (xn) is a Cauchy sequence.

Other direction: Suppose that (xn) is a Cauchy sequence. Then there exists
N1 ∈ N such that |xm − xn| < 1 for all m,n > N1, and that for n > N1 we have

|xn| ≤ |xn − xN1 |+ |xN1+1| ≤ 1 + |xN1+1|.
Hence a Cauchy sequence is bounded with |xn| ≤ max{|x1|, ..., |xN1 |, 1 + |xN1+1|}
and lim sup, lim inf exist.
The aim is to show that lim supxn = lim inf xn.
By the Cauchy property of (xn) we have for a given ε > 0 a N ∈ N such that

xn − ε < xm < xn + ε for all m ≥ n > N.

Consequently, we have for all n > N

xn − ε ≤ inf{xm : m ≥ n} and sup{xm : m ≥ n} ≤ xn + ε.

Thus we have

sup{xm : m ≥ n} − ε ≤ inf{xm : m ≥ n}+ ε

and for n→∞ we get that

lim supxn − ε ≤ lim inf xn + ε

for arbitray ε > 0 and so

lim supxn ≤ lim inf xn.

�
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In the proof we established that Cauchy sequences are bounded. Let us record
this for later use.

Lemma 1.12. A Cauchy sequence (xn) in R is bounded.

We define the notion of a subsequence of a sequence (xn).

Definition 1.1.10. Suppose (xn) is a sequence in R. Then a subsequence is a
sequence of the form (xnk

) where n1 < n2 < · · · < xnk
< · · · .

An elementary observation is

Lemma 1.13. Every subsequence of a convergent sequence converges to the limit
of the sequence.

Proof. Suppose that (xn) is a convergent sequence with limxn = x and (xnk
)

is a subsequence. Given ε > 0. There exists N ∈ N such that |xn − x| < ε for all
n > N . Since nk → ∞ as k → ∞, there exists a K ∈ N such that nk > N for
k > K, but then we have |xnk

− x| < ε. Hence limk→∞ xnk
= x. �

Corollary 1.1.11. If a sequence has subsequences that converge to different
limits, then the sequence diverges.

A well-known theorem due to Buolzano and Weierstraßdeduces the convergence
of a subsequence from its boundedness.

Theorem 1.14 (Bolzano-Weierstraß). Every bounded sequence (xn) in R has
a convergent subsequence.

Proof. Suppose that (xn) is a bounded sequence in R. Hence there are m
and M such that

m = inf
n
xn M = sup

n
xn.

We define the closed interval I0 = [m,M ] and divide it into two closed intervals
L0, R0:

L0 = [m, (m+M)/2], R0 = [(m+M)/2,M ].

Now, at least one of the intervals L0, R0 contains infinitely many terms of (xn).
Choose I1 to be the interval that contains infinitely many terms and pick n1 ∈ N
such that xn1

∈ I1. Divide I1 = L1 ∪ R1, again one of these intervals contains
infinitely many terms of (xn). Choose I2 to be one of these intervals that contains
infinitely many terms. We continue by dividing I2 into two closed intervals, pick
n2 > n1 such that xn2

∈ I2. Continue in this manner we get a sequence of nested
intervals (Ik) with |Ik| = (M −m)/2k, and a sequence (xnk

) such that xnk
∈ Ink

.
Given ε > 0. Since |Ik| → 0 as k →∞, there exists a K ∈ N such that |Ik| < ε for
all k > K. Furthermore we have |xnj

− xnk
|ε for j, k > K, i.e. (xnk

) is a Cauchy
sequence and thus converges by Theorem 1.11. �

The Bolzano-WeierstraßTheorem does not claim that the subsequence is unique,
i.e. there might be convergent subsequences with different limits depending on the
choice of Lk or Rk.

Theorem 1.15. If (xn) is a bounded sequence in R such that every convergent
subsequence has the same limit x, then (xn) converges to x.



8 Chapter 1

Proof. We will show the contrapositive statement: Suppose a bounded se-
quence does not converge to x. Then (xn) has a convergent subsequence with limit
different from x.

If (xn) does not converge to x, then there exists ε0 > 0 such that |xn − x| ≥ ε0
for infinitely many n ∈ N. Hence there exists a subsequence (xnk

) such that
|xnk

− x| ≥ ε0 for every k ∈ N. Note that (xnk
) is a bounded sequence and so by

Bolzano-Weierstraßthere exists a convergent subsequence (xnkj
). If limj xnkj

= y,

then |x− y| ≥ ε0. In other words, x is not equal to y. �

1.1.3. Topology of R. In this section we treat some basic notions of topology
for the real line. Generalizations of these notions and its manifestations in normed
spaces and general metric spaces are going to be the pillars of this course.

We generalize the notion of open intervals (a, b) and closed intervals [a, b].

Definition 1.1.12 (Open sets). A subset O of R is called open if for every
x ∈ S there exists an open interval I contained in O with x ∈ I.

Definition 1.1.13 (Closed sets). A subset C of R is called closed if the com-
plement Cc = R\C = {x ∈ R : x /∈ C} is open.

Note that the interval (a, b) is an open set and [a, b] is closed. Observe further
that by definition the empty set ∅ and R are open and closed.

Proposition 1.1.14. Suppose {Ij}j∈J is a collection of open intervals in R
with non-empty intersection ∩j∈JIj 6= ∅.

(1) If J has finitely many elements, then ∩j∈JIj is an open interval.
(2) ∪j∈JIj is an open interval for an arbitrary index set J .

Proof. We define open intervals Ij = (aj , bj) for real numbers aj < bj , the
interval bounds are also allowed to be ±∞, and set I := ∪j∈JIj .

(1) We pick a point x in ∪nj=1Ij and set a := max{aj : j = 1, ..., n} and
b = min{bj : j = 1, ..., n}. If all the a′js are −∞, then a = −∞, and if all
the bj ’s are ∞, then we have b =∞.
Since aj < x < bj for j = 1, ..., n we get that x ∈ (a, b). Furthermore, we
have that ∩j∈J(aj , bj) = (a, b).

(2) We choose x ∈ ∩j∈JIj . Suppose y ∈ ∪j∈JIj . Then y ∈ Ij for some j ∈ J .
Since x ∈ Ij , the interval (x, y) ⊂ Ij and thus in I. Hence I is the interval
(a, b), where a = inf{aj : j ∈ J} or −∞ and b = sup{bj : j ∈ J} or ∞.

�

The assumption in (i) cannot be weakend, e.g. ∩∞n=1(−1.n, 1/n) = {0}. Hence
an infinite intersection of open intervals is not necessarily an open interval. We
show that the preceding statement is true for a more general class of sets, the open
sets.

Proposition 1.1.15. Let {Oj : j ∈ J} be a family of open sets of R.

(1) ∩nj=1Oj is an open set for any n ∈ N.
(2) ∪j∈JOj is open for a general index set J .



Real numbers and its topology 9

Proof. (1) We set O = ∩nj=1Oj . If x ∈ O, then x ∈ Oj for j = 1, ..., n.
Since Oj ’s are open, there are open intervals Ij ⊂ Oj containing x. Hence,
we have that ∩nj=1Ij ⊂ ∩nj=1Oj , the desired assertion.

(2) Let x be in ∪j∈JOj . Then there exists some j such that x ∈ Uj and thus
an open interval Ij contained in Uj with x ∈ Ij and consequently Ij ⊂ O.
Hence O is an open set.

�

We are in the positon to introduce a notion of closedness between points, known
as neighborhoods.

