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CHAPTER 1

Real numbers and its topology

1.1. Real Numbers

1.1.1. Notation. We introduce some notation:

(1) N = {1, 2, 3, ...} the set of natural numbers,
(2) Q = {p/q : p, q ∈ Z} the set of rational numbers,
(3) Z = {...,−2,−1, 0, 1, 2, ...} the set of integers.
(4) For real numbers a, b with a < b we denote by [a, b] the closed bounded

interval, and by (a, b) the open bounded interval. The length of these
bounded intervals is b− a.

1.1.2. Real numbers. The set Q of rational numbers does not contain all the
numbers one encounters in geometry or analysis, e.g. x2 − 5 = 0 has no ratinonal
solution or Euler’s number e is an irrational number.

For the moment we do not introduce the set of real number R in an informal
manner. In the chapter on metric spaces R will be constructed as the completion
of Q, as was originally done by A. L. Cauchy.

Real numbers may be realized as points on a line, the real line, where the
irrational numbers correspond to the points that are not given by rational numbers
R\Q.

The real numbers have the Archimedean property:

Lemma 1.1 (Archimedean property). For any x, y ∈ R there exists a natural
number n such that nx > y.

As a consequence we deduce a close relation between Q and R.

Proposition 1.1.1. For x, y ∈ R with x < y there exists a r ∈ Q such that
x < r < y.

Proof. Goal: Find m,n ∈ Z such that

(1.1) x <
m

n
< y.

First step: Choose the denominator of n large such that there exists an m ∈ Z such
that x ∈ (m−1

n , mn ) are separating x and y. The Archimedean property of R allows
us to a n ∈ N with this property. More concretely, we pick n ∈ N large enough
such that 1/n < y − x or equivalently

(1.2) x < y − 1

n

Second step: Inequality (1.1) is equivalent to nx < m < ny. From the first step we
have n already chosen. Now we choose m ∈ Z to be the smallest integer greater

1
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than nx. In other words, we pick m ∈ Z such that m− 1 ≤ nx < m. Thus we have
m− 1 ≤ nx, i.e. m ≤ nx+ 1. By inequality (1.2)

m ≤ nx+ 1 < n(y − 1

n
) + 1 = ny,

hence we have m < ny, i.e. m/n < y. Once more by (1.2) we have x ≤ m/n. These
two inequalites yield the desired assertion: x < m/n < y. �

In an similiar manner one may deduce the statement for irrational numbers.

Proposition 1.1.2. For x, y ∈ R with x < y there exists a r ∈ R\Q such that
x < r < y.

Proof. Pick your favorite irrational number, a popular choice is
√

2. Then by
the density of the rational numbers there exists a rational number r ∈ (x/

√
2, y/
√

2).

Hence r
√

2 ∈ (x, y). Note that r
√

2 is an irrational number in (x, y) that completes
our argument. �

The absolute value of x ∈ R, denoted by |x|, is defined by

|x| =


−x if x < 0,

0 if x = 0,

x if x > 0.

Note that |x| = max{x,−x}. We define the positive, x+ and negative part, x− of
x ∈ R:

x+ = max{x, 0}, and x− = max−x, 0,
so we have x = x+ − x− and |x| = x+ + x−.
For x, y ∈ R we measure the distance between x and y in R by

(1.3) d(x, y) = |x− y|,

the standard distance. By definition of d we have d(x, y) = d(y, x).

Lemma 1.2 (Triangle inequality). For x, y in R we have |x+ y| ≤ |x|+ |y|.

Proof. For all x ∈ R we have x ≤ |x| and thus for x, y ∈ R we obtain
x + y ≤ |x + y|. By definition of |.| we also get that −x − y ≤ |x| + |y|. Thus we
have proved the desired assertion. �

The triangle inequality has numerous consequences, such as

(1.4) ||x| − |y|| ≤ |x− y|.

The triangle inequality for x = y+x−y yields |x|−|y| ≤ |x−y|, and the interchange
of x and y, i.e. y = x+y−x gives −(|x|− |y|) ≤ |x−y|. Hence we have the desired
assertion.
We introduce two crucial notions: the infimum and supremum of a set. First we
provide some preliminaries.

Definition 1.1.3. Let A be a subset of R
• If there exists M ∈ R such that a ≤M for all a ∈ A, then M is an upper

bound of A. We call A bounded above.
• If there exists m ∈ R such that m ≤ a for all a ∈ A, then m is a lower

bound of A.
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• If there exist lower and upper bounds, then we say that A is bounded. We
call A bounded below.

Definition 1.1.4 (Infimum and Supremum). Let A be a subset of R.

• If m is a lower bound of A such that m ≥ m′ for every lower bound m′,
then m is called the infimum of A, denoted by m = inf A. Furthermore,
if inf A ∈ A, then we call it the minimum of A, minA.

• If M is an upper bound of A such that m′ ≥M for every upper bound M ′,
then M is called the supremum of A, denoted by M = supA.Furthermore,
if supA ∈ A, then we call it the maximum of A, maxA.

Note that the infimum of a set A, as well as the supremum, are unique. The
elementary argument is left as an exercise.
If A ⊂ R is not bounded above, then we define supA =∞. Suppose that a subset
A of R is not bounded below, then we assign −∞ as its infimum.
We state a different formulation of the notions inf A and supA that is just a refor-
mulation of the definition.

Lemma 1.3. Let A be a subset of R.

• Suppose A is bounded above. Then M ∈ R is the supremum of A if and
only if the following two conditions are satisfied:
(1) For every a ∈ A we have a ≤M .
(2) Given ε > 0, there exists a ∈ A such that M − ε < a.

• Suppose A is bounded below. Then m ∈ R is the infimum of A if and only
if the following two conditions are satisfied:
(1) For every a ∈ A we have m ≤ a.
(2) Given ε > 0, there exists a ∈ A such that a < m+ ε.

Lemma 1.4. Suppose A is a bounded subset of A. Then inf A ≤ supA

For c ∈ R we define the dilate of a set A by cA := {b ∈ R : b = ca for a ∈ A}.

Lemma 1.5 (Properties). Suppose A is a subset of R.

(1) For c > 0 we have sup cA = c supA and inf cA = c inf A.
(2) For c < 0 we have sup cA = c inf A and inf cA = c supA.
(3) Suppose A is contained in a subset B. If supA and supB exist, then

supA ≤ supB. In words, making a set larger, increases its supremum.
(4) Suppose A is contained in a subset B. If inf A and inf B exist, then

inf A ≥ inf B. In words, making a set smaller increases its infimum.
(5) Suppose A ⊂ B are non-empty subsets of R such that x ≤ y for all x ∈ A

and y ∈ B. Then supA ≤ infB.
(6) If A and B are non-empty subsets of R, then sup(A+B) = supA+ supB

and inf(A+B) = inf A+ inf B

Proof. (1) We prove that sup cA = c supA for positive c. Suppose
c > 0. Then cx ≤ M ⇔ x ≤ M/c. Hence M is an upper bound of cA
if and only if M/c is an upper bound of A. Consequently, we have the
desired result.

(2) Analogously to (i).
(3) Since supB os an upper bound of B, it is also an upper bound of A, i.e.

supA ≤ supB.
(4) Analogously to (iii).
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(5) Since x ≤ y for all x ∈ A and y ∈ B, y is an upper bound of A. Hence
supA is a lower bound of B and we have supA ≤ inf B.

(6) By definition A + B = {c : c = a + b for some a ∈ A, b ∈ B} and thus
A+B is bounded above if and only if A and B are bounded above. Hence
sup(A + B) < ∞ if and only if supA and supB are finite. Take a ∈ A
and b ∈ B, then a + b ≤ supA + supB. Thus supA + supB is an upper
bound of A+B:

sup(A+B) ≤ supA+ supB.

The reverse direction is a little bit more involved. Let ε > 0. Then there
exists a ∈ A and b ∈ B such that

a > supA− ε/2, b > supB − ε/2.
Thus we have a+ b > supA+supB−ε for every ε > 0, i.e. sup(A+B) ≥
supA+ supB.

The other statements are assigned as exercises. �

A property of utmost importance is the completeness of the real numbers.

Theorem 1.6. Let A be a non-empty subset of R that is bounded above. Then
there exists a supremum of A. Equivalently, if A is a non-empty subset of R that
is bounded below, then A has an infimum.

We have noted above that the supremum of a bounded above set is unique. A
different form to express the completeness property of R is to consider the set of
all upper bounds of a bounded above set A and the Theorem asserts that this set
of upper bounds has a least element.

One reason for the relevance of the notions of supremum and infimum is in the
formulation of properties of functions.

Definition 1.1.5. Let f be a function with domain X and range Y ⊆ R. Then

sup
X
f = sup{f(x) : x ∈ X}, inf

X
f = inf{f(x) : x ∈ X}.

If supX f is finite, then f is bounded from above on A, and if infX f is finite we call
f bounded from below. A function is bounded if both the supremum and infimum
are finite.

Lemma 1.7. Suppose that f, g : X → R and f ≤ g, i.e. f(x) ≤ g(x) for all
x ∈ X. If g is bounded from above, then supX f ≤ supA g. Assume that f is
bounded from below. Then infX f ≤ infX g.

Proof. Follows from the definitions. �

The supremum and infimum of functions do not preserve strict inequalities.
Define f, g : [0, 1]→ R by f(x) = x and g(x) = x+ 1. Then we have f < g and

sup
[0,1]

f = 1, inf
[0,1]

f = 0, sup
[0,1]

g = 2, inf
[0,1]

g = 1.

Hence we have sup[0,1] f > inf [0,1] g.

Lemma 1.8. Suppose f, g are bounded functions from X to R and c a positive
constant. Then

sup
X

(f + cg) ≤ sup
X
f + c sup

X
g inf

X
(f + cg) ≥ inf

X
f + c inf

X
g.
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The proof is left as an exercise. Try to convice yourself that the inequalities
are in general strict, since the functions f and g may take values close to their
suprema/infima at different points in X.

Lemma 1.9. Suppose f, g are bounded functions from X to R. Then

| sup
X
f − sup

X
g| ≤ sup

X
|f − g|, | inf

X
f − inf

X
g| ≤ sup

X
|f − g|

Lemma 1.10. Suppose f, g are bounded functions from X to R such that

|f(x)− f(y)| ≤ |g(x)− g(y)| for all x, y ∈ X.

Then

sup
X
f − inf

X
f ≤ sup

X
g − inf

X
g.

Recall that a sequence (xn) of real numbers is an ordered list of numbers xn,
indexed by the natural numbers. In other words, (xn) is a function f from N to R
with f(n) = xn. Hence we may define the if a sequence (xn) is bounded from above,
bounded from below and bounded as a special case of the above definitions, i.e. if
there eixts M ∈ R such that xn ≤M for all n ∈ N, if there exists m ∈ R such that
xn ≥ m for all n ∈ N and if there exist m,M such that m ≤ xn ≤M .

We define the lim sup and lim inf of a sequence (xn). These notions reduce
quebtions about the convergence of a sequence to ones about monotone sequen-
ces. We introduce two sequences associated to (xn) by taking the supremum and
infimum, respectively of the tails of ((xk)k≥n)k:

yn = sup{xk : k ≥ n}, zn = inf{xk : k ≥ n}.

The sequences (yn) and (zn) are monotone sequences, because the supremum and
infimum are taken over smaller sets for increasing n. Moreover, (yn) is monotone
decreasing and (zn) is monotone decreasing. Hence the limits of these sequences
exist:

lim sup
n→∞

xn := lim
n→∞

yn = inf
n∈N

(sup
k≥n

xk),

lim inf
n→∞

xn := lim
n→∞

zn = sup
n∈N

( inf
k≥n

xk).

We allow lim sup and lim inf to be +∞ and −∞. Note that we have zn ≤ yn and
so by taking the limit as n→∞

lim inf
n→∞

xn ≤ lim sup
n→∞

xn

. We illustrate these notions with some examples.

Examples 1.1.6. Consider the sequences.

(1) (xn) =
(
(−1)n+1

)
has lim supxn = 1 and lim inf xn = −1.

(2) (xn) = (n2) has lim supxn =∞ and lim inf xn =∞.
(3) (xn) = (2− 1/n) has lim supxn = 2 and lim inf xn = 2.

Exercise 1.1.7. Let (xn) and (yn) be sequences in R.

(1) lim inf(xn + yn) ≥ lim inf xn + lim inf yn,
(2) lim sup(xn + yn) ≤ lim supxn + lim sup yn,
(3) lim sup(−xn) = − lim inf xn and lim inf(−xn) = − lim supxn.
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Note that for convergent sequences lim sup and lim inf are finte and equal. We
recommend to prove this property.

Proposition 1.1.8. Let (xn) be a sequence in R. Then (xn) converges if and
only if lim infn→∞ xn = lim supn→∞ xn.

Note that a sequence diverges to∞ if and only if lim infn→∞ xn = lim supn→∞ xn =
∞ and that it diverges to −∞ if and only if lim infn→∞ xn = lim supn→∞ xn = −∞.

These considerations suggests that for non-convergent seqences the difference lim infn→∞ xn−
lim supn→∞ xn measures the size of the oscillations in the sequene.

A central notion in analysis is the notion of a Cauchy sequence of objects, here
we define it for real numbers.

Definition 1.1.9. A sequence (xn) in R is a Cauchy sequence if for every ε > 0
there exists N ∈ N such that |xm − xn|ε for all m,n ≥ N .

A theorem of utmost importance is that every Cauchy sequence converges to a
real number.

Theorem 1.11. A sequence (xn) converges in R if and only if it is a Cauchy
sequence.

Proof. One direction: Suppose (xn) converges to a real number x. Then
for every ε > 0 there exists N ∈ N such that |xn − x| < ε/2 for all n > N . Hence
by the triangle inequality we have

|xn − xm| ≤ |xn − x|+ |x− xm| for m, n > N,

i.e (xn) is a Cauchy sequence.

Other direction: Suppose that (xn) is a Cauchy sequence. Then there exists
N1 ∈ N such that |xm − xn| < 1 for all m,n > N1, and that for n > N1 we have

|xn| ≤ |xn − xN1 |+ |xN1+1| ≤ 1 + |xN1+1|.
Hence a Cauchy sequence is bounded with |xn| ≤ max{|x1|, ..., |xN1 |, 1 + |xN1+1|}
and lim sup, lim inf exist.
The aim is to show that lim supxn = lim inf xn.
By the Cauchy property of (xn) we have for a given ε > 0 a N ∈ N such that

xn − ε < xm < xn + ε for all m ≥ n > N.