Definition 1.1.16. Given x ∈ R. Then a subset U of R is called a neighborhood
of x if there exists an open subset O of R such that x ∈ O ⊂ U .

Due to the structure of R we have that U is a neighborhood of x if and only if
there exists a δ > 0 such that (x− δ, x+ δ) ⊂ U .

Definition 1.1.17. For a subset A we introduce some notions.

(1) The closure of a subset A of R, denoted by A, is the intersection of all
closed sets containg A.

(2) The interior of a subset of A of R, denoted by intA, is the union of all
open subsets of R contained in A.

(3) The boundary of a subset A of R, denoted by bdA, is the set A\intA.

Note that bdA is a closed set and that the closure of a bounded subset of R is
bounded, too.

Here are some useful facts.

Lemma 1.16. Suppose A is a subset of R.

(1) A = (Int(Ac))c and int(A) = (Ac)c

(2) bdA = bd(Ac) = A ∩Ac
(3) A = A ∪ brA = intA ∪ bdA

Proof. (1) These identities are a consequence of the following general
fact: B is a closed containing A if and only if Bc is open and Bc ⊂ Ac.
The statement about the interior of A is the first statement for Ac instead
of A.

(2) bdA = A\
∫
A = A∩ (intA)c = A∩Ac, where we used (i) in the last step.

Let us compute bdAc: bdAc = Ac\
∫
Ac = Ac ∩ (

∫
Ac)c = Ac ∩A. Hence

we have the desired assertions.
(3) First note that intA ∪ bdA ⊂ A ∪ bdA ⊂ A. Furthermore we have intA ∪

bdA =
∫
A ∪ (A\A) = intA ∪ (A ∩ (intA)c) = ((intA) ∪ A) ∩ (intA ∪

(intA)c) = A.
�

Lemma 1.17. Suppose A is a subset of R.

(1) A = {x ∈ R : every neighborhood of x intersects A}
(2) int(A) = {x ∈ R : some neighborhood of x is contained in A}
(3) bd(A) = {x ∈ R : every neighborhood of x intersects A and its complement}
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Proof. (1) We choose an open neighborhood U of x ∈ R that does not
intersect A, i.e. A ⊂ U c. Since U c is closed, we have that A ⊂ U c and
from x 6= U c we also have that x 6= A. On the other hand, if x 6= A, then
(A)c is an open set containing x that is disjoint from A.

(2) Follows from (i) and the preceding proposition.
(3) Follows from (i), (ii) and the preceding proposition.

�

Definition 1.1.18. Let A be a subset of R.

(1) A point x ∈ A is isolated in A if there exists a neighborhood U of x such
that U ∩A = {x}.

(2) A point x ∈ R is said to be an accumulation point of A if every neighbor-
hood of x contains points in A\{x}.

Note: Accumulation points of a set are not necessarily elements of the set. A
well-known example is A = {1/n : n ∈ N} with 0 as accumulation point, which is
clearly not in A.

The definition of an accumulation point makes only sense for sets with infinitely
many elements.

Finally, an infinite closed set may not have accumulation points, e.g. N ⊂ R
has no accumulation points in R.

Lemma 1.18. A point x ∈ R is an accumulation point of A if and only if every
neighborhood of x contains infinitely many points of A.

Proof. One direction: Suppose every neighborhood of x contains infinitely
many points of A, then x is an accumulation point of A.
Other direction: Suppose x is an accumulation point of A. For a neighborhood U
of x, we choose n1 ∈ N such that (x−1/n1, x+1/n1) ⊂ U . Take a point x1 different
from x in A ∩ (x − 1/n1, x + 1/n1). Now we repeat the procedure: Take n2 ≥ n1
such that x1 6=∈ (x− 1/n2, x+ 1/n2) and pick x2 ∈ A ∩ (x− 1/n2, x+ 1/n2) with
x2 6= x. We continue in this way and get a sequence of points (xn) ⊂ A ∩ U . �

Proposition 1.1.19. Let A be a subset of R. Then A = {isolated points of A}∪
{accumulationpointsofA}.

Proof. Suppose x ∈ A. Then if x ∈ A, then either x is isolated in A or every
neighborhood of x contains points in A different from x. In the later case x is an
accumulation point of A. Now assume x ∈ A and x 6= A. Then every neighborhood
of x has a non-trivial intersection with A, and thus x is an accumulation point of
A. In summary, we have that the closure of A is the union of the isolated points of
A with the accumulation points of A.
For the converse we note: If x is isolated, then x is definitely in A. If x is an
accumulation point of A, then x ∈ A �

Definition 1.1.20. A subset A of R is said to be dense in R if its closure is
equal to R, i.e. A = R.

Proposition 1.1.21. The set of rational numbers, Q, is dense in R.
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Proof. For an arbitray x ∈ R we consider a neighborhood U of x. Then we
know that U contains the interval (x − ε, x + ε) for a sufficiently small ε > 0. By
an earlier result we have that there exists a rational number in (x− ε, x+ ε). �

We also have that the set of irrational numbers is dense in R.

The property that Q has only countably elements, but still is dense in R is a very fa-
vorable property and occurs in various other situations. We say that R is separable.

Q is a dense subset of R with empty interior and thus the boundary of Q is all
of R. The same is true for the set of irrational numbers.

1.1.4. Supplementary material.

Theorem 1.19 (Nested Interval Theorem). Let {Ij}∞j=1 be a sequence of closed
bounded intervals in R, such that Ij ⊂ Ij+1 for all j ∈ N. We assume in addtion
that the lengths of the intervals |Ij | tends to zero. Then I := ∩j∈JIj = {z} for
some z ∈ R.

Proof. Without loss of generality we assume Ij = [aj , bj ]. Then the assump-
tions yield that a1 ≤ a2 ≤ · · · ≤ b2 ≤ b1 and that for every ε > 0 there exist a
j ∈ N such that bj − aj ≤ ε.
We set A := {aj : j ∈ N} and B := {bj : j ∈ N}, note that a := supA < ∞ and
b = inf B <∞, and aj ≤ a ≤ bj for j ∈ N. Hence we have [a, b] = ∩∞j=1[aj , bj ] and
by the assumption on the shrinking of the interval lengths we get that a = b = z
for some z ∈ R. �





CHAPTER 2

Normed spaces and innerproduct spaces

2.1. Normed spaces and innerproduct spaces

Vector spaces formalize the notion of linear combinations of objects that might
be vectors in the plane, polynomials, smooth functions, sequences. Many problems
in engineering, mathematics and science are naturally formulated and solved in this
setting due to their linear nature. Vector spaces are ubiquitous for several reasons,
e.g. as linear approximation of a non-linear object, or as building blocks for more
complicated notions, such as vector bundles over topological spaces.

In this course vector spaces are equipped with additional structures in order to
measure the distance between elements and formulate convergence of sequences of
elements of vector spaces, or to provide quantitative and qualitative information
on operators.

A set V is a vector space if it is possible to build linear combinations out of the
elements in V. More formally, on V we have the operations of addition of vectors
and multiplication by scalars. The scalars will be taken from a field F, which is
either the real numbers R or C. In various situations F might also be a finite field
or a field different from R and C. If it is necessary we will refer to these vector
spaces as real or complex vector spaces.

Developing an understanding of these vector spaces is one of the main objectives
of this course. The axioms for a vector space specify the properties that addition
of vectors and scalar multiplication.