Consequently, we have for all n > N

xn − ε ≤ inf{xm : m ≥ n} and sup{xm : m ≥ n} ≤ xn + ε.

Thus we have

sup{xm : m ≥ n} − ε ≤ inf{xm : m ≥ n}+ ε

and for n→∞ we get that

lim supxn − ε ≤ lim inf xn + ε

for arbitray ε > 0 and so

lim supxn ≤ lim inf xn.

�
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In the proof we established that Cauchy sequences are bounded. Let us record
this for later use.

Lemma 1.12. A Cauchy sequence (xn) in R is bounded.

We define the notion of a subsequence of a sequence (xn).

Definition 1.1.10. Suppose (xn) is a sequence in R. Then a subsequence is a
sequence of the form (xnk

) where n1 < n2 < · · · < xnk
< · · · .

An elementary observation is

Lemma 1.13. Every subsequence of a convergent sequence converges to the limit
of the sequence.

Proof. Suppose that (xn) is a convergent sequence with limxn = x and (xnk
)

is a subsequence. Given ε > 0. There exists N ∈ N such that |xn − x| < ε for all
n > N . Since nk → ∞ as k → ∞, there exists a K ∈ N such that nk > N for
k > K, but then we have |xnk

− x| < ε. Hence limk→∞ xnk
= x. �

Corollary 1.1.11. If a sequence has subsequences that converge to different
limits, then the sequence diverges.

A well-known theorem due to Buolzano and Weierstraßdeduces the convergence
of a subsequence from its boundedness.

Theorem 1.14 (Bolzano-Weierstraß). Every bounded sequence (xn) in R has
a convergent subsequence.

Proof. Suppose that (xn) is a bounded sequence in R. Hence there are m
and M such that

m = inf
n
xn M = sup

n
xn.

We define the closed interval I0 = [m,M ] and divide it into two closed intervals
L0, R0:

L0 = [m, (m+M)/2], R0 = [(m+M)/2,M ].

Now, at least one of the intervals L0, R0 contains infinitely many terms of (xn).
Choose I1 to be the interval that contains infinitely many terms and pick n1 ∈ N
such that xn1

∈ I1. Divide I1 = L1 ∪ R1, again one of these intervals contains
infinitely many terms of (xn). Choose I2 to be one of these intervals that contains
infinitely many terms. We continue by dividing I2 into two closed intervals, pick
n2 > n1 such that xn2

∈ I2. Continue in this manner we get a sequence of nested
intervals (Ik) with |Ik| = (M −m)/2k, and a sequence (xnk

) such that xnk
∈ Ink

.
Given ε > 0. Since |Ik| → 0 as k →∞, there exists a K ∈ N such that |Ik| < ε for
all k > K. Furthermore we have |xnj

− xnk
|ε for j, k > K, i.e. (xnk

) is a Cauchy
sequence and thus converges by Theorem 1.11. �

The Bolzano-WeierstraßTheorem does not claim that the subsequence is uni-
que, i.e. there might be convergent subsequences with different limits depending
on the choice of Lk or Rk.

Theorem 1.15. If (xn) is a bounded sequence in R such that every convergent
subsequence has the same limit x, then (xn) converges to x.
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Proof. We will show the contrapositive statement: Suppose a bounded se-
quence does not converge to x. Then (xn) has a convergent subsequence with limit
different from x.

If (xn) does not converge to x, then there exists ε0 > 0 such that |xn − x| ≥ ε0

for infinitely many n ∈ N. Hence there exists a subsequence (xnk
) such that

|xnk
− x| ≥ ε0 for every k ∈ N. Note that (xnk

) is a bounded sequence and so by
Bolzano-Weierstraßthere exists a convergent subsequence (xnkj

). If limj xnkj
= y,

then |x− y| ≥ ε0. In other words, x is not equal to y. �

1.1.3. Topology of R. In this section we treat some basic notions of topology
for the real line. Generalizations of these notions and its manifestations in normed
spaces and general metric spaces are going to be the pillars of this course.

We generalize the notion of open intervals (a, b) and closed intervals [a, b].

Definition 1.1.12 (Open sets). A subset O of R is called open if for every
x ∈ S there exists an open interval I contained in O with x ∈ I.

Definition 1.1.13 (Closed sets). A subset C of R is called closed if the com-
plement Cc = R\C = {x ∈ R : x /∈ C} is open.

Note that the interval (a, b) is an open set and [a, b] is closed. Observe further
that by definition the empty set ∅ and R are open and closed.

Proposition 1.1.14. Suppose {Ij}j∈J is a collection of open intervals in R
with non-empty intersection ∩j∈JIj 6= ∅.

(1) If J has finitely many elements, then ∩j∈JIj is an open interval.
(2) ∪j∈JIj is an open interval for an arbitrary index set J .

Proof. We define open intervals Ij = (aj , bj) for real numbers aj < bj , the
interval bounds are also allowed to be ±∞, and set I := ∪j∈JIj .

(1) We pick a point x in ∪nj=1Ij and set a := max{aj : j = 1, ..., n} and
b = min{bj : j = 1, ..., n}. If all the a′js are −∞, then a = −∞, and if all
the bj ’s are ∞, then we have b =∞.
Since aj < x < bj for j = 1, ..., n we get that x ∈ (a, b). Furthermore, we
have that ∩j∈J(aj , bj) = (a, b).

(2) We choose x ∈ ∩j∈JIj . Suppose y ∈ ∪j∈JIj . Then y ∈ Ij for some j ∈ J .
Since x ∈ Ij , the interval (x, y) ⊂ Ij and thus in I. Hence I is the interval
(a, b), where a = inf{aj : j ∈ J} or −∞ and b = sup{bj : j ∈ J} or ∞.

�

The assumption in (i) cannot be weakend, e.g. ∩∞n=1(−1.n, 1/n) = {0}. Hence
an infinite intersection of open intervals is not necessarily an open interval. We
show that the preceding statement is true for a more general class of sets, the open
sets.

Proposition 1.1.15. Let {Oj : j ∈ J} be a family of open sets of R.

(1) ∩nj=1Oj is an open set for any n ∈ N.
(2) ∪j∈JOj is open for a general index set J .
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Proof. (1) We set O = ∩nj=1Oj . If x ∈ O, then x ∈ Oj for j = 1, ..., n.
Since Oj ’s are open, there are open intervals Ij ⊂ Oj containing x. Hence,
we have that ∩nj=1Ij ⊂ ∩nj=1Oj , the desired assertion.

(2) Let x be in ∪j∈JOj . Then there exists some j such that x ∈ Uj and thus
an open interval Ij contained in Uj with x ∈ Ij and consequently Ij ⊂ O.
Hence O is an open set.

�

We are in the positon to introduce a notion of closedness between points, known
as neighborhoods.

Definition 1.1.16. Given x ∈ R. Then a subset U of R is called a neighborhood
of x if there exists an open subset O of R such that x ∈ O ⊂ U .

Due to the structure of R we have that U is a neighborhood of x if and only if
there exists a δ > 0 such that (x− δ, x+ δ) ⊂ U .

Definition 1.1.17. For a subset A we introduce some notions.

(1) The closure of a subset A of R, denoted by A, is the intersection of all
closed sets containg A.

(2) The interior of a subset of A of R, denoted by intA, is the union of all
open subsets of R contained in A.

(3) The boundary of a subset A of R, denoted by bdA, is the set A\intA.

Note that bdA is a closed set and that the closure of a bounded subset of R is
bounded, too.

Here are some useful facts.

Lemma 1.16. Suppose A is a subset of R.

(1) A = (Int(Ac))c and int(A) = (Ac)c

(2) bdA = bd(Ac) = A ∩Ac
(3) A = A ∪ brA = intA ∪ bdA

Proof. (1) These identities are a consequence of the following general
fact: B is a closed containing A if and only if Bc is open and Bc ⊂ Ac.
The statement about the interior of A is the first statement for Ac instead
of A.

(2) bdA = A\
∫
A = A∩ (intA)c = A∩Ac, where we used (i) in the last step.

Let us compute bdAc: bdAc = Ac\
∫
Ac = Ac ∩ (

∫
Ac)c = Ac ∩A. Hence

we have the desired assertions.
(3) First note that intA ∪ bdA ⊂ A ∪ bdA ⊂ A. Furthermore we have intA ∪

bdA =
∫
A ∪ (A\A) = intA ∪ (A ∩ (intA)c) = ((intA) ∪ A) ∩ (intA ∪

(intA)c) = A.
�

Lemma 1.17. Suppose A is a subset of R.

(1) A = {x ∈ R : every neighborhood of x intersects A}
(2) int(A) = {x ∈ R : some neighborhood of x is contained in A}
(3) bd(A) = {x ∈ R : every neighborhood of x intersects A and its complement}
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Proof. (1) We choose an open neighborhood U of x ∈ R that does not
intersect A, i.e. A ⊂ U c. Since U c is closed, we have that A ⊂ U c and
from x 6= U c we also have that x 6= A. On the other hand, if x 6= A, then
(A)c is an open set containing x that is disjoint from A.

(2) Follows from (i) and the preceding proposition.
(3) Follows from (i), (ii) and the preceding proposition.

�

Definition 1.1.18. Let A be a subset of R.

(1) A point x ∈ A is isolated in A if there exists a neighborhood U of x such
that U ∩A = {x}.

(2) A point x ∈ R is said to be an accumulation point of A if every neighbor-
hood of x contains points in A\{x}.

Note: Accumulation points of a set are not necessarily elements of the set. A
well-known example is A = {1/n : n ∈ N} with 0 as accumulation point, which is
clearly not in A.

The definition of an accumulation point makes only sense for sets with infinitely
many elements.

Finally, an infinite closed set may not have accumulation points, e.g. N ⊂ R
has no accumulation points in R.

Lemma 1.18. A point x ∈ R is an accumulation point of A if and only if every
neighborhood of x contains infinitely many points of A.

Proof. One direction: Suppose every neighborhood of x contains infinitely
many points of A, then x is an accumulation point of A.
Other direction: Suppose x is an accumulation point of A. For a neighborhood U
of x, we choose n1 ∈ N such that (x−1/n1, x+1/n1) ⊂ U . Take a point x1 different
from x in A ∩ (x − 1/n1, x + 1/n1). Now we repeat the procedure: Take n2 ≥ n1

such that x1 6=∈ (x− 1/n2, x+ 1/n2) and pick x2 ∈ A ∩ (x− 1/n2, x+ 1/n2) with
x2 6= x. We continue in this way and get a sequence of points (xn) ⊂ A ∩ U . �

Proposition 1.1.19. Let A be a subset of R. Then A = {isolated points of A}∪
{accumulationpointsofA}.

Proof. Suppose x ∈ A. Then if x ∈ A, then either x is isolated in A or every
neighborhood of x contains points in A different from x. In the later case x is an
accumulation point of A. Now assume x ∈ A and x 6= A. Then every neighborhood
of x has a non-trivial intersection with A, and thus x is an accumulation point of
A. In summary, we have that the closure of A is the union of the isolated points of
A with the accumulation points of A.
For the converse we note: If x is isolated, then x is definitely in A. If x is an
accumulation point of A, then x ∈ A �

Definition 1.1.20. A subset A of R is said to be dense in R if its closure is
equal to R, i.e. A = R.

Proposition 1.1.21. The set of rational numbers, Q, is dense in R.
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Proof. For an arbitray x ∈ R we consider a neighborhood U of x. Then we
know that U contains the interval (x − ε, x + ε) for a sufficiently small ε > 0. By
an earlier result we have that there exists a rational number in (x− ε, x+ ε). �

We also have that the set of irrational numbers is dense in R.

The property that Q has only countably elements, but still is dense in R is a very fa-
vorable property and occurs in various other situations. We say that R is separable.

Q is a dense subset of R with empty interior and thus the boundary of Q is all
of R. The same is true for the set of irrational numbers.

1.1.4. Supplementary material.

Theorem 1.19 (Nested Interval Theorem). Let {Ij}∞j=1 be a sequence of closed
bounded intervals in R, such that Ij ⊂ Ij+1 for all j ∈ N. We assume in addtion
that the lengths of the intervals |Ij | tends to zero. Then I := ∩j∈JIj = {z} for
some z ∈ R.

Proof. Without loss of generality we assume Ij = [aj , bj ]. Then the assump-
tions yield that a1 ≤ a2 ≤ · · · ≤ b2 ≤ b1 and that for every ε > 0 there exist a
j ∈ N such that bj − aj ≤ ε.
We set A := {aj : j ∈ N} and B := {bj : j ∈ N}, note that a := supA < ∞ and
b = inf B <∞, and aj ≤ a ≤ bj for j ∈ N. Hence we have [a, b] = ∩∞j=1[aj , bj ] and
by the assumption on the shrinking of the interval lengths we get that a = b = z
for some z ∈ R. �





CHAPTER 2

Normed spaces and innerproduct spaces

2.1. Normed spaces and innerproduct spaces

Vector spaces formalize the notion of linear combinations of objects that might
be vectors in the plane, polynomials, smooth functions, sequences. Many problems
in engineering, mathematics and science are naturally formulated and solved in this
setting due to their linear nature. Vector spaces are ubiquitous for several reasons,
e.g. as linear approximation of a non-linear object, or as building blocks for more
complicated notions, such as vector bundles over topological spaces.

In this course vector spaces are equipped with additional structures in order to
measure the distance between elements and formulate convergence of sequences of
elements of vector spaces, or to provide quantitative and qualitative information
on operators.

A set V is a vector space if it is possible to build linear combinations out of the
elements in V. More formally, on V we have the operations of addition of vectors
and multiplication by scalars. The scalars will be taken from a field F, which is
either the real numbers R or C. In various situations F might also be a finite field
or a field different from R and C. If it is necessary we will refer to these vector
spaces as real or complex vector spaces.

Developing an understanding of these vector spaces is one of the main objectives
of this course. The axioms for a vector space specify the properties that addition
of vectors and scalar multiplication.

Definition 2.1.1. A vector space over a field F is a set V together with the
operations of addition V × V → V and scalar multiplication F× V → V satisfying
the following properties:

(1) Commutativity: u+ v = v + u for all u, v ∈ V and (λµv) = λ(µv) for all
λ, µ ∈ F;

(2) Associativity: (u+ v) + w = u+ (v + w) for all u, v, w ∈ V ;
(3) Additive identity: There exists an element 0 ∈ V such that 0 + v = v for

all v ∈ V ;
(4) Additive inverse: For every v ? V , there exists an element w ? V such

that v+w = 0;
(5) Multiplicative identity: 1v = v for all v ∈ V ;
(6) Distributivity: λ(u+v) = λu+λv and (λ+µ)u = λu+µu for all u, v ∈ V

and λ, µ ∈ F.

13
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The elements of a vector space are called vectors. Given v1, ..., vn be in V and
λ1, ..., λn ∈ F we call the vector

v = λ1v1 + · · ·+ λnvn

a linear combination.

Our focus will be on three classes of examples.

Examples 2.1.2. We define some useful vector spaces.

• Spaces of n-tuples: The set of tuples (x1, ..., xn) of real and com-
plex numbers are vector spaces Rn and Cn with respect to component-
wise addition and scalar multiplication: (x1, ..., xn) + (y1, ..., yn) = (x1 +
y1, ..., xn + yn) and λ(x1, ..., xn) = (λx1, ..., λxn).

• The space of polynomials of degree at most n, denoted by Pn, where we
define the operations of multiplication and addition coefficient-wise: For
p(x) = a0 + a1x+ · · · anxn and q(x) = b0 + b1x+ · · · bnxn we define

(p+q)(x) = (a0+b0)+(a1+b1)x+· · · (an+bn)xn and (λp)(x) = λa0+λa1x+· · ·λanxn

for λ ∈ F.

The space of all polynomials P is the vector space of polynomials of arbi-
trary degrees.
• Sequence spaces: s denotes the set of sequences, c the set of all conver-

gent sequences, c0 the set of all convergent sequences tending to 0, cf the
set of all sequences with finitely many non-zero elements.
• Function spaces: The set of continuous functions C(I) on an interval

of R, popular choices for I are [0, 1] and R. We define addition and scalar
multiplication as follows: For f, g ∈ C(I) and λ ∈ F

(f + g)(x) = f(x) + g(x) and (λf)(x) = λf(x).

We denote by C(n)(I) the space of n-times continuously differentiable
functions on I and the space C∞(I) of smooth functions on I is the space
of functions with infinitely many continuous derivatives. More generally,
the set F(X) of functions from a set X to F is a vector space for the
operations defined above. Note that F({1, 2, ..., n}) is just Fn and hence
the first class of examples.

There are relations between the vector spaces in the aforementioned list. We
start with clarifying their inclusion properties.

Definition 2.1.3. A subset W of a vector space V is called a subspace if any
linear combination of vectors of W is itself a vector in W .

If W is a subspace of V , then addition and scalar multiplication restricted to
W , gives W the structure of a vector space.

Here are some examples of vector subspaces: Pn ⊂ P ⊂ F , C∞(I) ⊂ C(n)(I) ⊂
C(I), cf ⊂ c0 ⊂ c ⊂ s. We define the linear span, spanW , of a subset M of a vector
space V to be the intersection of all subspaces of V containing M .
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2.1.1. Normed spaces. The norm on a general vector space generalizes the
notion of the length of a vector in R2 and R3.

Definition 2.1.4. A normed space (X, ‖.‖) is a vector space X together with
a function ‖.‖ : X → R, the norm on X, such that for all x, y ∈ X and λ ∈ R:

(1) Positivity: 0 ≤ ‖x‖ <∞ and ‖x‖ = 0 if and only if x = 0;
(2) Homogeneity: ‖λx‖ = |λ|‖x‖;
(3) Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Normed spaces have a rich structure.

Proposition 2.1.5. Let (X, ‖.‖) be a normed space. Then d : X × X →
R defined by d(x, y) = ‖x − y‖ satisfies for all x, y, z ∈ X (i) d(x, y) ≥ 0 and
d(x, x) = 0 if and only if x = 0 (positivity); (ii) d(x, y) = d(y, x) (symmetry); (iii)
d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

The function d(x, y) = ‖x−y‖ on the vector space X is an example of a distance
function on X, aka as a metric. We will later discuss such distance functions on a
general set.

Proof. The properties (i)-(iii) are direct consequences of the axioms for a
norm. In particular, (i) follows from property (1) of a norm, (ii) is derived from
property (ii) of a norm for λ = −1 and (iii) is deduced from property (3) of a
norm. �

The metric d on X is also compatible with the linear structure of a vector
space:

• Translation invariance: d(x+ z, y + z) = d(x, y) for all x, y, z ∈ X;
• Homogeneity: d(λx, λy) = |λ|d(x, y) for all x, y ∈ X and scalars λ ∈ R.

The metric d on X gives us a way to generalize intervals in R, called balls.

Definition 2.1.6. For r > 0 and x ∈ X we define the open ball Br(x) of radius
r and center x as the set

Br(x) = {y ∈ X : ‖x− y‖ < r},
and the closed ball Br(x) of radius r and center x as

Br(x) = {y ∈ X : ‖x− y‖ ≤ r}.

The translation invariance and the homogeneity imply that the ball Br(x) is
the image of the unit ball B1(0) centered at the origin under the affine mapping
f(y) = ry + x.

The balls Br(x) have another peculiar feature. Namely, these are convex subsets
of X.

Definition 2.1.7. Let X be a vector space.

• For two points x, y ∈ X the interval [x, y] is the set of points {z| z =
λx+ (1− λ)y 0 ≤ λ ≤ 1}.

• A subset E of X is called convex if for any two points x, y ∈ E the interval
[x, y] is also in E.

The notion of convexity is central to the theory of vector spaces and enters in
an intricate manner in functional analysis, numerical analysis, optimization, etc. .
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Lemma 2.1. Let (X, ‖.‖) be a normed vector space. Then the unit ball B1(0) =
{x ∈ X| ‖x‖ ≤ 1} is a convex set.

Proof. For x, y ∈ B1(0) we have that ‖λx+(1−λ)y‖ ≤ |λ|‖x‖+|1−λ|‖y‖ = 1,
because ‖x‖, ‖y‖ are both less than or equal to 1. Thus λx+ (1− λ)y ∈ B1(0). �

The real numbers with the absolute value is a normed space (R, |.|) and the
open ball Br(x) is the open interval (x− r, x+ r) and Br(x) is the closed interval
[x− r, x+ r].

A fundamental class of metric spaces is Rn with the `p-norms.

Definition 2.1.8. For p ∈ [1,∞) we define the `p-norm ‖.‖p on Rn by assigning
to x = (x1, ..., xn) ∈ Rn the number ‖x‖p:

‖x‖p = (|x1|p + |x2|p + · · · |xn|p)1/p

. For p =∞ we define the `∞-norm ‖.‖∞ on R by

‖x‖∞ = max |x1|, ..., |xn|.

The notation for ‖.‖∞ is justified by the fact that it is the limit of the ‖.‖p-
norms.

Lemma 2.2. For x ∈ Rn we have that

‖x‖∞ = lim
p→∞

‖x‖p.

Some inequalities enter the stage: Hölder’s inequality and Young’s inequality.
For p ∈ (1,∞) we define its conjugate q as the number such that

1

p
+

1

q
= 1.

If p = 1, then we define its conjugate q to be ∞ and if p =∞ then q = 1.

Lemma 2.3 (Young’s inequality). For p ∈ (1,∞) and q its conjugate we have

ab ≤ ap

p
+
bq

q
,

for a, b ≥ 0.

Proof. Consider the function f(x) = xp−1 and integrate this with respect to
x from zero to a. Now take the inverse of f given by f−1(y) = yq−1 and integrate
it from zero to V . Then the sum of these two integrals always exceeds the product
ab, but the integrals are ap/p and bq/q. Hence we have established the desired
inequality. �

A consequence of Young’s inequality is Hölder’s inequality.

Lemma 2.4. Suppose p ∈ (1,∞) and x = (x1, ..., xn) and y = (y1, ..., yn) are
vectors in Rn. Then

|
n∑
i=1

xiyi ≤
( n∑
i=1

|xi|p
)1/p( n∑

i=1

|yi|q
)1/q

.
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Proof. Set ai = |xi|/(
∑n
i=1 |xi|p)1/p and bi = |yi|/(

∑n
i=1 |yi|q)1/q. Then we

have
∑
i a
p
i = 1 and

∑
i b
q
i = 1. By Young’s inequality

n∑
i=1

|xi||yi| ≤ (

n∑
i=1

|xi|p)1/p(

n∑
i=1

|yi|q)1/q.

�

Proposition 2.1.9. The space Rn with the `p-norm ‖.‖p is a normed space for
p ∈ [1,∞].

As an exercise I propose to draw the unit balls of (R2, ‖.‖1), (R2, ‖.‖2) and
(R2, ‖.‖∞).

Proof. First we show that `p is a vector space for p ∈ [1,∞): For λ ∈ F and
x ∈ `p we have λx ∈ `p. One has to work a little bit to see that for x, y ∈ `p also
x+ y ∈ `p:

‖x+ y‖pp =

∞∑
n=1

|xn + yn|p

≤
∞∑
n=1

|2 max{|xn|, |yn|}|p

= 2p
∞∑
n=1

|max{|xn|, |yn|}|p

≤ 2p(

∞∑
n=1

|xn|p +

∞∑
n=1

|yn|p) = 2p(‖x‖pp + ‖y‖pp) <∞.

Positivity and homogeneity are consequences of the corresponding properties of the
absolute value of a real number. The triangle inequality is the non-trivial assertion
that we split up in three cases p = 1, p = ∞ and p ∈ (1,∞). Let x = (x1, ..., xn)
and y = (y1, ..., yn) be points in Rn.

(1) For p = 1 we have

‖x+ y‖1 = |x1 + y1|+ · · ·+ |xn + yn| ≤ |x1|+ |y1|+ · · ·+ |xn|+ |yn| ≤ ‖x‖1 + ‖y‖1

.
(2) For p =∞ the argument is similar:

‖x+ y‖∞ = max{|x1 + y1|, ..., |xn + yn|}
= max{|x1|+ |y1|, ..., |xn|+ |yn|}
= max{|x1|, ..., |xn|}+ max{|y1|, ..., |yn|} = ‖x‖∞ + ‖y‖∞.
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(3) The general case p ∈ (1,∞): The triangle inequality in this case is also
known as Minkowski’s inequality. We deduce it from Hölder’s inequality

‖x+ y‖pp =

n∑
i=1

|xi + yi|p

≤
n∑
i=1

|xi + yi|p−1(|xi|+ |yi|)

≤
n∑
i=1

|xi + yi|)p−1|xi|+
n∑
i=1

|xi + yi|p−1|yi|

≤
( n∑
i=1

|xi + yi|p
)1/q(( n∑

i=1

|xi|p
)1/p

+
( n∑
i=1

|yi|p
)1/p)

= ‖x+ y‖1/qp (‖x‖p + ‖y‖p)

Dividing by ‖x+ y‖1/qp and using 1− 1/q = 1/p we arrive at Minkowski’s
inequality:

‖x+ y‖p ≤ ‖x‖p + ‖y‖p.
�

A natural generalization of the normed spaces (Rn, ‖.‖p) is to replace tuples of
finite length with ones of infinite length x = (x1, x2, ....) with xi ∈ R, i.e. (R∞, ‖.‖p).
The standard notation for these normed spaces is (`p, ‖.‖p) because these are special
classes of the Lebesgue spaces Lp(N, dµ) for the counting measure. One often refers
to these spaces as “little Lp”-spaces.

Example 2.1.10. For 1 ≤ p < ∞ the spaces (`p, ‖.‖p) are normed spaces of
convergent sequences x = (xi)i such that

‖x‖p = |x1|p + |x2|p + · · · <∞,

and (`∞, ‖.‖∞) is the space of bounded sequences (xi)i with respect to the norm

‖x‖∞ = sup{|xi| : i = 1, 2, ...}.

We have the following inclusions:

`1 ⊂ `2 ⊂ · · · `∞.

For example (1/n)n is in `p for p ≥ 2, but not in `1.

Exercise 2.1.11. Suppose p, q ∈ [1,∞]. Show that for p < q the space `p is a
proper subspace of `∞.

Let us view these vectors of infinite length as real-valued sequences. Then
the assumption ‖x‖p imposes conditions on the structure of the sequences. For
example, ‖x‖∞ = supi |xi| is finite if and only if x is a bounded sequence, and
‖x‖1 =

∑∞
i=1 |xi| is finite if the sequence (xi) is absolutely summable. The norms

‖.‖p for 1 ≤ p < ∞ describe different notions of convergence, but ‖.‖∞ does not
impose convergence but just boundedness.

Proposition 2.1.12. For 1 ≤ p ≤ ∞ the spaces (`p, ‖.‖p) are normed spaces.
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The proof of the finite-dimensional setting extends to the infinite-dimensional
setting because Hölder’s inequality is valid for `p-norms.

Lemma 2.5 (Hölder’s inequality). For 1 < p < ∞ and q its conjugate index,
x ∈ `p and y ∈ `q we have

∞∑
i=1

|xi||yi| ≤ ‖x‖p‖y‖q.

2.1.2. Innerproduct spaces. For vectors in R3 we have the ‘dot product‘ aka
‘scalar product‘ that assigns to a pair of vectors x = (x1, x2, x3) and y = (y1, y2, y3)
the number

〈x, y〉 = x1y1 + x2y2 + x3y3.

Pythagoras’ theorem gives the length of x = (x1, x2, x3) as
√
x2

1 + x2
2 + x2

3. Note

that 〈x, x〉 =
√
x2

1 + x2
2 + x2

3. Innerproduct spaces are a generalization of these
basic facts from Euclidean geometry to general vector spaces.

Definition 2.1.13. Let X be a vector space. An innerproduct on X is a map
〈., .〉 : X ×X → F, which has the following properties:

(1) (Linearity) For vectors x1, x2, y ∈ X and scalars λ1, λ2 ∈ F we have
〈λ1x1 + λ2x2, y〉 = λ1 〈x1, y〉+ λ2 〈x2, y〉.

(2) (Symmetry) For vectors x, y ∈ X we have 〈x, y〉 = 〈y, x〉 for F = R and

〈x, y〉 = 〈y, x〉 for F = C.
(3) (Positive definiteness) For any x ∈ X we have 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if

and only if x = 0.

We call (X, 〈., .〉) an innerproduct space and denote by ‖x‖ = 〈x, x〉1/2 the length
of x.

We state a theorem of utmost importance about innerproduct spaces.

Theorem 2.6 (Cauchy-Schwarz). Suppose X is an innerproduct space. Then
for all x, y ∈ X we have

| 〈x, y〉 | ≤ ‖x‖‖y‖.
We have | 〈x, y〉 | = ‖x‖‖y‖ if and only if x = λy for some λ ∈ F.