Definition 2.1.1. A vector space over a field F is a set V together with the
operations of addition V × V → V and scalar multiplication F× V → V satisfying
the following properties:

(1) Commutativity: u+ v = v + u for all u, v ∈ V and (λµv) = λ(µv) for all
λ, µ ∈ F;

(2) Associativity: (u+ v) + w = u+ (v + w) for all u, v, w ∈ V ;
(3) Additive identity: There exists an element 0 ∈ V such that 0 + v = v for

all v ∈ V ;
(4) Additive inverse: For every v ? V , there exists an element w ? V such

that v+w = 0;
(5) Multiplicative identity: 1v = v for all v ∈ V ;
(6) Distributivity: λ(u+v) = λu+λv and (λ+µ)u = λu+µu for all u, v ∈ V

and λ, µ ∈ F.

13
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The elements of a vector space are called vectors. Given v1, ..., vn be in V and
λ1, ..., λn ∈ F we call the vector

v = λ1v1 + · · ·+ λnvn

a linear combination.

Our focus will be on three classes of examples.

Examples 2.1.2. We define some useful vector spaces.

• Spaces of n-tuples: The set of tuples (x1, ..., xn) of real and com-
plex numbers are vector spaces Rn and Cn with respect to component-
wise addition and scalar multiplication: (x1, ..., xn) + (y1, ..., yn) = (x1 +
y1, ..., xn + yn) and λ(x1, ..., xn) = (λx1, ..., λxn).

• The space of polynomials of degree at most n, denoted by Pn, where we
define the operations of multiplication and addition coefficient-wise: For
p(x) = a0 + a1x+ · · · anxn and q(x) = b0 + b1x+ · · · bnxn we define

(p+q)(x) = (a0+b0)+(a1+b1)x+· · · (an+bn)xn and (λp)(x) = λa0+λa1x+· · ·λanxn

for λ ∈ F.

The space of all polynomials P is the vector space of polynomials of arbi-
trary degrees.
• Sequence spaces: s denotes the set of sequences, c the set of all conver-

gent sequences, c0 the set of all convergent sequences tending to 0, cf the
set of all sequences with finitely many non-zero elements.
• Function spaces: The set of continuous functions C(I) on an interval

of R, popular choices for I are [0, 1] and R. We define addition and scalar
multiplication as follows: For f, g ∈ C(I) and λ ∈ F

(f + g)(x) = f(x) + g(x) and (λf)(x) = λf(x).

We denote by C(n)(I) the space of n-times continuously differentiable
functions on I and the space C∞(I) of smooth functions on I is the space
of functions with infinitely many continuous derivatives. More generally,
the set F(X) of functions from a set X to F is a vector space for the
operations defined above. Note that F({1, 2, ..., n}) is just Fn and hence
the first class of examples.

There are relations between the vector spaces in the aforementioned list. We
start with clarifying their inclusion properties.

Definition 2.1.3. A subset W of a vector space V is called a subspace if any
linear combination of vectors of W is itself a vector in W .

If W is a subspace of V , then addition and scalar multiplication restricted to
W , gives W the structure of a vector space.

Here are some examples of vector subspaces: Pn ⊂ P ⊂ F , C∞(I) ⊂ C(n)(I) ⊂
C(I), cf ⊂ c0 ⊂ c ⊂ s. We define the linear span, spanW , of a subset M of a vector
space V to be the intersection of all subspaces of V containing M .
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2.1.1. Normed spaces. The norm on a general vector space generalizes the
notion of the length of a vector in R2 and R3.

Definition 2.1.4. A normed space (X, ‖.‖) is a vector space X together with
a function ‖.‖ : X → R, the norm on X, such that for all x, y ∈ X and λ ∈ R:

(1) Positivity: 0 ≤ ‖x‖ <∞ and ‖x‖ = 0 if and only if x = 0;
(2) Homogeneity: ‖λx‖ = |λ|‖x‖;
(3) Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Normed spaces have a rich structure.

Proposition 2.1.5. Let (X, ‖.‖) be a normed space. Then d : X × X →
R defined by d(x, y) = ‖x − y‖ satisfies for all x, y, z ∈ X (i) d(x, y) ≥ 0 and
d(x, x) = 0 if and only if x = 0 (positivity); (ii) d(x, y) = d(y, x) (symmetry); (iii)
d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

The function d(x, y) = ‖x−y‖ on the vector space X is an example of a distance
function on X, aka as a metric. We will later discuss such distance functions on a
general set.

Proof. The properties (i)-(iii) are direct consequences of the axioms for a
norm. In particular, (i) follows from property (1) of a norm, (ii) is derived from
property (ii) of a norm for λ = −1 and (iii) is deduced from property (3) of a
norm. �

The metric d on X is also compatible with the linear structure of a vector
space:

• Translation invariance: d(x+ z, y + z) = d(x, y) for all x, y, z ∈ X;
• Homogeneity: d(λx, λy) = |λ|d(x, y) for all x, y ∈ X and scalars λ ∈ R.

The metric d on X gives us a way to generalize intervals in R, called balls.

Definition 2.1.6. For r > 0 and x ∈ X we define the open ball Br(x) of radius
r and center x as the set

Br(x) = {y ∈ X : ‖x− y‖ < r},
and the closed ball Br(x) of radius r and center x as

Br(x) = {y ∈ X : ‖x− y‖ ≤ r}.

The translation invariance and the homogeneity imply that the ball Br(x) is
the image of the unit ball B1(0) centered at the origin under the affine mapping
f(y) = ry + x.

The balls Br(x) have another peculiar feature. Namely, these are convex subsets
of X.

Definition 2.1.7. Let X be a vector space.

• For two points x, y ∈ X the interval [x, y] is the set of points {z| z =
λx+ (1− λ)y 0 ≤ λ ≤ 1}.

• A subset E of X is called convex if for any two points x, y ∈ E the interval
[x, y] is also in E.

The notion of convexity is central to the theory of vector spaces and enters in
an intricate manner in functional analysis, numerical analysis, optimization, etc. .
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Lemma 2.1. Let (X, ‖.‖) be a normed vector space. Then the unit ball B1(0) =
{x ∈ X| ‖x‖ ≤ 1} is a convex set.

Proof. For x, y ∈ B1(0) we have that ‖λx+(1−λ)y‖ ≤ |λ|‖x‖+|1−λ|‖y‖ = 1,
because ‖x‖, ‖y‖ are both less than or equal to 1. Thus λx+ (1− λ)y ∈ B1(0). �

The real numbers with the absolute value is a normed space (R, |.|) and the
open ball Br(x) is the open interval (x− r, x+ r) and Br(x) is the closed interval
[x− r, x+ r].

A fundamental class of metric spaces is Rn with the `p-norms.

Definition 2.1.8. For p ∈ [1,∞) we define the `p-norm ‖.‖p on Rn by assigning
to x = (x1, ..., xn) ∈ Rn the number ‖x‖p:

‖x‖p = (|x1|p + |x2|p + · · · |xn|p)1/p

. For p =∞ we define the `∞-norm ‖.‖∞ on R by

‖x‖∞ = max |x1|, ..., |xn|.

The notation for ‖.‖∞ is justified by the fact that it is the limit of the ‖.‖p-
norms.

Lemma 2.2. For x ∈ Rn we have that

‖x‖∞ = lim
p→∞

‖x‖p.

Some inequalities enter the stage: Hölder’s inequality and Young’s inequality.
For p ∈ (1,∞) we define its conjugate q as the number such that

1

p
+

1

q
= 1.

If p = 1, then we define its conjugate q to be ∞ and if p =∞ then q = 1.

Lemma 2.3 (Young’s inequality). For p ∈ (1,∞) and q its conjugate we have

ab ≤ ap

p
+
bq

q
,

for a, b ≥ 0.