Proof. Suppose x 6= 0 otherwise the inequality is trivial. Then we consider
z = 〈x, y〉x− 〈x, x〉 y. By the properties of an innerproduct we have

0 ≤ 〈z, z〉 = | 〈x, y〉 |2 〈x, x〉 − 2| 〈x, y〉 |2 〈x, x〉+ 〈x, x〉2 〈y, y〉 ,
hence we obtain

| 〈x, y〉 |2 〈x, x〉 ≤ 〈x, x〉2 〈y, y〉
and after dividing through by the strictly positive number 〈x, x〉 we obtain the
Cauchy-Schwarz inequality.

We have equality if and only if z = 0, which yields that x = λy for λ = 〈x, x〉 〈x, y〉−1
.

�

As first consequence we deduce that innerproduct spaces (X, 〈., .〉) are normed

spaces for ‖x‖ = 〈x, x〉1/2.

Proposition 2.1.14. For (X, 〈., .〉) the expression ‖x‖ = 〈x, x〉1/2 defines a
norm on X.
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Proof. Homogeneity follows from the linearity of the innerproduct. The tri-
angle inequality follows from Cauchy-Schwarz:

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2 〈x, y〉 ≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖,
so the right side is (‖x‖+ ‖y‖)2 and thus we have ‖x+ y‖ ≤ ‖x‖+ ‖y‖. �

The sequence space `2 was the first example of an innerproduct space, studied
by D. Hilbert in 1901 in his work on Fredholm operators.

Example 2.1.15. The sequence space `2 is an innerproduct space for real-
valued sequences (xi), (yi)

〈x, y〉 =

∞∑
i=1

xiyi

and

〈x, y〉 =

∞∑
i=1

xiyi

for complex-valued sequences.

The innerproduct 〈., .〉 and its associated norm ‖.‖ = 〈., .〉1/2 are related by the
polarization identity.

Lemma 2.7 (Polarization identity). Let (X, 〈., .〉) be an innerproduct space with

norm ‖.‖ = 〈., .〉1/2.

(1) For a real innerproduct space we have 〈x, y〉 = 1
4 (‖x+ y‖2−‖x− y‖2) for

all x, y ∈ X.
(2) For a complex innerproduct space we have 〈x, y〉 = 1

4

∑4
k=1 i

k‖x+ iky‖2.

Proof. The arguments are based on the homogeneity properties of innerpro-
ducts.

(1) ‖x+(−1)ky‖2 = ‖x‖2 +‖y‖2 +(−1)k 〈x, y〉 for k = 0, 1. Adding these two
identities yields the desired polarization identity.

(2) Left as an exercise.

�

Jordan and von Neumann gave an elementary characterizations of norms that
arise from innerproducts.

Theorem 2.8 (Jordan-von Neumann). Suppose (X, ‖.‖) is a complex normed
space. If the norm satisfies the parallelogram identity

‖x− y‖2 + ‖x+ y‖2 = 2‖x‖2 + 2‖y‖2 forall x, y ∈ X,
then X is a Hilbert space for the innerproduct

〈x, y〉 =
1

4

4∑
k=1

ik‖x+ iky‖2.

The proof of this useful result is elementary and will be given in the supplement
to the chapter.

Innerproduct spaces are the infinite-dimensional counterparts of (Rn, ‖.‖2) and
share many properties with these finite-dimensional spaces, in contrast to gene-
ral normed spaces such as C(I) with the sup-norm.
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Example 2.1.16. The supremums norm of C[0, 1] does not come from an in-
nerproduct. Use the polarization identity to show this fact.

A way to address this issue is to change the norm. Namely, if one instead equips
C(I) with the 2-norm ‖.‖2 for functions, then one gets an innerproduct space.

Lemma 2.9. Let I be an interval of R. Then the space of continuous complex-
valued functions C(I) is an innerproduct space for

〈f, g〉 =

∫
I

f(x)g(x)dx

for functions f ∈ C(I) with finite norm

‖f‖2 =

∫
I

|f(x)|2dx <∞.

Proof. We have 〈λf, g〉
∫
I
λf(x)g(x)dx = λ

∫
I
f(x)g(x)dx = λfg for λ ∈ C,

and 〈f, g〉 =
∫
I
f(x)g(x)dx =

∫
I
f(x)g(x)dx. Note that |f(x)|2 is non-negative for

f ∈ C(I) and that it is zero for those x ∈ I with f(x) = 0. By the properties of
the integral we have shown the positivity of 〈., .〉. �

Historical note: The Cauchy-Schwarz inequality for (C(R), 〈., .〉 is due to Karl
H. A. Schwarz in 1888 for continuous functions, and Cauchy for Rn with the Euc-
lidean innerproduct.

Innerproducts yield a generalization of the notion of orthogonality of elements.

Definition 2.1.17. Two elements x, y in an innerproduct space (V, 〈., , 〉) are
orthogonal to each other if 〈x, y〉 = 0

The theorem of Pythagoras is true for any innerproduct space (X, 〈., .〉).

Proposition 2.1.18 (Pythagoras’s Theorem). Let (X, 〈., .〉) be an innerproduct
space. For two orthogonal elements x, y ∈ X we have

‖x+ y‖2 = ‖x‖2 + ‖y‖2.

Proof. The argument is based on the fact that 〈x, x〉 is a norm. By assump-
tion we have 〈x, y〉 = 0

‖x+ y‖2 = ‖x‖2 + 2Re 〈x, y〉+ ‖y‖2 = ‖z‖2 + ‖y‖2.

�

As an example we consider some orthogonal vectors in (C([0, 1]), 〈., .〉. For
m 6= n we define the exponentials em(x) = e2πimx and en(x) = e2πinx. Then

〈em, en〉 =

∫ 1

0

e2πi(m−n)xdx = (2πi(m− n))−2(e2πi(m−n) − 1) = 0.

Note that 〈en, en〉 = 1 for any n ∈ Z. With the help of Kronecker’s delta function
we may express this as 〈em, en〉 = δm,n.

The theorem of Pythagoras is now at our disposal in any innerproduct spaces such
as `2.
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Definition 2.1.19. A set of vectors {ei}i∈I in an innerproduct space (X, 〈., , 〉)
is called an orthogonal family if 〈ei, ej〉 = 0 for all i 6= j. In case that the orthogonal
family {ei}i∈I in V satisfies in addition ‖ei‖ = 1 for any i ∈ I, then we refer to it
as orthonormal family.

The set of vectors {ei}i∈I is in general an infinite set. The exponentials
{e2πnx}n∈Z is an orthonormal family in C[0, 1] with respect to 〈., .〉2 and is a system
of utmost importance, e.g. it lies at the heart of Fourier analysis or more generally
harmonic analysis.

Orthonormal families have an interesting property, known as Bessel’s inequality.

Proposition 2.1.20 (Bessel’s inequality). Suppose {ei}i∈I is a countably infi-
nite orthonormal family in an innerproduct space (X, 〈., .〉). Then for any x ∈ X
we have ∑

i∈I
| 〈x, ei〉 |2 ≤ ‖x‖2.

Recall that a set I is countably infinite if there exists a bijection between I and
the set of natural numbers N, e.g. the set of integers Z.

Proof. It suffices to check the inequality for I = N. Consider the vector
x̃ =

∑n
i=1 〈x, ei〉 ei. for each n ∈ N. By the orthonormality of the set {ei}i∈I we

have

0 ≤ ‖x− x̃‖2 = ‖x‖2 −
n∑
i=1

| 〈x, ei〉 |2.

Thus the sequence of real numbers (
∑n
i=1 | 〈x, ei〉 |2) is bounded above and nonde-

creasing. Therefore it has a limit

∞∑
i=1

| 〈x, ei〉 |2 ≤ ‖x‖2.

�

The case of equality in Bessel’s inequality characterizes an important properties
of orthonormal systems and will be discussed in the chapter on Hilbert spaces.

For example Bessel’s inequality for the set of exponentials {e2πinx}n∈Z in (C[0, 1], 〈., .〉2)
is a statement about the Fourier coefficients of f

f̂(n) =

∫ 1

0

f(x)e−2πnxdx,

then we have ∑
n∈Z
|f̂(n)|2 ≤ ‖f‖22.

Therefore we will refer to (〈x, ei〉)i∈I as the Fourier coefficients of x ∈ X and of∑
i∈I
〈x, ei〉 ei

as the Fourier series of x.
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2.1.3. Bounded operators between normed spaces. Mappings between
vector spaces are of interest in a wide range of applications. We restrict our focus
to mappings that respect the vector space structure: linear mappings aka linear
operators.

Definition 2.1.21. Let X,Y be vector spaces over the same scalar field F.
Then a mapping T : X → Y is linear if

T (x+ λy) = Tx+ λTy

for all x, y ∈ X and λ ∈ F. We denote by L(X,Y ) the set of all linear operators
between X and Y .

Linear mappings are a special class of functions between two sets. Hence it has
the structure of a vector space.Here are some examples of linear mappings for the
classes of vector spaces of our interest.

(1) Linear mappings between Fn and Fm are given by m×n matrices A with
entries in F, x 7→ Ax for x ∈ Fn.

(2) On the space of polynomials Pn of degree at most n we define the differen-
tiation operator Dp(x) = a1x + · · ·manxn−1, the operator p 7→

∫
p(x)dx

and the evaluation operator Tp(x) = p(0).
(3) Operators on sequence spaces: For an element of the vector space s,

a sequence x = (xn)n, we define the left shift Lx = (0, x0, x1, x2, ...),
the right shift Rx = (x1, x2, ...) and the multiplication operator Tax =
(a0x0, a1x1, ...) for a sequence a = (a0, a1, ...) ∈ s. On the vector space of
convergent sequences c we define Tx = limn xn for x = (xn) ∈ c.

(4) Operators on function spaces: The set of continuous functions C(I) on an
interval of R, popular choices for I are [0, 1] and R. For f ∈ C(I) we define
the integral operator f 7→

∫
k(x, y)f(y)dx for a function k defined on I×I,

the kernel of the operator, and the evaluation operator Tf(x) = f(a) for
a ∈ I. For a differentiable continuous function f we are able to study the
differentiation operator Df(x) = f ′(x).

Norms on these spaces provide a tool to understand the properties of these mappings
via the notion of operator norm that measures the size of the measure of distortion
of x induced by T : For normed spaces (X, ‖.‖X), (Y, ‖.‖Y ) and a linear mapping
T : X → Y we are interested in operators such that there exists a constant c such
that

‖Tx‖Y ≤ c‖x‖X forall x ∈ X.
Often we will omit the subscripts to ease the notation. The operators with a finite c
are of particular relevance and are called bounded operators. We denote by B(X,Y )
the set of all bounded linear operators from X to Y .

Definition 2.1.22. Let T be a linear operator between the normed spaces
(X, ‖.‖X) and (Y, ‖.‖Y ). The operator norm of T is defined by

‖T‖ = sup{‖Tx‖Y
‖x‖X

: ‖x‖X 6= 0}.

Sometimes we denote the operator norm of T by ‖T‖op.

Lemma 2.10. For T ∈ B(X,Y ) the following quantities are all equal to the
operator norm ‖T‖ of T :



24 Chapter 2

(1) C1 = inf{c ∈ R : ‖Tx‖Y ≤ c‖x‖X},
(2) C2 = sup{‖Tx‖Y : ‖x‖X ≤ 1},
(3) C3 = sup{‖Tx‖Y : ‖x‖X = 1}.

Proof. The argument is based on some inequalities:

(1) C2 ≤ C1: By definition of C1 we have ‖Tx‖ ≤ C1‖x‖. Hence for all
x ∈ B1(0) we have ‖Tx‖ ≤ C1 and thus we have C2 ≤ C1.

(2) C3 ≤ C2: For all x ∈ B1(0) we have ‖Tx‖ ≤ C2. Pick an x with ‖x‖ = 1
and define the sequence of vectors (xn = (1 − 1/n)v)n which all have
‖xn‖ ≤ 1 and hence ‖Txn‖ ≤ C2 for all n ∈ N. Taking the limit gives
‖Tx‖ ≤ C2 and thus C3 ≤ C2.

(3) ‖T‖ ≤ C3 : By definition of C3 we have ‖Tx‖ ≤ C3 for all x with ‖x‖ = 1.
Take an arbitrary non-zero vector x ∈ X. Then x/‖x‖ has unit length

and hence ‖T ( x
‖x‖ )‖ = ‖Tx‖

‖x‖ ≤ C3, which establishes the desired inequality

‖T‖ ≤ C3.
(4) We have ‖Tx‖‖x‖ ≤ ‖T‖ for all x ∈ X. Hence ‖Tx‖ ≤ ‖T‖‖x‖ for all x ∈

X. Hence we have C1 ≤ ‖T‖. Hence we have C1 ≤ C2 ≤ C3 ≤ ‖T‖ ≤ C1

and so the assertion is established.

�

These different expressions for the operator norm of a linear operator are ele-
mentary but nonetheless useful. Before we discuss some examples we note some
properties of the operator norm.

Proposition 2.1.23. For S, T ∈ B(X,Y ) we have

(1) ‖I‖ = 1 for the identity operator I : X → X.
(2) ‖λS + µT‖ ≤ |λ|‖S‖+ |µ|‖T‖ for λ, µ ∈ F .
(3) Submultiplicativity: ‖S ◦ T‖ ≤ ‖S‖‖T‖.

Proof. (1) By the definition of the operator norm we have ‖I‖ = 1.
(2) The triangle inequality for norms yields the assertion.
(3) By definition we have

‖S ◦ T‖ = sup{‖STx‖ : ‖x‖ = 1} ≤ sup{‖S‖‖Tx‖ : ‖x‖ = 1} = ‖S‖‖T‖.
�

Proposition 2.1.24. The vector space B(X,Y ) of bounded operators between
two normed spaces is a normed spaces wrt the operator norm.

Proof. The preceding proposition implies the homogeneity property and the
triangle inequality. The operator norm is clearly positive definite, and we have
‖T‖ = 0 if and only if T = 0 because it is defined in terms of a norm on Y . fined
in terms of a norm on Y . �

We treat some of the operators defined above.