Proof. Consider the function f(x) = xp−1 and integrate this with respect to
x from zero to a. Now take the inverse of f given by f−1(y) = yq−1 and integrate
it from zero to V . Then the sum of these two integrals always exceeds the product
ab, but the integrals are ap/p and bq/q. Hence we have established the desired
inequality. �

A consequence of Young’s inequality is Hölder’s inequality.

Lemma 2.4. Suppose p ∈ (1,∞) and x = (x1, ..., xn) and y = (y1, ..., yn) are
vectors in Rn. Then

|
n∑
i=1

xiyi ≤
( n∑
i=1

|xi|p
)1/p( n∑

i=1

|yi|q
)1/q

.
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Proof. Set ai = |xi|/(
∑n
i=1 |xi|p)1/p and bi = |yi|/(

∑n
i=1 |yi|q)1/q. Then we

have
∑
i a
p
i = 1 and

∑
i b
q
i = 1. By Young’s inequality

n∑
i=1

|xi||yi| ≤ (

n∑
i=1

|xi|p)1/p(
n∑
i=1

|yi|q)1/q.

�

Proposition 2.1.9. The space Rn with the `p-norm ‖.‖p is a normed space for
p ∈ [1,∞].

As an exercise I propose to draw the unit balls of (R2, ‖.‖1), (R2, ‖.‖2) and
(R2, ‖.‖∞).

Proof. First we show that `p is a vector space for p ∈ [1,∞): For λ ∈ F and
x ∈ `p we have λx ∈ `p. One has to work a little bit to see that for x, y ∈ `p also
x+ y ∈ `p:

‖x+ y‖pp =

∞∑
n=1

|xn + yn|p

≤
∞∑
n=1

|2 max{|xn|, |yn|}|p

= 2p
∞∑
n=1

|max{|xn|, |yn|}|p

≤ 2p(

∞∑
n=1

|xn|p +

∞∑
n=1

|yn|p) = 2p(‖x‖pp + ‖y‖pp) <∞.

Positivity and homogeneity are consequences of the corresponding properties of the
absolute value of a real number. The triangle inequality is the non-trivial assertion
that we split up in three cases p = 1, p = ∞ and p ∈ (1,∞). Let x = (x1, ..., xn)
and y = (y1, ..., yn) be points in Rn.

(1) For p = 1 we have

‖x+ y‖1 = |x1 + y1|+ · · ·+ |xn + yn| ≤ |x1|+ |y1|+ · · ·+ |xn|+ |yn| ≤ ‖x‖1 + ‖y‖1

.
(2) For p =∞ the argument is similar:

‖x+ y‖∞ = max{|x1 + y1|, ..., |xn + yn|}
= max{|x1|+ |y1|, ..., |xn|+ |yn|}
= max{|x1|, ..., |xn|}+ max{|y1|, ..., |yn|} = ‖x‖∞ + ‖y‖∞.
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(3) The general case p ∈ (1,∞): The triangle inequality in this case is also
known as Minkowski’s inequality. We deduce it from Hölder’s inequality

‖x+ y‖pp =

n∑
i=1

|xi + yi|p

≤
n∑
i=1

|xi + yi|p−1(|xi|+ |yi|)

≤
n∑
i=1

|xi + yi|)p−1|xi|+
n∑
i=1

|xi + yi|p−1|yi|

≤
( n∑
i=1

|xi + yi|p
)1/q(( n∑

i=1

|xi|p
)1/p

+
( n∑
i=1

|yi|p
)1/p)

= ‖x+ y‖1/qp (‖x‖p + ‖y‖p)

Dividing by ‖x+ y‖1/qp and using 1− 1/q = 1/p we arrive at Minkowski’s
inequality:

‖x+ y‖p ≤ ‖x‖p + ‖y‖p.
�

A natural generalization of the normed spaces (Rn, ‖.‖p) is to replace tuples of
finite length with ones of infinite length x = (x1, x2, ....) with xi ∈ R, i.e. (R∞, ‖.‖p).
The standard notation for these normed spaces is (`p, ‖.‖p) because these are special
classes of the Lebesgue spaces Lp(N, dµ) for the counting measure. One often refers
to these spaces as “little Lp”-spaces.

Example 2.1.10. For 1 ≤ p < ∞ the spaces (`p, ‖.‖p) are normed spaces of
convergent sequences x = (xi)i such that

‖x‖p = |x1|p + |x2|p + · · · <∞,

and (`∞, ‖.‖∞) is the space of bounded sequences (xi)i with respect to the norm

‖x‖∞ = sup{|xi| : i = 1, 2, ...}.

We have the following inclusions:

`1 ⊂ `2 ⊂ · · · `∞.

For example (1/n)n is in `p for p ≥ 2, but not in `1.

Exercise 2.1.11. Suppose p, q ∈ [1,∞]. Show that for p < q the space `p is a
proper subspace of `∞.

Let us view these vectors of infinite length as real-valued sequences. Then
the assumption ‖x‖p imposes conditions on the structure of the sequences. For
example, ‖x‖∞ = supi |xi| is finite if and only if x is a bounded sequence, and
‖x‖1 =

∑∞
i=1 |xi| is finite if the sequence (xi) is absolutely summable. The norms

‖.‖p for 1 ≤ p < ∞ describe different notions of convergence, but ‖.‖∞ does not
impose convergence but just boundedness.

Proposition 2.1.12. For 1 ≤ p ≤ ∞ the spaces (`p, ‖.‖p) are normed spaces.
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The proof of the finite-dimensional setting extends to the infinite-dimensional
setting because Hölder’s inequality is valid for `p-norms.

Lemma 2.5 (Hölder’s inequality). For 1 < p < ∞ and q its conjugate index,
x ∈ `p and y ∈ `q we have

∞∑
i=1

|xi||yi| ≤ ‖x‖p‖y‖q.

2.1.2. Innerproduct spaces. For vectors in R3 we have the ‘dot product‘ aka
‘scalar product‘ that assigns to a pair of vectors x = (x1, x2, x3) and y = (y1, y2, y3)
the number

〈x, y〉 = x1y1 + x2y2 + x3y3.

Pythagoras’ theorem gives the length of x = (x1, x2, x3) as
√
x21 + x22 + x23. Note

that 〈x, x〉 =
√
x21 + x22 + x23. Innerproduct spaces are a generalization of these

basic facts from Euclidean geometry to general vector spaces.

Definition 2.1.13. Let X be a vector space. An innerproduct on X is a map
〈., .〉 : X ×X → F, which has the following properties:

(1) (Linearity) For vectors x1, x2, y ∈ X and scalars λ1, λ2 ∈ F we have
〈λ1x1 + λ2x2, y〉 = λ1 〈x1, y〉+ λ2 〈x2, y〉.

(2) (Symmetry) For vectors x, y ∈ X we have 〈x, y〉 = 〈y, x〉 for F = R and

〈x, y〉 = 〈y, x〉 for F = C.
(3) (Positive definiteness) For any x ∈ X we have 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if

and only if x = 0.

We call (X, 〈., .〉) an innerproduct space and denote by ‖x‖ = 〈x, x〉1/2 the length
of x.

We state a theorem of utmost importance about innerproduct spaces.

Theorem 2.6 (Cauchy-Schwarz). Suppose X is an innerproduct space. Then
for all x, y ∈ X we have

| 〈x, y〉 | ≤ ‖x‖‖y‖.
We have | 〈x, y〉 | = ‖x‖‖y‖ if and only if x = λy for some λ ∈ F.

Proof. Suppose x 6= 0 otherwise the inequality is trivial. Then we consider
z = 〈x, y〉x− 〈x, x〉 y. By the properties of an innerproduct we have

0 ≤ 〈z, z〉 = | 〈x, y〉 |2 〈x, x〉 − 2| 〈x, y〉 |2 〈x, x〉+ 〈x, x〉2 〈y, y〉 ,
hence we obtain

| 〈x, y〉 |2 〈x, x〉 ≤ 〈x, x〉2 〈y, y〉
and after dividing through by the strictly positive number 〈x, x〉 we obtain the
Cauchy-Schwarz inequality.

We have equality if and only if z = 0, which yields that x = λy for λ = 〈x, x〉 〈x, y〉−1.
�

As first consequence we deduce that innerproduct spaces (X, 〈., .〉) are normed

spaces for ‖x‖ = 〈x, x〉1/2.

Proposition 2.1.14. For (X, 〈., .〉) the expression ‖x‖ = 〈x, x〉1/2 defines a
norm on X.
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Proof. Homogeneity follows from the linearity of the innerproduct. The tri-
angle inequality follows from Cauchy-Schwarz:

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2 〈x, y〉 ≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖,
so the right side is (‖x‖+ ‖y‖)2 and thus we have ‖x+ y‖ ≤ ‖x‖+ ‖y‖. �

The sequence space `2 was the first example of an innerproduct space, studied
by D. Hilbert in 1901 in his work on Fredholm operators.

Example 2.1.15. The sequence space `2 is an innerproduct space for real-
valued sequences (xi), (yi)

〈x, y〉 =

∞∑
i=1

xiyi

and

〈x, y〉 =

∞∑
i=1

xiyi

for complex-valued sequences.

The innerproduct 〈., .〉 and its associated norm ‖.‖ = 〈., .〉1/2 are related by the
polarization identity.

Lemma 2.7 (Polarization identity). Let (X, 〈., .〉) be an innerproduct space with

norm ‖.‖ = 〈., .〉1/2.

(1) For a real innerproduct space we have 〈x, y〉 = 1
4 (‖x+ y‖2−‖x− y‖2) for

all x, y ∈ X.
(2) For a complex innerproduct space we have 〈x, y〉 = 1

4

∑4
k=1 i

k‖x+ iky‖2.

Proof. The arguments are based on the homogeneity properties of innerprod-
ucts.

(1) ‖x+(−1)ky‖2 = ‖x‖2 +‖y‖2 +(−1)k 〈x, y〉 for k = 0, 1. Adding these two
identities yields the desired polarization identity.

(2) Left as an exercise.

�

Jordan and von Neumann gave an elementary characterizations of norms that
arise from innerproducts.

Theorem 2.8 (Jordan-von Neumann). Suppose (X, ‖.‖) is a complex normed
space. If the norm satisfies the parallelogram identity

‖x− y‖2 + ‖x+ y‖2 = 2‖x‖2 + 2‖y‖2 forall x, y ∈ X,
then X is a Hilbert space for the innerproduct

〈x, y〉 =
1

4

4∑
k=1

ik‖x+ iky‖2.

The proof of this useful result is elementary and will be given in the supplement
to the chapter.

Innerproduct spaces are the infinite-dimensional counterparts of (Rn, ‖.‖2) and
share many properties with these finite-dimensional spaces, in contrast to general
normed spaces such as C(I) with the sup-norm.
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Example 2.1.16. The supremums norm of C[0, 1] does not come from an in-
nerproduct. Use the polarization identity to show this fact.

A way to address this issue is to change the norm. Namely, if one instead equips
C(I) with the 2-norm ‖.‖2 for functions, then one gets an innerproduct space.

Lemma 2.9. Let I be an interval of R. Then the space of continuous complex-
valued functions C(I) is an innerproduct space for

〈f, g〉 =

∫
I

f(x)g(x)dx

for functions f ∈ C(I) with finite norm

‖f‖2 =

∫
I

|f(x)|2dx <∞.

Proof. We have 〈λf, g〉
∫
I
λf(x)g(x)dx = λ

∫
I
f(x)g(x)dx = λfg for λ ∈ C,

and 〈f, g〉 =
∫
I
f(x)g(x)dx =

∫
I
f(x)g(x)dx. Note that |f(x)|2 is non-negative for

f ∈ C(I) and that it is zero for those x ∈ I with f(x) = 0. By the properties of
the integral we have shown the positivity of 〈., .〉. �

Historical note: The Cauchy-Schwarz inequality for (C(R), 〈., .〉 is due to Karl
H. A. Schwarz in 1888 for continuous functions, and Cauchy for Rn with the Eu-
clidean innerproduct.

Innerproducts yield a generalization of the notion of orthogonality of elements.

Definition 2.1.17. Two elements x, y in an innerproduct space (V, 〈., , 〉) are
orthogonal to each other if 〈x, y〉 = 0

The theorem of Pythagoras is true for any innerproduct space (X, 〈., .〉).

Proposition 2.1.18 (Pythagoras’s Theorem). Let (X, 〈., .〉) be an innerproduct
space. For two orthogonal elements x, y ∈ X we have

‖x+ y‖2 = ‖x‖2 + ‖y‖2.

Proof. The argument is based on the fact that 〈x, x〉 is a norm. By assump-
tion we have 〈x, y〉 = 0

‖x+ y‖2 = ‖x‖2 + 2Re 〈x, y〉+ ‖y‖2 = ‖z‖2 + ‖y‖2.

�

As an example we consider some orthogonal vectors in (C([0, 1]), 〈., .〉. For
m 6= n we define the exponentials em(x) = e2πimx and en(x) = e2πinx. Then

〈em, en〉 =

∫ 1

0

e2πi(m−n)xdx = (2πi(m− n))−2(e2πi(m−n) − 1) = 0.

Note that 〈en, en〉 = 1 for any n ∈ Z. With the help of Kronecker’s delta function
we may express this as 〈em, en〉 = δm,n.

The theorem of Pythagoras is now at our disposal in any innerproduct spaces such
as `2.
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Definition 2.1.19. A set of vectors {ei}i∈I in an innerproduct space (X, 〈., , 〉)
is called an orthogonal family if 〈ei, ej〉 = 0 for all i 6= j. In case that the orthogonal
family {ei}i∈I in V satisfies in addition ‖ei‖ = 1 for any i ∈ I, then we refer to it
as orthonormal family.

The set of vectors {ei}i∈I is in general an infinite set. The exponentials
{e2πnx}n∈Z is an orthonormal family in C[0, 1] with respect to 〈., .〉2 and is a system
of utmost importance, e.g. it lies at the heart of Fourier analysis or more generally
harmonic analysis.

Orthonormal families have an interesting property, known as Bessel’s inequality.

Proposition 2.1.20 (Bessel’s inequality). Suppose {ei}i∈I is a countably infi-
nite orthonormal family in an innerproduct space (X, 〈., .〉). Then for any x ∈ X
we have ∑

i∈I
| 〈x, ei〉 |2 ≤ ‖x‖2.

Recall that a set I is countably infinite if there exists a bijection between I and
the set of natural numbers N, e.g. the set of integers Z.

Proof. It suffices to check the inequality for I = N. Consider the vector
x̃ =

∑n
i=1 〈x, ei〉 ei. for each n ∈ N. By the orthonormality of the set {ei}i∈I we

have

0 ≤ ‖x− x̃‖2 = ‖x‖2 −
n∑
i=1

| 〈x, ei〉 |2.

Thus the sequence of real numbers (
∑n
i=1 | 〈x, ei〉 |2) is bounded above and nonde-

creasing. Therefore it has a limit

∞∑
i=1

| 〈x, ei〉 |2 ≤ ‖x‖2.