(1) The right shift Rx = (0, x0, x1, x2, ...) has ‖R‖ = 1 and also the left shift
Lx = (x2, x3, ...) ‖L‖ = 1 on `∞. For the multiplication operator Tax =
(a0x0, a1x1, ...) for a sequence a = (a0, a1, ...) ∈ s we have ‖Ta‖ = ‖a‖∞
on `∞. Let us look at the right shift operator. The operator norm is given
by ‖R‖ = sup{‖Rx‖∞ : ‖x‖∞ = 1}:

‖Rx‖∞ = 0 + |x0|2 + |x1|2 + · · · = ‖x‖∞ = ‖x‖∞,
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for all x ∈ `∞, hence ‖R‖ = 1. In a similar way one gets the norms of the
other operators.

(2) The operator norm of the integral operator Tkf(x) =
∫ b
a
k(x, y)f(y)dy

on C[a, b] with ‖.‖∞ for an interval of finite length with a kernel k ∈
C([a, b]× [a, b]) is (b− a) |k‖∞. Note that

‖Tkf‖∞ = sup{|
∫ b

a

k(x, y)f(y)dy| : x ∈ [a, b]} ≤ sup{
∫ b

a

|k(x, y)||f(y)|dy : x ∈ [a, b]} ≤ ‖k‖∞‖f‖∞(b−a),

so we have ‖Tkf‖∞ ≤ ‖k‖∞‖f‖∞(b − a) for all non-zero f ∈ C[a, b], i.e.
‖Tk‖ ≤ ‖k‖∞(b− a). For the constant function f(x) = 1 for all x ∈ [a, b]
we get ‖Tk‖ = 1.

Some classes of operators on a normed space X: (i) isometries on X are linear
operators T with ‖Tx‖ = ‖x‖ for all x ∈ X, (ii) projections are linear operators P
on X satisfying P 2 = P .





CHAPTER 3

Banach spaces and Hilbert spaces

3.1. Banach spaces and Hilbert spaces

We extend the topological notions introduced for the real line to general normed
spaces and we focus on completeness in this section. Complete normed spaces
are nowadays called Banach spaces, after the numerous seminal contributions of
the Polish mathematician Stefan Banach to these objects. The class of complete
innerproduct spaces are named after David Hilbert, who introduced the sequence
space `2. His students made numerous contributions to the theory of innerproduct
spaces, e.g. Erhard Schmidt, Hermann Weyl, Otto Toeplitz,... .

3.1.1. Completeness. We start with the generalization of open and closed
intervals in R to general normed spaces.

Definition 3.1.1. Let (X, ‖.‖) be normed space.

(1) Br(x) = {y ∈ X : ‖y − x‖ < r} denotes the open ball of radius r around
a point x ∈ X.

(2) Br(x) = {y ∈ X : ‖y− x‖ ≤ r} denotes the closed ball of radius r around
a point x ∈ X.

For the sequence spaces `p open balls Br(x) around x = (xk) are all sequences
y = (yk) ∈ `p with ‖x− y‖ < r. In the setting of (C(I), ‖.‖) the ball Bε(f) are all
continuous functions g that are in an ε-strip of f .

Here are the the notions of a convergent sequence and Cauchy sequence in a
normed space.

Definition 3.1.2. Let (X, ‖.‖) be a normed space.

(1) A sequence (xk)k∈N converges to x ∈ X if for a given ε > 0 there exists a
N such that ‖x− xk‖ < ε for k ≥ N .

(2) A sequence (xk)k∈N is a Cauchy sequence if for any ε > 0 there exists a
N such that ‖xm − xn‖ < ε for all m,n > N .

This notion of sequences is a natural generalization of the one for real and
complex numbers. Note that the elements of the sequences are vectors in a normed
space. For example, a sequence in `2 is a sequence where the elements themselves
are also sequences. The difference between the the normed space Q and the real
numbers R viewed as normed space is that not all Cauchy sequences in Q converge
to a rational number but that is the case for R.

Definition 3.1.3. A normed space (X, ‖.‖) is called complete if every Cauchy
sequence (xk) in X has a limit x belonging to X. Moreover, a complete normed
space is referred to as Banach space and a complete innerproduct space is known
as Hilbert space.

27
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Let us start with an elementary observation that is a straightforward conse-
quence of the definitions.

Lemma 3.1. A subspace M of a Banach space is complete if and only if M is
closed.

Theorem 3.2. For p ∈ [1,∞] the normed space (Rn, ‖.‖p) is complete.

The infinite-dimensional counterpart of the previous is also true, but its proof
is more intricate.

Theorem 3.3. For p ∈ [1,∞] the normed spaces (`p, ‖.‖p) are complete.

Proof. We show the completeness of `1 and that of `∞, since the arguments
for 1 < p <∞ are analogous to the ones for `1 and the case of `∞ requires a slightly
different reasoning. We discuss the case of real-valued sequences.

(1) Completeness of `1: The argument is split into three steps.
Step 1: Find a candidate for the limit. Let (xn)n be a Cauchy sequence

in `1. We denote the n-th element of the sequence by xn = (x
(n)
1 , x

(n)
2 , ...).

Note that |x(m)
1 − x

(n)
1 | ≤ ‖xm − xn‖1, so the first coordinates (x

(n)
1 )n

are a Cauchy sequence of real numbers and hence converge to some real

number z1. Similarly, the other coordinates converge: zj = limn→∞ x
(n)
j .

Hence our candidate for the limit of (xn) is the sequence z = (z1, z2, ...).
Step 2: Show that z is in `1. We have that

N∑
j=1

|zj | =
N∑
j=1

lim
n
|x(n)
j | = lim

n

N∑
j=1

|x(n)
j |,

where the interchange of the limit with the sum of a finite number of real
numbers is no problem. Since Cauchy sequences are bounded, there is a
constant C > 0 such that ‖xn‖1 < C for all n. Thus for any N

N∑
j=1

|x(n)
j | ≤

∞∑
j=1

|x(n)
j | = ‖xn‖1 < C.

Letting n→∞ we find that

N∑
j=1

|zj | ≤ ‖xn‖1 < C

for arbitrary N . Hence we have z ∈ `1.
Step 3: Show the convergence. We want to prove that ‖xn − z‖1 → 0 for
n→∞.
Given ε > 0, pick N1 so that if m,n > N1 then ‖xm − xn‖1 < ε. Hence
for any fixed N and m,n > N1, we find

N∑
j=1

|x(m)
j − x(n)

j | ≤
∞∑
j=1

|x(m)
j − x(n)

j | = ‖xn − xm‖ < ε.

Fix n > N1 and N , let m→∞ to obtain

N∑
j=1

|x(n)
j − zj | = lim

n→∞
|x(n)
j − x(m)

j | ≤ ε.
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Since this is true for all N we have demonstrated that

‖xn − z‖1 < ε.

That is our desired conclusion.
(2) Completeness of `∞: The argument is split into three steps.

Step 1: Find a camdidate for the limit. Let (xn)n be a Cauchy sequence in

`∞. We denote the n-th element of the sequence by xn = (x
(n)
1 , x

(n)
2 , ...).

Note that |x(m)
k − x

(n)
k | ≤ ‖xm − xn‖∞ for all k and all m,n > N , so

the k-th coordinates (x
(n)
k )n are a Cauchy sequence of real numbers and

hence converge to some real number zk. Similarly, the other coordinates

converge: zk = limm→∞ x
(n)
k / Hence our candidate for the limit of (xn) is

the sequence z = (z1, z2, ...).
Step 2: Show that Z is in `∞. We have that

sup{|zj | : j = 1, ..., N} = sup{lim
n
|x(n)
j |j = 1, ..., N} = lim

n
{sup |x(n)

j |j = 1, ..., N},

where the interchange of the limit with the sum of a finite number of real
numbers is no problem. Since Cauchy sequences are bounded, there is a
constant C > 0 such that ‖xn‖1 < C for all n. Thus for any N

lim
n
{sup |x(n)

j |j = 1, ..., N}| ≤ ‖xn‖∞ < C.

Thus we find that ‖xn‖∞ < C, i.e. we have z ∈ `∞.
Step 3: Show the convergence. We want to prove that ‖xn − z‖∞ → 0 for
n→∞.
Given ε > 0, pick N1 so that if m,n > N1 then

|x(k)
m − x(k)

n | ≤ ‖zl − x(k)
n ‖∞ < ε

for all k. Taking limits as m→∞ we have

|zk − x(k)
n | ≤ ε

Taking supremum in k, we obtain

sup
k
|zk − x(k)

n | ≤ ε

for all n > N1, i.e. ‖xn − z‖∞ ≤ ε for all n > N . Consequently we have
that xn converges to z in (`∞, ‖.‖∞).

�

The completeness of the space of function spaces for a closed and bounded
interval is of utmost importance in many arguments.

Theorem 3.4. For a finite interval [a, b] the normed space C[a, b] with respect
to the sup-norm ‖.‖∞ is complete.

For the proof we have to discuss notions of convergence for sequences of functi-
ons. Observe that the ‖f−g‖∞-norm measures the distance between two functions
by looking at the point they are the furthest apart.

Lemma 3.5. For f, g ∈ C[a, b] we have that sup{|f(x)−g(x)|x ∈ [a, b]} is finite,
and there is a y ∈ [a, b] such that d∞(f, g) = sup{|f(x)− g(x)|x ∈ [a, b]}.
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Proof. We show that d(x) = |f(x)− g(x)| is continuous on [a, b] and thus by
the Extreme Value Theorem the assertion follows. The continuity of d is deduced
from

|d(x)− d(y)| ≤ ||f(x)− g(x)| − |f(y)− g(y)|| ≤ |f(x)− f(y)|+ |g(y)− g(x)|.
Since f and g are continuous at x there is for any given ε > 0 a δ > 0 such that
|f(x)− f(y)| < ε/2 and |g(x)− g(y)| < ε/2 for |x− y| < δ. Hence

|d(x)− d(y)| ≤ |f(x)− f(y)|+ |g(y)− g(x)| < ε/2 + ε/2 = ε

for all y ∈ [a, b] with |x− y| < δ. Consequently d is continuous. �

Definition 3.1.4. Let (fn) be a sequence of functions on a set X.

• We say that (fn) converges pointwise to a limit function f if for a given
ε > 0 and x ∈ X there exists an N so that

|fn(x)− f(x)| < ε for all n ≥ N.
• We say that converges uniformly to a limit function f if for a given ε > 0

there exists an N so that

|fn(x)− f(x)| < ε for all n ≥ N
holds for all x ∈ X.

There is a substantial difference between these two definitions. In pointwise
convergence, one might have to choose a different N for each point x ∈ X. In the
case of uniform convergence there is an N that holds for all x ∈ X. Note that
uniform convergence implies pointwise convergence. If one draws the graphs of a
uniformly convergent sequence, then one realizes that the definition amounts for a
given ε > 0 to have a N so that the graphs of all the fn for n ≥ N , lie in an ε-band
about the graph of f . In other words, the fn’s get uniformly close to f . Hence
uniform convergence means that the maximal distance between f and fn goes to
zero. We prove this assertion in the next proposition.

Proposition 3.1.5. Let (fn) be a sequence of continuous functions on [a, b].
Then the following are equivalent:

(1) (fn) converges uniformly to f .
(2) sup{|fn(x)− f(y)| : x ∈ [a, b]} → 0 as n→∞.

Proof. Assertion (i) ⇒ (ii): Assume that (fn) converges uniformly to f .
Then for any ε > 0 there exists a N such that |fn(x) − f(x)| < ε for all x ∈ [a, b]
and all n > N . Hence sup{|fn(x)− f(y)| : x ∈ [a, b]} ≤ ε for all n > N . Since this
holds for all ε > 0, we have demonstrated that sup{|fn(x)− f(y)| : x ∈ [a, b]} → 0
for n→∞.
Assertion (ii)⇒ (i): Assume that sup{|fn(x)− f(y)| : x ∈ [a, b]} → 0 for n→∞.
Given an ε > 0, there is a N such that sup{|fn(x) − f(y)| : x ∈ [a, b]} < ε for all
n > N . Thus we have |fn(x) − f(y)| < ε for all x ∈ [a, b] and all n > N , i.e. (fn)
converges uniformly to f . �

A reformulation of this result is that a sequence converges in (C[a, b], ‖.‖∞) to
f is equivalent to the uniform convergence of (fn) to f .

Proposition 3.1.6. A sequence (fn) converges to f in in (C[a, b], ‖.‖∞) if and
only if (fn) converges uniformly to f .
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Uniform convergence has an important property.

Theorem 3.6. Let (fn) be a uniformly convergent sequence in C(I) with limit
f . Then the limit function f is continuous on I.

Proof. Let y ∈ I and ε > 0 be given. By the uniform convergence of fn → f ,
there exists an N such that n ≥ N implies that

|fn(x)− f(x)| ≤ ε/3 for all x ∈ I.

The continuity of fN implies that there exists a δ > 0 such that

|fN (x)− f(y)| ≤ ε/3 for |x− y| ≤ δ.

We want to show that f is continuous. For all x such that |x− y| < δ we have that

|f(x)− f(y)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (y)|+ |fN (y)− f(y)|
< ε/3 + ε/3 + ε/3 = ε.

�

Convergence of a sequence in (C[a, b], ‖.‖∞) to f ∈ C[a, b] is equivalent to uni-
form convergence of the sequence to f .

Finally we are in the position to prove our main theorem on continuous functi-
ons: Completeness of (C[a, b], ‖.‖∞).

Proof. Assume that (fn) is a Cauchy sequence in (C[a, b], ‖.‖∞). Then we
have to show that there exists a function f ∈ C[a, b] that has (fn) as its limit.
Fix x ∈ [a, b] and note that |fn(x)− fm(x)| ≤ ‖fn − fm‖∞. Since (fn) is a Cauchy
sequence (fn(x)) is a Cauchy sequence in R. Since R is complete, (fn(x)) converges
to a point f(x) in R. In other words, fn → f pointwise.
Next we show that f ∈ C[a, b]. Since (fn) is a Cauchy sequence, we have for
any ε > 0 a N such that ‖fn − fm‖ < ε/2 for all m,n > N . Hence we have
|fn(x)− fm(x)| < ε/2 for all x ∈ [a, b] and for all m,n > N . Letting m→∞ yields
for all x ∈ [a, b] and all n > N :

|fn(x)− f(x)| = lim
m→∞

|fn(x)− fm(x)| ≤ ε/2 < ε.

Consequently, fn → f converges uniformly. Now by the preceding proposition
f is a continuous function on [a, b]. In other words, we have established that
(C[a, b], ‖.‖∞) is a Banach space. �

Theorem 3.7. The normed space of bounded operators (B(X,Y ), ‖.‖op) is com-
plete if and only if Y is a Banach space.

The Banach space (B(X,C), ‖.‖op) is known as the dual space of X, denoted
by X ′, and its elements are refer to as functionals on X.

Proof. Let (Tn) be a Cauchy sequence in B(X,Y ), so for any ε > 0 there
exists a N ∈ N such that for all m,n ≥ N we have ‖Tm− Tn‖op < ε. Hence for any
x ∈ X we have

‖(Tm − Tn)x‖Y ≤ ‖Tm − Tn‖op‖x‖X < ε‖x‖X .



32 Chapter 3

Hence for all x ∈ X the sequence (Tnx) is a Cauchy sequence in Y . Since Y is a
Banach space, it has a limit denoted by Tx, and thus we define Tx = limn→∞ Tnx.
The limit operator T is linear and bounded.

‖Tx‖Y ≤ sup
n
‖Tnx‖Y ≤ ‖x‖X sup

n
‖Tn‖op,

and thus we have ‖T‖op ≤ supn ‖Tn‖op, i.e. T ∈ B(X,Y ).
We show that ‖Tn − T‖op → 0. We assume otherwise that ‖Tn − T‖op does not
converge to 0. Then there exists an ε > 0 and a subsequence (Tnk

)k of (Tn) such
that

‖Tn − T‖op ≥ ε for all k.

Consequently, for every k there exists a xk ∈ X with ‖xk‖ = 1 and

‖Tnk
(xk)− Tm(xk)‖ ≥ ε.

By assumption (Tn) is a Cauchy sequence, so one can choose a N0 such that for all
m,nk ≥ N0 we have

‖Tnk
(xk)− Tm(xk)‖ ≤ ε/2

and this gives

ε ≤ ‖Tnk
(xk)− T (xk)‖Y ≤ ‖Tnk

(xk)− Tm(xk)‖Y + ‖Tm(xk)− T (xk)‖Y .

Hence for all m ≥ N0 we have

‖Tm(xk)− T (xk)‖Y ≥ ε/2.

That is a contradiction to the definition of T , thus we have Tm(xk)−T (xk)→ 0 in
(B(X,Y ), ‖.‖op). �

3.1.2. Banach’s Fixed Point Theorem aka Contraction Mapping The-
orem. In 1922 Banach established a theorem on the convergence of iterations of
contractions that has become a powerful tool in applied and pure mathematics.
Suppose we have a bounded operator T acting on a normed space X. Take a
point x0 in X and build the sequence of iterates x0, x1 = Tx0, x2 = Tx1 =
T 2x0, ..., xn+1 = Txn. The basic question is about the existence of the limit of
this sequence x = limn xn = limn T

nx0. The limit x of the iterates (xn) is a fixed
point of the continuous map T :

T (x) = T (lim
n
xn) = lim

n
T (xn) = lim

n
xn+1 = limxn = x.

A mapping on a normed space X is called a contraction if there exists a 0¡K¡1 such
that

‖Tx− Ty‖ ≤ K‖x− y‖ x, y ∈ X.

Example 3.1.7. Let T be a bounded linear operator on a normed space X. If
‖T‖ < 1, then T is a contraction on X. By assumption we have ‖Tx − Tx′‖ =
‖T (x− x′)‖ ≤ ‖T‖‖(‖x− x′) < ‖x− x′‖ for all x, x′ ∈ X.

Theorem 3.8 (Banach Fixed Point). Let M be a closed subspace of a Banach
space X. Any contraction f on M has a unique fixed point x̃ and the fixed point is
the limit of every sequence generated from an arbitrary nonzero point x0 ∈ M by
iteration (xn)n, where xn+1 = f(xn) for n ≥ 1.

Remark 3.1.8. Open and closed sets are defined in the following section.
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Proof. Let x0 ∈ M be arbitrary. Define xn+1 = f(xn) for n = 1, 2, ... . By
the contractivity of T we have

‖xn − xn−1‖ = ‖f(xn−1)− f(xn−2)‖ ≤ K‖xn−1 − xn−2‖

and iterations yields

‖xn − xn−1‖ ≤ Kn−1‖xn−1 − xn−2‖.

The existence of a fixed point is based on the completeness of M . Hence we proceed
to show that (xn)n is a Cauchy sequence. Let m,n be greater than N and we choose
m ≥ n. Then by the preceding inequality and the triangle inequality we have

‖xm − xn‖ ≤ ‖xm − xm−1‖+ ‖xm−1 − xm−2‖+ · · ·+ ‖xn+1 − xn‖
≤ (Km−1 +Km−2 + · · ·Kn)‖x1 − x0‖
≤ (KN +KN+1 + · · · )‖x1 − x0‖
= KN (1−K)−1‖x1 − x0‖.

Since 0 ≤ K < 1, limN K
N = 0 and thus (xn) is a Cauchy sequence. Consequently,

(xn) converges to a point x̃ by the completeness of X. Furthermore x̃ is a fixed
point by the contractivity of T .
Uniqueness: Suppose there is another fixed point ỹ of T . Then ‖x̃ − ỹ‖ = ‖T x̃ −
T ỹ‖ ≤ K‖x̃ − ỹ‖ and ‖x̃ − ỹ‖ > 0. Thus we deduce that K ≥ 1 which is a
contradiction to the contractivity of T . �

Two well-known applications are Newton’s method for finding roots of general
equations and the theorem of Picard-Lindelöf on the existence of solutions of ordi-
nary differential equations.

Newton’s method:

How does one compute
√

3 up to a certain precision, i.e. we are interested in
error estimates? Idea: Formulate it in the form x2−3 = 0 and try to use a method
that allows to compute zeros of general equations.

Newton came up with a method to solve g(x) = 0 for a differentiable function
g : I → R.
Suppose x0 is an approximate solution or starting point. Define recursively

xn+1 = xn −
g(xn)

g′(xn)
for n ≥ 0.

Then (xn) converges to a solution x̃, provided certain assumptions on g hold.
If xn → x̃, then by continuity of g we get g(x̃) = 0.

When does Netwon’s method lead to a convergent sequence of iterates? Idea:
Apply Banach’s Fixed Point Theorem.

Set f(x) := x− g(x)
g′(x) . Then given x0 ∈ I and xn+1 = xn − g(xn)

g′(xn) = f(xn). Moreo-

ver, f(x̃) = x̃ if and only if g(x̃) = 0.

Let us restrict our discussion to the computation of
√

3. The Banach space X
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is the space of real numbers R and g(x) = x2 − 3, so

f(x) = x− x2 − 3

2x
=

1

2
(x+

3

x
)

on [
√

3,∞) → [
√

3,∞). Note that [
√

3,∞) is a closed set of R containing
√

3.

For x ≥ 0 we have 1
2 (x + 3/x) ≥

√
3x/x =

√
3. Compute f ′ and note that a

differentiable function f : I → R with a bounded derivative is Lipschitz continuous
with constant L (Homework):

f ′(x) =
1

2
(1− 3

x2
)

and note that it’s range is contained in [0, 1/2] for x ≥
√

3. Hence we have L = 1/2

and by Banach’s Fixed Point Theorem 1
2 (xn + 3

xn
)→
√

3.

Let’s pick x0 = 2 and thus x1 = 7/4 and so |x1 − x0| = 1/4. Furthermore, we have

|xn −
√

3| ≤ (1/2)n

1− 1/2
|x1 − x0| =

1

2n
· 2 · 1

4
=

1

2n+1
.

Hence

|xn −
√

3| ≤ 1

2n+1
.

For n = 4, we have |xn −
√

3| ≤ 1/1024 < 0.001.

Existence and uniqueness of solutions of an ordinary differential equa-
tion (ODE) – Picard-Lindelöf Theorem.

Consider the following general initial value problem:

(3.1) x′(t) =
dx

dt
= f(t, x) and x(t0) = x0)

for a function f : A ⊂ R2 → R with t0 ∈ I.

Definition 3.1.9. Let I be an interval and t0 ∈ I. A differentiable function
x : I → R is a solution of the IVP (3.1) if for all t ∈ R we have x′(t) = f(t, x(t))
and x(t0) = x0.

We say that the IVP has a local solution if there exists a δ > 0 such that (3.1)
has a solution x on (x0 − δ, x0 + δ)

Example 3.1.10. The IVP x′(t) = rx, x(0) = A has as solution x(t) = Aert

on R.

Now we can state the theorem of Picard-Lindelöf and in its proof we will also
show how to construct approximately a solution to IVPs.

Theorem 3.9 (Picard-Lindelöf). Consider the initial value problem:

(3.2) x′(t) =
dx

dt
= f(t, x) and x(t0) = x0),

where f : U × V → R is a function, U, V are intervals with t0 in the interior of U
and x0 in the interior of V .
Assume that f is continuous and uniformly Lipschitz in x:

|f(t, x)− f(t, x′)| ≤ L|x− x′| for all t ∈ U, x, x′ ∈ V.
Then the IVP has a unique local solution.
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Proof. We start with a more precise formulation of the assumptions on f .

We have that f is a continuous function defined f : U × V → R on the inter-
vals U = [t0 − a, t0 + a], V = [x0 − b, x0 + b] for a, b > 0, such that

|f(t, x)− f(t, x′)| ≤ L|x− x′| for all t ∈ U, x, x′ ∈ V.

The assumptions on f imply that it is bounded, i.e. there exists a M > 0 such that
|f(t, x)| ≤M for all (t, x) ∈ U × V . Hence, the theorem of Picard-Lindelöf asserts
that for δ < min a, 1/L, b/M the IVP has a solution on [t0 − δ, t0 + δ].

A key step in the proof is the reformulation of the theorem in terms of an integral
equation.

Lemma 3.10. The IVP has a solution if and only if

x(t) = x0 +

∫ t

t0

f(s, x(s))ds.

Proof. We define ϕ on U by ϕ(t) = f(t, x(t)). By the Fundamental Theorem

of Analysis x0 +
∫ t
t0
ϕ(s)ds is the anti-derivative of f whose value at t0 is x0. �

The next step is an iterative procedure to solve the integral equation, also
known as Picard iteration.
We define an operator Φ by

Φ(x)(t) = x0 +

∫ t

t0

f(s, x(s))ds.

Then x solves the integral equation

x(t) = x0 +

∫ t

t0

f(s, x(s))ds.

if and only if Φ(x) = x. We are going to specify the space of functions on which Φ
acts later.

Consequently, we have reduced the IVP to finding a fixed point for Φ. The latter
will be done with the help of an iteration scheme, the Picard iterations.

x0(t) := x0, xn+1 := xn +

∫ t

t0

f(s, xn(s))ds , n ≥ 1,

or equivalently

x0(t) := x0 xn+1 = Φ(xn).

Choose a δ such that δ < min a, 1/L, b/M and consider the Banach space X =
(C[t0 − δ, t0 + δ], ‖.‖∞). As closed subset of X we pick

A = {x ∈ C[t0 − δ, t0 + δ] : x(t) ∈ [x0 − b, x0 + b] for all t}.

Let us show that A is closed in X.
Suppose (xn) ⊂ A converges to x ∈ X wrt ‖.‖∞. Then xn(t) → x(t) for all t. For
a fixed t we have xn(t) ∈ [x0 − b, x0 + b] which converges to x(t) with values in
[x0 − b, x0 + b].
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Now we show that for x ∈ A also Φ(x) ∈ A. Since x ∈ A we have

x(t) ∈ [x0 − b, x0 + b] for all t ∈ [t0 − δ, t0 + δ],

so we have |x(t)− x0| ≤ b for all t ∈ [t0 − δ, t0 + δ].
Consider

|Φ(x)(t)− x0| = |
∫ t

t0

f(s, x(s))ds| ≤
∫ t

t0

|f(s, x(s))|ds ≤M |t− t0|,

which yields that

|Φ(x)(t)− x0| ≤Mδ for δ < b/M.

Finally, we demonstrate that Φ is a contraction on A. Concretely, there exists a
constant q < 1 such that

‖Φ(x)− Φ(y)‖∞ ≤ q‖x− y‖∞
for x, y ∈ A. Hence we have to get some control of the term |Φ(x)(t)− Φ(y)(t)|:

|Φ(x)(t)− Φ(y)(t)| ≤
∫ t

t0

|f(s, x(s))− f(s, y(s))|ds

≤
∫ t

t0

L|x(s)− y(s)|ds

≤
∫ t

t0

L‖x− y‖∞ds

≤ L|t− t0|‖x− y‖∞
≤ δL‖x− y‖∞.

Hence we have

‖Φ(x)− Φ(y)‖∞ ≤ Lδ‖x− y‖∞,
so q = δL < 1.

Application of Banach’s Fixed Point Theorem yields that there exists a unique
x̃ ∈ A such that

x̃(t) = x̃0 +

∫ t

t0

f(s, x̃(s))ds.

�

Example 3.1.11. Consider the following IVP:

x′(t) = sin(tx), x(0) = 1.

Thus |f(x, t)| = | sin(tx)| ≤ 1, i.e. M = 1.
∂
∂xf(t, x) = |t cos(tx)| ≤ |t| ≤ a, so L = a and δ < min{a, 1/δ, b}. For a = b = 1 we
get δ < 1. We have t0 = 1 and x0 = 1.

Choose x0(t) = 1 and so x1(t) = 1 +
∫ s

0
sin(s)ds = 1− cos t, x2(t) = 1 +

∫ t
0

sin(1−
cos(s))ds. Note that x2 is hard to compute analytically, but there are methods
based on numerical integration.

In the next example we show that the assumption of continuity of f cannot be
weakened.
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Example 3.1.12. Consider the IVP x′(t) = f(x, t) for

f(t, x) =

{
1 if t ≥ 0

0 if t < 0

and x(0) = 0. Then we have

x(t) =

{
t+ c if t ≥ 0

c2 if t < 0

and thus

x(t) =

{
t if t ≥ 0

0 if t < 0

Hence x is not differentiable at 0. Consequently, the IVP has no solution.

3.1.3. Hilbert spaces. Banach spaces arising from innerproduct spaces are
known as Hilbert spaces. These are easier to handle than general Banach spaces.

Definition 3.1.13. A Hilbert space is an innerproduct space (X, 〈., .〉) such
that the induced norm ‖.‖ = 〈., .〉 is complete.

Let M be a subspace of X. Denote by M⊥, its orthogonal complement, the set
of all x ∈ X that are orthogonal to all the elements of M . Formally we have

M⊥ = {x ∈ X : 〈x, y〉 = 0 for all y ∈M}.
The linearity of an innerproduct implies that M is a vector space.