�

The case of equality in Bessel’s inequality characterizes an important properties
of orthonormal systems and will be discussed in the chapter on Hilbert spaces.

For example Bessel’s inequality for the set of exponentials {e2πinx}n∈Z in (C[0, 1], 〈., .〉2)
is a statement about the Fourier coefficients of f

f̂(n) =

∫ 1

0

f(x)e−2πnxdx,

then we have ∑
n∈Z
|f̂(n)|2 ≤ ‖f‖22.

Therefore we will refer to (〈x, ei〉)i∈I as the Fourier coefficients of x ∈ X and of∑
i∈I
〈x, ei〉 ei

as the Fourier series of x.
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2.1.3. Bounded operators between normed spaces. Mappings between
vector spaces are of interest in a wide range of applications. We restrict our focus
to mappings that respect the vector space structure: linear mappings aka linear
operators.

Definition 2.1.21. Let X,Y be vector spaces over the same scalar field F.
Then a mapping T : X → Y is linear if

T (x+ λy) = Tx+ λTy

for all x, y ∈ X and λ ∈ F. We denote by L(X,Y ) the set of all linear operators
between X and Y .

Linear mappings are a special class of functions between two sets. Hence it has
the structure of a vector space.Here are some examples of linear mappings for the
classes of vector spaces of our interest.

(1) Linear mappings between Fn and Fm are given by m×n matrices A with
entries in F, x 7→ Ax for x ∈ Fn.

(2) On the space of polynomials Pn of degree at most n we define the differen-
tiation operator Dp(x) = a1x + · · ·manxn−1, the operator p 7→

∫
p(x)dx

and the evaluation operator Tp(x) = p(0).
(3) Operators on sequence spaces: For an element of the vector space s,

a sequence x = (xn)n, we define the left shift Lx = (0, x0, x1, x2, ...),
the right shift Rx = (x1, x2, ...) and the multiplication operator Tax =
(a0x0, a1x1, ...) for a sequence a = (a0, a1, ...) ∈ s. On the vector space of
convergent sequences c we define Tx = limn xn for x = (xn) ∈ c.

(4) Operators on function spaces: The set of continuous functions C(I) on an
interval of R, popular choices for I are [0, 1] and R. For f ∈ C(I) we define
the integral operator f 7→

∫
k(x, y)f(y)dx for a function k defined on I×I,

the kernel of the operator, and the evaluation operator Tf(x) = f(a) for
a ∈ I. For a differentiable continuous function f we are able to study the
differentiation operator Df(x) = f ′(x).

Norms on these spaces provide a tool to understand the properties of these mappings
via the notion of operator norm that measures the size of the measure of distortion
of x induced by T : For normed spaces (X, ‖.‖X), (Y, ‖.‖Y ) and a linear mapping
T : X → Y we are interested in operators such that there exists a constant c such
that

‖Tx‖Y ≤ c‖x‖X forall x ∈ X.
Often we will omit the subscripts to ease the notation. The operators with a finite c
are of particular relevance and are called bounded operators. We denote by B(X,Y )
the set of all bounded linear operators from X to Y .

Definition 2.1.22. Let T be a linear operator between the normed spaces
(X, ‖.‖X) and (Y, ‖.‖Y ). The operator norm of T is defined by

‖T‖ = sup{‖Tx‖Y
‖x‖X

: ‖x‖X 6= 0}.

Sometimes we denote the operator norm of T by ‖T‖op.

Lemma 2.10. For T ∈ B(X,Y ) the following quantities are all equal to the
operator norm ‖T‖ of T :
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(1) C1 = inf{c ∈ R : ‖Tx‖Y ≤ c‖x‖X},
(2) C2 = sup{‖Tx‖Y‖x‖X : ‖x‖X ≤ 1},
(3) C3 = sup{‖Tx‖Y‖x‖X : ‖x‖X = 1}.

Proof. The argument is based on some inequalities:

(1) C2 ≤ C1: By definition of C1 we have ‖Tx‖ ≤ C1‖x‖. Hence for all
x ∈ B1(0) we have ‖Tx‖ ≤ C1 and thus we have C2 ≤ C1.

(2) C3 ≤ C2: For all x ∈ B1(0) we have ‖Tx‖ ≤ C2. Pick an x with ‖x‖ = 1
and define the sequence of vectors (xn = (1 − 1/n)v)n which all have
‖xn‖ ≤ 1 and hence ‖Txn‖ ≤ C2 for all n ∈ N. Taking the limit gives
‖Tx‖ ≤ C2 and thus C3 ≤ C2.

(3) ‖T‖ ≤ C3 : By definition of C3 we have ‖Tx‖ ≤ C3 for all x with ‖x‖ = 1.
Take an arbitrary non-zero vector x ∈ X. Then x/‖x‖ has unit length

and hence ‖T ( x
‖x‖ )‖ = ‖Tx‖

‖x‖ ≤ C3, which establishes the desired inequality

‖T‖ ≤ C3.
(4) We have ‖Tx‖‖x‖ ≤ ‖T‖ for all x ∈ X. Hence ‖Tx‖ ≤ ‖T‖‖x‖ for all x ∈

X. Hence we have C1 ≤ ‖T‖. Hence we have C1 ≤ C2 ≤ C3 ≤ ‖T‖ ≤ C1

and so the assertion is established.

�

These different expressions for the operator norm of a linear operator are el-
ementary but nonetheless useful. Before we discuss some examples we note some
properties of the operator norm.

Proposition 2.1.23. For S, T ∈ B(X,Y ) we have

(1) ‖I‖ = 1 for the identity operator I : X → X.
(2) ‖λS + µT‖ ≤ |λ|‖S‖+ |µ|‖T‖ for λ, µ ∈ F .
(3) Submultiplicativity: ‖S ◦ T‖ ≤ ‖S‖‖T‖.

Proof. (1) By the definition of the operator norm we have ‖I‖ = 1.
(2) The triangle inequality for norms yields the assertion.
(3) By definition we have

‖S ◦ T‖ = sup{‖STx‖ : ‖x‖ = 1} ≤ sup{‖S‖‖Tx‖ : ‖x‖ = 1} = ‖S‖‖T‖.

�

Proposition 2.1.24. The vector space B(X,Y ) of bounded operators between
two normed spaces is a normed spaces wrt the operator norm.

Proof. The preceding proposition implies the homogeneity property and the
triangle inequality. The operator norm is clearly positive definite, and we have
‖T‖ = 0 if and only if T = 0 because it is defined in terms of a norm on Y . fined
in terms of a norm on Y . �

We treat some of the operators defined above.

(1) Let D be the differentiation operator on Pn: Then D is unbounded on
(Pn, ‖.‖∞), because for p(x) = xn Dp(x) = nxn−1 and so ‖Dp‖∞ = n for
all n ∈ N. The integration operator p 7→

∫
p(x)dx has norm 1 for intervals

of finite length.
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(2) The left shift Lx = (0, x0, x1, x2, ...) has ‖L‖ = 1 and also the right shift
‖R‖ = 1. For the multiplication operator Tax = (a0x0, a1x1, ...) for a
sequence a = (a0, a1, ...) ∈ s we have ‖Ta‖ = ‖a‖∞.

(3) The operator norm of the integral operator C[a, b] with ‖.‖∞ for an interval
of finite length is (b− a)2‖K‖∞.

Some classes of operators on a normed space X: (i) isometries on X are linear
operators T with ‖Tx‖ = ‖x‖ for all x ∈ X, (ii) projections are linear operators P
on X satisfying P 2 = P .