Lemma 3.11. Let M be a subspace of (X, 〈., .〉). Then M⊥ is a closed subspace
of X.

Proof. Let (xn) be a sequence in M⊥ converging to x ∈ X. We have to show
that x ∈M⊥. Since 〈xn, y〉 = 0 for all y ∈M we note that

| 〈xn − x, y〉 | ≤ ‖xn − x‖‖y‖ → 0.

Hence we have
〈xn, y〉 → 〈x, y〉 ,

but 〈xn, y〉 = 0 for all n. Consequently, 〈x, y〉 = 0 and so x ∈M⊥. �

By definition of M⊥ we have that M and M⊥ are disjoint subspaces of X. For
any proper closed subspace M of X its orthogonal complement M⊥ is non-empty
and there are sufficiently many elements in M⊥ that allows one to decompose ele-
ments in X with respect to M and M⊥. The precise formulations of these facts
and their proofs are the main parts of our treatment of Hilbert spaces.

The best approximation property holds for proper closed subspaces of Hilbert spa-
ces.

Theorem 3.12 (Best Approximation Theorem). Suppose M is a proper closed
subspace of a Hilbert space X. Then for any x ∈ X there exists a unique element
z ∈M such that

‖x− z‖ = inf
m∈M

‖x−m‖.

The quantity infm∈M ‖x − m‖ measures the distance of x from M . In the
chapter on metric spaces we show that it defines an honest metric on X.
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Remark 3.1.14. In general the theorem is not true in Banach spaces. Take
`∞ and as closed subspace c0, the space of sequences converging to zero. For
x = (1, 1, 1, ...) there exists no sequence in c0 attaining the minimal distance 1.

Proof. Denote by d = infm∈M ‖x−m‖2. Note that d is finite, since the real
numbers ‖x−m‖ for m ∈M are all nonnegative and bounded below by 0. Since d
is the greatest lower bound of this set, there exists a sequence (mk) ⊂M such that
for each ε > 0 there exists an N such that ‖x−mk‖2 ≤ d+ ε for all k ≥ N .
Claim: The sequence (mk) is a Cauchy sequence. Applying the parallelogram
identity to x−mk and x−ml we get

‖2x−mk −ml‖2 + ‖mk −ml‖2 = 2(‖x−mk‖2 + ‖x−ml‖2),

which yields to

‖x− mk +ml

2
‖2 + ‖mk −ml‖2/2 = (‖x−mk‖2 + ‖x−ml‖2)/2.

Since mk+ml

2 ∈M we have ‖x− mk+ml

2 ‖2 ≥ d and so we have

‖mk −ml‖2 ≤ 2(‖x−mk‖2 + ‖x−ml‖2)− 4d.

For any ε > 0 there exists a N such that ‖x−mk‖2 ≤ d+ ε/4 for all k ≥ N . Then
we have for all m,m ≥ N that

‖mk −ml‖2 ≤ 2(‖x−mk‖2 + ‖x−ml‖2)− 4d ≤ ε.

Hence we have demonstrated that (mk) is a Cauchy sequence. Since M is closed,
(mk) converges to some element z ∈M and we have that ‖x− z‖2 = d and so z is
the vector in M closest to x. We have established the existence of a closest vector.
The uniqueness goes as follows: Suppose there is another element y ∈M such that
‖x − y‖2 = d. Consider the sequence (y, z, y, z, ...), and note that it is a Cauchy
sequence by the same argument as for (mk). Hence y = z and so z is the unique
solution to our approximation problem. �

There is a characterization of best approximations in Hilbert spaces in terms
of the orthogonal complement.

Theorem 3.13 (Characterization of Best Approximation). Suppose M is a
proper closed subspace of a Hilbert space X. Then for any x ∈ X there exists a best
approximation x̃ ∈M if and only if x− x̃ ∈M⊥.

Proof. First step: Suppose x− x̃ ∈M⊥. Then for any y ∈M with y 6= x̃ we
have ‖y − x‖2 = ‖y − x̃ + x̃ − x‖2. Note that y − x̃ ∈ M and x̃ − x ∈ M⊥ so we
have 〈y − x̃, x̃− x〉 = 0. Hence Pythagoras yields ‖y − x‖2 = ‖y − x̃‖2 + ‖x̃− x‖2.
By assumption y− x̃ 6= 0 so we arrive at the desired assertion ‖y−x‖2 > ‖x̃−x‖2.
Second step: Suppose x̃ minimizes ‖x− x̃‖. We assume that there exists a y ∈ M
of unit length such that 〈x− x̃, y〉 = δ 6= 0.
Consider the element z = x̃+ δy.

‖x− z‖2 = ‖x− x̃− δy‖2

= 〈x− x̃, x− x̃〉+ 〈x− x̃, δy〉 − 〈δy, x− x̃〉+ 〈δy, δy〉
= ‖x− x̃‖2 − |δ|2 − |δ|2 + |δ|2

= ‖x− x̃‖2 − |δ|2.
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Thus we have ‖x − z‖2 ≤ ‖x − x̃‖2. Contradiction to the assumption that x̃
minimizes ‖x− x̃‖. �

Theorem 3.14 (Projection Theorem). Let M be a closed subspace of a Hilbert
space X. Then every x ∈ X can be uniquely written as x = y+ z where y ∈M and
z ∈M⊥.

Proof. For x ∈ X there exists a best approximation y ∈ M . Note that
x = y + x− y with y ∈M and x− y ∈M⊥. Furthermore we have M ∩M⊥ = {0}
(if x ∈ M ∩M⊥, then 〈x, x〉 = 0 = ‖x‖2 and thus x = 0.) which completes the
proof. �

Corollary 3.1.15. Let M be proper closed subspace of a Hilbert space X.
Then M⊥ 6= {0}.

Proof. If x 6= M , then the decomposition x = y + z has a z 6= 0. Since
z ∈M⊥ we have M⊥ 6= {0}. �

Recall that a projection on a normed space X is a linear mapping P : X → X
satisfying P 2 = P .

Here is a reformulation of the preceding theorem in terms of projections, justifying
the name.

Proposition 3.1.16. For any closed subspace M of a Hilbert space X, there
is a unique projection P on X satisfying:

(1) ran(P ) = M and ran(I − P ) = M⊥.
(2) ‖Px‖ ≤ ‖x‖ for all x ∈ X. Moreover, ‖P‖ = 1.

Proof. (1) The decomposition of x ∈ X into x = y + z for y ∈ M, z ∈
M⊥ allows one to define Px := y. By definition ran(P ) ⊆ M and if
x ∈M , then Px = x. Thus P 2 = P and M ⊆ ran(P ).
Once more, by x = y + z we have (I − P )x = z ∈ M⊥ and as above we
deduce that ran(I − P ) = M⊥.

(2) By Phytagoras we have ‖x‖2 = ‖Px‖2 + ‖z‖2 and thus we have ‖Px‖ ≤
‖x‖. Hence ‖P‖ ≤ 1. On the other hand, there exists x ∈ X with Px 6= 0
and ‖P (Px)‖ = ‖Px‖, so that ‖P‖ ≥ 1. Hence we conclude that ‖P‖ = 1.

�

Example 3.1.17. Let M be the line {tξ : t ∈ R} given by a unit vector ξ ∈ X.
Then

Pξx = 〈ξ, x〉ξ

projects a vector orthogonally onto its component in direction ξ

We state some consequences of the projection theorem. In the mathematics
literature the tensor product notation ξ ⊕ ξ is used to refer to Pξ.

Proposition 3.1.18. Let X be a Hilbert space.

(1) For any closed subspace M of X we have M⊥⊥ = M .

(2) For any set A in X we have A⊥⊥ = span(A).
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Proof. (1) For any x ∈ M we have 〈x, y〉 = 0 for every y ∈ M⊥. In
other words, x is orthogonal to M⊥, so x ∈ (M⊥)⊥.
Conversely, suppose that x ∈M⊥⊥. Since M is closed, we can decompose
x = y + z with y ∈ M and z ∈ M⊥. Since x ∈ M⊥⊥ we have 〈x, z〉 =
0. Furthermore, we have x ∈ M ⊆ M⊥⊥, so we also have 〈x, y〉 = 0.
Consequently, ‖z‖2 = 〈z, z〉 = 〈x− y, z〉 = 〈x, z〉− 〈y, z〉 = 0. Hence z = 0
and we have deduced that x ∈M .

(2) For a general set A in X we note that span(A) is the smallest closed
subspace containing A. We set M = span(A). Then we have M ⊂M and

thus M
⊥ ⊆ M⊥. Consequently, M⊥⊥ ⊆ M

⊥⊥
. But M is closed in X so

M
⊥⊥

= M⊥⊥. Since M
⊥⊥

= M⊥⊥ we get that M⊥⊥ ⊆ M
⊥⊥

. Finally,
M ⊆ M⊥⊥ and M⊥⊥ closed implies M ⊆ M⊥⊥, which completes the
argument.

�

Corollary 3.1.19. A subset A in a Hilbert space X is dense if and only if
A⊥ = {0}. Moreover, A⊥ = {0} is equivalent to x orthogonal to A and hence

x = 0. In words, span(A) = X if and only if the only element orthogonal to every
element in A is the zero vector.

Proof. Suppose span(A) = X. Then A is a closed linear subspace and hence
A⊥ = A⊥⊥⊥ = X⊥ = 0.
Conversely, span(A) = A⊥⊥ = 0⊥ = X. �

Many interesting theorems in analysis are about the identification of the dual
spaces of normed spaces. A topic one is at the heart of functional analysis. Here we
restrict our focus to the Hilbert space setting since its proof relies on the projection
theorem.

Recall that the dual space X ′ of a normed space X is the space of bounded operators
from X to C.

Lemma 3.15. For ϕ ∈ X ′ we have that ker(ϕ) is a closed subspace of X.

Proof. Let (xn) be a sequence in ker(ϕ) converging to x ∈ X. Then ϕ(xn) = 0
for all n and so |ϕ(xn)− ϕ(x)| ≤ ‖ϕ‖‖x− xn‖. Thus we have ϕ(x) = 0. �

Theorem 3.16 (Riesz representation theorem). Let X be a Hilbert space. For
each ξ ∈ X define ϕξ(x) = 〈x, ξ〉. Then ϕξ ∈ X ′ is a bounded linear functional on
X.
Furthermore, every ϕ ∈ X ′ is of the form ϕξ for some ξ ∈ X.

The final assertion of the theorem is the subtle part and is due to F. Riesz.

Proof. The Cauchy-Schwarz inequality gives |ϕξ(x)| ≤ ‖x‖‖ξ‖ and thus ϕξ ∈
X ′.
Converse statement: For any x, z ∈ X and a non-zero ϕ ∈ X ′. Then ϕ(x)z−ϕ(z)x ∈
ker(ϕ).
Let us pick z in ker(ϕ)⊥, which we can do by the projection theorem, to get

0 = 〈z, ϕ(x)z − ϕ(z)x〉 = ϕ(x)‖z‖ − ϕ(z)〈x, z〉.
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Hence,

ϕ(x) =
ϕ(z)

‖z‖2
〈x, z〉.

We set ξ = ϕ(z)
‖z‖2 z. Then we have ϕ(x) = 〈x, ξ〉.

Since ξ → ϕξ preserves sums and differences we have that ‖ϕ‖ obeys the paral-
lelogram law. Hence the theorem of Jordan-von Neumann implies that X ′ is a
Hilbert space.
Uniqueness: Suppose ξ̃ is another representation of ϕ of the form ϕx̃. Then
〈x, ξ − ξ̃〉 = 〈x, ξ〉 − 〈x̃, ξ〉 = 0 and x = x̃. �

The theorem yields that any bounded linear functional ϕ on `2 is of the form

ϕ(x) =

∞∑
n=1

xiξi for a unique ξ ∈ `2.

A different description of operators is one consequence of Riesz’ theorem, be-
cause it implies the existence of the adjoint of an operator.

Lemma 3.17. Suppose T ∈ B(X), X a Hilbert space, and x, x′ ∈ X.

(1) If 〈x, y〉 = 〈x′, y〉 for all y ∈ X, then we have x = x′.
(2) ‖T‖ = sup{‖Tx‖ = sup{|〈Tx, y〉| : x, y ∈ X with‖x‖, ‖y‖ ≤ 1}.

For motivation of the general result we indicate the main idea for linear opera-
tors T on C2. We represent T with respect to the standard basis of C2, so T = Ax
for a matrix A = (aij). We look for a matrix B = (bij) such that

〈Ax, y〉 = 〈x,By〉

for all x, y ∈ C2. Concretely, we have

〈
(
a11 a12

a21 a22

)(
x1

x2

)
, y〉 = 〈x,

(
b11 b12

b21 b22

)(
y1

y2

)
〉

and so

〈
(
a11x1 + a12x2

a21x1 + a22x2

)
, y〉 = 〈x,

(
b11y1 + b12y2

b21y1 + b22y2

)
〉

The equation is equivalent to

a11x1y1 + a12x2y1 + a21x1y2 + a22x2y2 =

= x2b11y1 + x1b12y2 + x2b21y1 + x2b22y2

to hold for all x1, x2, y1, y2 ∈ C. Hence we deduce that

a11 = b11, a12 = b21, a21 = b12, a22 = b22.

Thus

B =

(
a11 a21

a21 a22

)
is the conjugate-transpose of A. The adjoint of T , denoted by T ∗, is in this way
linked to the original transform.
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Theorem 3.18 (Adjoint). Let T be a bounded operator on a Hilbert space X.
Then there exists a unique operator T ∗ ∈ B(X) such that

〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ X.
The operator T ∗ is called the adjoint of T .

Proof. Fix y ∈ X and let ϕ : X → C be defined by ϕ(x) = 〈Tx, y〉. Then ϕ
is linear and by Cauchy-Schwarz bounded:

|ϕ(x)| ≤ |〈Tx, y〉| ≤ ‖Tx‖‖y‖ ≤ ‖T‖‖x‖‖y‖.
Hence ϕ is a bounded linear functional on X and so by the Riesz representation
theorem there exists a unique ξ ∈ X such that ϕ(x) = 〈x, ξ〉 for all x ∈ X.
The vector ξ depends on the vector y ∈ X. In order to keep track of this fact we
set T ∗y := ξ. Hence we have defined an operator T ∗ from X to X based on the
structure of bounded linear functionals on X. In summary, we have demonstrated
the existence of an operator T ∗ on X such that

〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ X.
(1) T ∗ is linear.