CHAPTER 3

Banach spaces and Hilbert spaces

3.1. Banach spaces and Hilbert spaces

We extend the topological notions introduced for the real line to general normed
spaces and we focus on completeness in this section. Complete normed spaces
are nowadays called Banach spaces, after the numerous seminal contributions of
the Polish mathematician Stefan Banach to these objects. The class of complete
innerproduct spaces are named after David Hilbert, who introduced the sequence
space `2. His students made numerous contributions to the theory of innerproduct
spaces, e.g. Erhard Schmidt, Hermann Weyl, Otto Toeplitz,... .

3.1.1. Completeness. We start with the generalization of open and closed
intervals in R to general normed spaces.

Definition 3.1.1. Let (X, ‖.‖) be normed space.

(1) Br(x) = {y ∈ X : ‖y − x‖ < r} denotes the open ball of radius r around
a point x ∈ X.

(2) Br(x) = {y ∈ X : ‖y− x‖ ≤ r} denotes the closed ball of radius r around
a point x ∈ X.

For the sequence spaces `p open balls Br(x) around x = (xk) are all sequences
y = (yk) ∈ `p with ‖x− y‖ < r. In the setting of (C(I), ‖.‖) the ball Bε(f) are all
continuous functionss g that are in an ε-strip of f .

Here are the the notions of a convergent sequence and Cauchy sequence in a
normed space.

Definition 3.1.2. Let (X, ‖.‖) be a normed space.

(1) A sequence (xk)k∈N converges to x ∈ X if for a given ε > 0 there exists a
N such that ‖x− xk‖ < ε for k ≥ N .

(2) A sequence (xk)k∈N is a Cauchy sequence if for any ε > 0 there exists a
N such that ‖xm − xn‖ < ε for all m,n > N .

This notion of sequences is a natural generalization of the one for real and
complex numbers. Note that the elements of the sequences are vectors in a normed
space. For example, a sequence in `2 is a sequence where the elements themselves
are also sequences. The difference between the the normed space Q and the real
numbers R viewed as normed space is that not all Cauchy sequences in Q converge
to a rational number but that is the case for R.

Definition 3.1.3. A normed space (X, ‖.‖) is called complete if every Cauchy
sequence (xk) in X has a limit x belonging to X. Moreover, a complete normed
space is refered to as Banach space and a complete innerproduct space is known as
Hilbert space.

27
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Theorem 3.1. For p ∈ [1,∞] the normed space (Rn, ‖.‖p) is complete.

Proof. �

The infinite-dimensional counterpart of the previous is also true, but its proof
is more intricate.

Theorem 3.2. For p ∈ [1,∞] the normed spaces (`p, ‖.‖p) are complete.

Proof. �

Theorem 3.3. For a finite interval [a, b] the normed space C[a, b] with respect
to the sup-norm ‖.‖∞ is complete.

For the proof we have to discuss notions of convergence for sequences of func-
tions.

Definition 3.1.4. Let (fn) be a sequence of functions on a set X.

• We say that (fn) converges pointwise to a limit function f if for a given
ε > 0 and x ∈ X there exists an N so that

|fn(x)− f(x)| < ε forall n ≥ N.
• We say that converges uniformly to a limit function f if for a given ε > 0

there exists an N so that

|fn(x)− f(x)| < ε forall n ≥ N
holds for all x ∈ X.

There is a substantial difference between these two definitions. In pointwise
convergence, one might have to choose a different N for each point x ∈ X. In the
case of uniform convergence there is an N that holds for all x ∈ X. If one draws
the graphs of a uniformly convergent sequence, then one realises that the definition
amounts for a given ε > 0 to have a N so that the graphs of all the fn for n ≥ N , lie
in an ε-band about the graph of f . In other words, the fn’s get uniformly close to f .

Note that uniform convergence implies pointwise convergence. Uniform conver-
gence has an important property.

Theorem 3.4. Let (fn) be a uniformly convergent sequence in C(I) with limit
f . Then the limit function f is continuous on I.

Proof. Let y ∈ I and ε > 0 be given. By the uniform convergence of fn → f ,
there exists an N such that n ≥ N implies that

|fn(x)− f(x)| ≤ ε/3 for all x ∈ I.
The continuity of fN implies that there exists a δ > 0 such that

|fn(x)− f(y)| ≤ ε/3 for |x− y| ≤ δ.
We want to show that f is continuous. For all x such that |x− y| < δ we have that

|f(x)− f(y)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (y)|+ |fN (y)− f(y)|
< ε/3 + ε/3 + ε/3 = ε.

�

Proof. �
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Theorem 3.5. The normed space of bounded operators (B(X,Y ), ‖.‖op) is com-
plete if and only if Y is a Banach space.

The Banach space (B(X,C), ‖.‖op) is known as the dual space of X, denoted
by X ′, and its elements are refered to as functionals on X.

Proof. Let (Tn) be a Cauchy sequence in B(X,Y ), so for any ε > 0 there
exists a N ∈ N such that for all m,n ≥ N we have ‖Tm− Tn‖op < ε. Hence for any
x ∈ X we have

‖(Tm − Tn)x‖Y ≤ ‖Tm − Tn‖op‖x‖X < ε‖x‖X .
Hence for all x ∈ X the sequence (Tnx) is a Cauchy sequence in Y . Since Y is a
Banach space, it has a limit denoted by Tx, and thus we define Tx = limn→∞ Tnx.
The limit operator T is linear and bounded.

‖Tx‖Y ≤ sup
n
‖Tnx‖Y ≤ ‖x‖X sup

n
‖Tn‖op,

and thus we have ‖T‖op ≤ supn ‖Tn‖op, i.e. T ∈ B(X,Y ).
We show that ‖Tn − T‖op → 0. We assume otherwise that ‖Tn − T‖op does not
converge to 0. Then there exists an ε > 0 and a subsequence (Tnk

)k of (Tn) such
that

‖Tn − T‖op ≥ ε for all k.

Consequently, for every k there exists a xk ∈ X with ‖xk‖ = 1 and

‖Tnk
(xk)− Tm(xk)‖ ≥ ε.

By assumption (Tn) is a Cauchy sequence, so one can choose a N0 such that for all
m,nk ≥ N0 we have

‖Tnk
(xk)− Tm(xk)‖ ≤ ε/2

and this gives

ε ≤ ‖Tnk
(xk)− T (xk)‖Y ≤ ‖Tnk

(xk)− Tm(xk)‖Y + ‖Tm(xk)− T (xk)‖Y .
Hence for all m ≥ N0 we have

‖Tm(xk)− T (xk)‖Y ≥ ε/2.
That is a contradicition to the definition of T , thus we have Tm(xk) − T (xk) → 0
in (B(X,Y ), ‖.‖op). �

3.1.2. Topology of normed spaces. Definitions and properties of open and
closed sets, sequences and other notions have natural counterparts in the setting
of normed spaces. The motivation is once more an understanding of sequences of
elements in normed spaces.

Definition 3.1.5. (1) A set U ⊂ X is a neighborhood of x ∈ X if Br(x) ⊂
U for some r > 0.

(2) A set O ⊂ X is open if every x ∈ O has a neighborhood U contained in
O.

(3) A set C ⊂ X is closed if its complement Cc = X\F is open.

Note that the definition of open sets depends on the norm. In other words,
open sets with respect to one norm need not be open with respect to another norm.

Lemma 3.6. Let (X, ‖.‖) be normed space. Then Br(x) is open and Br(x) is
closed for x ∈ X and r > 0.
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Proof. The proof goes along the same lines as in the case of the real line.
Suppose that y ∈ Br(x) and choose ε as ε = r−d(x, y) > 0. The triangle inequality
yields that Bε(y) ⊂ Br(x), i.e. Br(x) is open.
We show that X\Br(x) is open. For y ∈ X\Br(x) we set ε = d(x, y) − r > 0
and once more by the triangle inequality we deduce that Bε(y) ⊂ X\Br(x). Hence
X\Br(x) is open and Br(x) is closed. �

Definition 3.1.6. For a subset A of (X, ‖.‖) we introduce some notions.

(1) The closure of a subset A of X, denoted by A, is the intersection of all
closed sets containing A.

(2) The interior of a subset of A of X, denoted by intA, is the union of all
open subsets of X contained in A.

(3) The boundary of a subset A of X, denoted by bdA, is the set A\intA.

We continue with some defintions

Definition 3.1.7. Let A be a subset of (X, ‖.‖).
(1) A point x ∈ A is isolated in A if there exists a neighborhood U of x such

that U ∩A = {x}.
(2) A point x ∈ R is said to be an accumulation point of A if every neighbor-

hood of x contains points in A\{x}.

Definition 3.1.8. A subset A of (X, ‖.‖) is said to be dense in R if its closure
is equal to X, i.e. A = X. If the dense subset A is countable, then X is called
separable.
In other words, a subset A of a normed space X is dense in X if for each x ∈ X
and each ε > 0 there exists a vector y ∈ A such that

‖x− y‖ < ε.

The relevance of a dense subset of a normed space is that it provides a way to
approximate elements of the normed space by ones from the dense subset up to any
given precision.

Lemma 3.7. Suppose A is a dense subspace of a normed space X. For any
x ∈ X there exists a sequence of elements xk ∈ A such that ‖xk − x‖ → 0 as
k →∞.

Proof. For x ∈ X there exists an xk such that ‖xk − x‖ < 1/k for k = 1, 2, ...
By construction xk converges to x. �

The next results have been proved in the section on real numbers and these are
also true for normed spaces. The proofs of these results are along the same lines as
the ones for the real line.

Lemma 3.8. Let {Oj : j ∈ J} be a family of open sets of (X, ‖.‖).

(1) ∩nj=1Oj is an open set for any n ∈ N.
(2) ∪j∈JOj is open for a general index set J .

Lemma 3.9. Suppose A is a subset of (X, ‖.‖).
(1) A = (Int(Ac))c and int(A) = (Ac)c

(2) bdA = bd(Ac) = A ∩Ac
(3) A = A ∪ brA = intA ∪ bdA
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Lemma 3.10. Suppose A is a subset of (X, ‖.‖).
(1) A = {x ∈ X : every neighborhood of x intersects A}
(2) int(A) = {x ∈ X : some neighborhood of x is contained in A}
(3) bd(A) = {x ∈ X : every neighborhood of x intersects A and its complement}

Lemma 3.11. A point x in a normed space (X, ‖.‖) is an accumulation point
of A if and only if every neighborhood of x contains infinitely many points of A.





APPENDIX A

Sets and functions

A.1. Sets and functions

In order to formalize our intution about collections of objects we use the frame-
work of set theory. The relation between sets and their elements will be described
by functions.

Definition A.1.1. A set is a collection of distinct objects, its elements. If an
object x is an element of a set X, we denote it by x ∈ X. If x is not an element of
A, then we wrtie x 6= X.

A set is uniquely determined by its elements. Suppose X and Y are sets. Then
they are identical, X = Y , if they have the same elements. More formalized, X = Y
if and only if for all x ∈ X we have x ∈ Y , and for all y ∈ Y we have y ∈ X.

The empty set is the set with no elements, denoted by ∅.

Definition A.1.2. Suppose X and Y are sets. Then Y is a subset of X,
denoted by Y ⊂ X, if for all y ∈ Y we have y ∈ X.

If Y ⊆ X, one says that Y is contained in X. If Y ⊆ X and X 6= Y , then Y is
a proper subset of X and we use the notation Y ⊂ X.

Here are a few constructions of sets.

Definition A.1.3. Let X and Y be sets.

• The union of X and Y , denoted by X ∪ Y , is defined by

X ∪ Y = z| z ∈ X or z ∈ Y .

• The intersection of X and Y , denoted by X ∩ Y , is defined by

X ∩ Y = z| z ∈ X and z ∈ Y .

• . The difference set of X from Y , denoted by X\Y , is defined by

X\Y = {z ∈ X : z ∈ X and z 6= Y }.

If all sets are contained in one set X, then the difference set X ⊂ Y is
called the complement of Y .

• The Cartesian product of X and Y , denoted by X × Y , is the set

X × Y = {(x, y)|x ∈ X, y ∈ Y },

i.e the set of all ordered pairs (x, y), with x ∈ X and y ∈ Y .

Here are some basic properties of sets.

Lemma A.1. Let X,Y and Z be sets.

33
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(1) X ∩ (Y ∪Z) = (X ∩ Y )∪ (X ∩Z) and X ∪ (Y ∩Z) = (X ∪ Y )∩ (X ∪Z)
(distributition law)

(2) (X ∪ Y )c = Xc ∩ Y c and (X ∩ Y )c = Xc ∪ Y c (De Morgan’s laws)
(3) X\(Y ∪ Z) = (X\Y ) ∩ (X\Z) and X\(Y ∩ Z) = (X\Y ) ∪ (X\Z)

Let X and Y be sets. A function with domain X and codomain Y , denoted
by f : X → Y , is a relation between the elements of X and Y satisfying the
properties: for all x ∈ X, there is a unique y ∈ Y such that (x, y) ∈ f , we denote
it by: f(x) = y.

By definition, for each x ∈ X there is exactly one y ∈ Y such that f(x) = y.
We say that y the image of x under f . The graph G(f) of a function f is the subset
of X × Y defined by

G(f) = {(x, f(x))|x ∈ X}.
The range of a function f : X → Y , denoted by range(f), or f(A), is the set of

all y ∈ Y that are the image of some x ∈ X:

range(f) = {y ∈ Y | there existsx ∈ X such that f(x) = y}.
The pre-image of y ∈ Y is the subset of all x ∈ X that have y as their image. This
subset is often denoted by f?1(y):

f?1(y) = {x ∈ X| f(x) = y}.
Note that f?1(y) = ∅ if and only if y ∈ Y \range(f).

The following notions are central for the theory of functions.

Definition A.1.4. Let f : X → be a function.

(1) Then we call f injective or one-to-one if f(x1) = f(x2) implies x1 = x2,
i.e. no two elements of the domain have the same image.

(2) Then we call f surjective or onto if range(f) = Y , i.e. each y ∈ Y is the
image of at least one x ∈ X.

(3) Then we call f bijective if f is both injective and surjective.

Let f : X → Y and g : Y → Z be two functions so that the codomain of f
coincides with the domain of g. Then we define the composition, denoted by g ◦ f ,
as the function g ◦ f : X → Z, defined by x 7→ g(f(x)).

For every set X, we define the identity map, denoted by idX or id for short:
idX : X → X is defined by idX(x) = x for all x ∈ X. The identity mapis a
bijection.

If f is a bijection, then it is invertible. Hence, the inverse relation is also a function,
denoted by f?1. It is the unique bijection Y → X such that f?1 ◦ f = idX and
f ◦ f?1 = idY .

Lemma A.2. Let f : X → Y and g : Y → Z by bijections. Then g ◦ f is also a
bijection and (g ◦ f)−1 = f−1 ◦ g−1.