〈x, T ∗(λy1 + µy2)〉 = 〈Tx, λy1 + µy2〉
= λ〈Tx, y1〉+ µ〈Tx, y2〉
= λ〈x, T ∗y1〉+ µ〈x, T ∗y2〉
= 〈x, λT ∗y1〉+ µT ∗y2〉.

(2) T ∗ is bounded. We use the Cauchy-Schwarz inequality:

‖T ∗y‖2 = 〈T ∗y, T ∗y〉 = 〈TT ∗y, y〉
≤ ‖TT ∗y‖‖y‖
≤ ‖T‖‖T ∗y‖‖y‖.

Hence we have shown

‖T ∗y‖2 ≤ ‖T‖‖T ∗y‖‖y‖
If ‖T ∗y‖ > 0, then we can through and obtain the desired result: ‖T ∗y‖ ≤
‖T‖‖y‖. Suppose ‖T ∗y‖ = 0. Then the desired inequality holds, too.
Consequently, we have proved that

‖T ∗‖ ≤ ‖T‖.
(3) T ∗ is unique. Suppose there exists another S ∈ B(X) such that 〈Tx, y〉 =
〈x, Sy〉 for all x, y ∈ X. Then we have

〈x, Sy〉 = 〈x, T ∗y〉 y ∈ Y
and by a well-known fact about innerproducts we deduce that T ∗y = Sy
for all y ∈ Y . Hence T ∗ is unique.

�

We collect a few properties of the adjoint.

Lemma 3.19. Let S, T be in B(X) and λ, µ ∈ C.

(1) (λS + µT )∗ = λS∗ + µT ∗;
(2) (ST ∗) = T ∗S∗.
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(3) If T is invertible, then T ∗ is also invertible and (T ∗)−1 = (T−1)∗.

Proof. The proofs of (i) and (iii) are left as an exercise. Here we show the
second assertion:

〈x, (ST )∗y〉 = 〈STx, y〉 = 〈Tx, S∗y〉 = 〈x, T ∗S∗y〉
holds for all x ∈ X and so we have (ST ∗) = T ∗S∗. �

We continue with some useful facts about T ∗.

Lemma 3.20. Let T be a bounded operator on a Hilbert space X.

(1) (T ∗)∗ = T ;
(2) ‖T ∗‖ = ‖T‖;
(3) ‖T ∗T‖ = ‖T‖2 (C∗-algebra identity)

Proof. (1) For x, y ∈ X we have

〈y, (T ∗)∗x〉 = 〈T ∗y, x〉

= 〈x, T ∗y〉

= 〈Tx, y〉
= 〈y, Tx〉,

so (T ∗)∗x = Tx for all x ∈ X.
(2) In the proof of the existence of the adjoint we established that ‖T ∗‖ ≤ ‖T‖.

Applying this result to T ∗∗ and using (i) yields ‖T‖ ≤ ‖T ∗‖. Hence we
have ‖T ∗‖ = ‖T‖.

(3) By (ii) we have ‖T ∗‖ = ‖T‖ that implies

‖T ∗T‖ ≤ ‖T ∗‖‖T‖ = ‖T‖2.
For the reverse inequality we use

‖Tx‖2 = 〈Tx, Tx〉
= 〈T ∗Tx, x〉
≤ ‖T ∗Tx‖‖x‖
≤ ‖T ∗T‖‖x‖2

to deduce ‖T‖2 ≤ ‖T ∗T‖.
�

Some examples should help to build up some intuition on adjoint operators.

Example 3.1.20 (Operators on `2). (1) The adjoint of Lx = (0, x1, x2, ...)
on `2 is the right shift operator Rx = (x2, x3, ...).

By definition

〈(0, x1, x2, ...), (y1, y2, ...)〉 = 〈x, L∗y〉
for all x, y ∈ `2. We denote L∗y by z = (zn) Therefore we have

x1y2 + x2y3 + · · · = x1z1 + x2z2 + · · · .
This equation is true for all xi if z1 = y2, z2 = y3, .... Hence by the
uniqueness of the adjoint

L∗y = (y2, y3, ...),



44 Chapter 3

i.e. L∗ = R.
(2) The adjoint of the multiplication operator Ta for a ∈ `∞ is the multipli-

cation operator for the sequence a.

〈Tax, y〉 = 〈x, T ∗a y〉
Hence

a1x1y1 + a2x2y2 + · · · = x1a1y1 + x2a2y2 + · · · ,
which by the uniqueness of the adjoint gives that Ta is the adjoint of Ta.

A useful class of operators are acting on spaces of continuous functions C[a, b].
In order to determine their adjoints we have to define an innerproduct on C[a, b].
We use a continuous analog of the `2-innerproduct. For f, g ∈ C[a, b] we define

〈f, g〉 =

∫ b

a

f(t)g(t)dt.

Lemma 3.21. The space (C[a, b], 〈., .〉) is an innerproduct space with associated
norm

‖f‖2 = (

∫ b

a

|f(t)|2dt)1/2,

which is not complete.

The proof is one of the homework problems.

Define the space L2[a, b] to be the completion of C[a, b] with respect to ‖.‖2, i.e.
we add all the limits of Cauchy sequences in C[a, b] to it. The notation has a
deeper reason, because this space is an example of a Lebesgue space. More gene-
rally, one could define Lp[a, b] for p ≥ 1 as the completions of C[a, b] for the norm

‖f‖p = (
∫ b
a
|f(t)|pdt)1/p. These spaces are of utmost importance for analysis. Due

to the lack of measure theory we are not in the position to exploit these spaces
further.

Example 3.1.21.
The multiplication operator Ta on L2[0, 1] defined by a ∈ C[0, 1] has Ta as its
adjoint.

〈Taf, g〉 =

∫ 1

0

a(t)f(t)g(t)dt =

∫ 1

0

f(t)a(t)g(t)dt = 〈f, Tag〉.

We introduce some classes of operators defined in terms of the adjoint.

Definition 3.1.22. Let T be a bounded operator on a Hilbert space X.

(1) T is called normal if T ∗T = T ∗T .
(2) T is called unitary if T ∗T = T ∗T = I.
(3) T is called selfadjoint if T = T ∗.

Examples 3.1.23 (Operators on `2). (1) The multiplication operator Ta
for a ∈ `∞ is normal, since T ∗aTa = T ∗aTa = T|a|2 . Hence it is unitary if

|a| = 1 as in the example (1, i,−1,−i, ...) = (−ik)∞k=0. Ta is selfadjoint if
and only if a is real-valued.

(2) The shift operator is not normal: L∗L = I and LL∗y = (y2, y3, ...) 6= I.
Hence L is not unitary.
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We state a few properties of unitary operators. We denote the set of all unitary
operators on X by U

Lemma 3.22. For S, T in U we have that ST and TS are also in U . The identity
operator is a unitary operator. Unitary operators are invertible and T−1 = T ∗.

Proof. Since (ST )∗(ST ) = T ∗S∗ST ∗ we get from S∗S = I and T ∗T = I
that ST is also unitary. The invertibility follows from the definition of unitary
operators. �

In some problems it is of interest to have control over linear operators that
preserve the norm, known as isometries.

Definition 3.1.24. Let X be a normed space. Then T ∈ B(X) is called an
isometry if T is surjective and ‖Tx‖ = ‖x‖ for all x ∈ X.

We settle the structure of isometries for Hilbert spaces.

Proposition 3.1.25. Let T be a bounded operator on a Hilbert space X.

(1) T is an isometry of X if and only if T ∗T = I.
(2) T is unitary if and only if T is an isometry of X.

Proof. (1) Suppose that T ∗T = I. Then

‖Tx‖2 = 〈Tx, Tx〉 = 〈T ∗Tx, x〉 = 〈Ix, x〉 = ‖x‖2,

so T is an isometry.
Conversely, suppose that T is an isometry. Then

〈T ∗Tx, x〉 = 〈Tx, Tx〉 = ‖Tx‖2 = ‖x‖2 = 〈Ix, x〉.

Hence T ∗T = I.
(2) Suppose that T is unitary.

By (i) T is an isometry. Moreover, T is surjective, because for any x ∈ X
we have x = T (T ∗x) ∈ ran(T ).
Suppose that T is an isometry of X.
Then by (i) we have T ∗T = I and T is surjective. Hence for any y ∈ X
there exists an x ∈ X such that y = Tx.

TT ∗y = TT ∗(Tx) = T (T ∗Tx) = Tx = y

gives TT ∗ = I. Hence T is a unitary operator on X.
�

We close our discussion of the adjoint by a fact of utmost importance.

Proposition 3.1.26. Let T be a bounded operator on a Hilbert space X.

(1) ker(T ) = (ran(T ∗))⊥;
(2) ker(T ∗) = (ran(T ))⊥.

Equivalent formulation:

ran(T ) = (ker(T ∗))⊥, ker(T ) = (ran(T ∗))⊥

and consequently:

X = ker(T )⊗ ran(T ).
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Proof. (1) ker(T ) ⊆ (ran(T ∗))⊥ : Let x ∈ ker(T ) and let z ∈ ran(T ∗),
i.e. there exists a y ∈ X such that z = T ∗y. Hence

〈x, z〉 = 〈x, T ∗y〉 = 〈Tx, y〉 = 0

and we have shown that z ∈ (ran(T ∗))⊥.
(ran(T ∗))⊥ ⊆ ker(T ) : Let x ∈ ran(T ∗))⊥. As T ∗Tx ∈ ran(T ∗) we have

〈Tx, Tx〉 = 〈x, T ∗Tx〉 = 0,

hence Tx = 0 and so x ∈ ker(T ).
(2) By part (i) we have

ker(T ∗) = (ran(T ∗∗))⊥ = ran(T ) = {0}.

For the equivalent formulation note, that we have as above ran(T ) = (ker(T ∗))⊥,

but since (ker(T ∗))⊥ is closed we also get ran(T ) ⊆ (ker(T ∗))⊥. The rest of the
argument follows similar lines as before. �

Corollary 3.1.27. Let T be a bounded operator on a Hilbert space X. Then
ker(T ∗) = {0} if and only if ran(T ) is dense in X

Proof. Assume that ker(T ∗) = {0}. Then

ker(T ∗)⊥ = {0}⊥ = X

and the assertion (ii) of the proposition implies that

ker(T ∗)⊥ = (ran(T ))⊥⊥ = ran(T ).

Thus we have ran(T ) is dense in X.

Suppose ran(T ) is dense in X. Then by (ran(T ))⊥⊥ = ran(T ) = X and

ker(T ∗) = ran(T )⊥ = ((ran(T ))⊥⊥)⊥ = X⊥ = {0}.

�

The corollary allows one to check if the range of an operator is dense in a
Hilbert space by determining its adjoint and the computation of the kernel of the
adjoint. In general, this is a good strategy, because it is very difficult to compute
the range of an operator. Another important application of the preceding theorem
is the Fredholm alternative.

Theorem 3.23 (Fredholm alternative). Suppose T is a bounded linear operator
on a Hilbert space X with closed range. Then the equation

Tx = b , b ∈ X

has a solution x in X for every b ∈ X if and only if

b ∈ (ker(T ∗))⊥.

Hence operators with a closed range have a general criterion of existence. For
example if T ∈ B(X) satisfies for all x ∈ X and estimate of the form

‖Tx‖ ≥ c‖x‖ for some c > 0.
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Example 3.1.28. The range of the right shift operator R on `2 is closed since
if consists of {(0, x2, x3, ...) : xi ∈ C}. The left shift is L not invertible since its
kernel is one-dimensional and spanned by (1, 0, 0, ...).
The equation

Rx = b⇔ (0, x1, x2, ...) = (b1, b2, ...)

is solvable if and only if b1 = 0, or b ∈ (ker(L))⊥.

On the other hand
Lx = b

is solvable for all b ∈ `2 despite of L not being injective.

3.1.4. Orthonormal bases for Hilbert spaces. Hilbert spaces have one
more property distinguishing them from Banach spaces: the existence of orthonor-
mal bases.

Definition 3.1.29. An orthonormal basis of a Hilbert space X is a set of
vectors {ej}j∈J such that span{ej} is dense in X and 〈ei, ej〉 = 0 for i 6= j and
‖ei‖ = 1 for i ∈ J .

We know that span{ej} = X if and only if 〈ej , x〉 = 0 for all j ∈ J implies that
x = 0.
In general an orthonormal basis may have uncountably many elements, e.g. the
space of almost periodic functions. In the case that {ej}j∈J is a countable set, then
the Hilbert space X is separable.

Theorem 3.24. Any Hilbert space has an orthonormal basis.

The proof relies on the axiom of choice and is a well-known application of Zorn’s
lemma.

From now on we will assume that the orthonormal basis of a Hilbert space is
countable. An important example is the exponential basis {e2πinx : n ∈ Z} of the
Hilbert space L2[0, 1]. The theory of Fourier series has been of great influence in
the development of the theory of Hilbert spaces.

Proposition 3.1.30. Let M be a closed subspace of a Hilbert space X such
that M has a Hilbert basis {en}n∈N. Then the following are equivalent:

(1)
∑∞
n=1 anen converges in M .

(2) (an) lies in `2.

Proof. Denote the partial sums of (en) by sN =
∑N
n=1 anen. We assume

N > M without loss of generality. Then

‖sN − sM‖2 = 〈sN − sM , sN − sM 〉

= 〈
N∑

n=M+1

anen,

N∑
m=M+1

amem〉

=

N∑
n=M+1

anam〈en, em〉

=

N∑
n=M+1

|an|2.
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Suppose that (an) ∈ `2. Then the preceding computation yields that (sn) is a
Cauchy sequence in M . Since M is closed, (sn) converges to a s in M.
Conversely, suppose that (sn) converges. Then ‖sN − sM‖ converges to zero. Thus

(
∑N
n=1 |an|2) is a Cauchy sequence in C and hence must converge as N →∞. �

In the discussion of innerproduct spaces we established the Bessel inequality
for finitely many orthonormal vectors. Hence we obtain the result for countable
bases.

Proposition 3.1.31 (Bessel’s inequality). Suppose a closed subspace M of a
Hilbert space X has a countable orthonormal basis (en). Then we have

∞∑
n=1

|〈x, en〉|2 ≤ ‖x‖2.

The preceding two propositions yields that the general Fourier series
∑
n〈x, en〉en.

Moreover, we are able to use it to express the projection onto M .

Theorem 3.25. Suppose a closed subspace M of a Hilbert space X has a coun-
table orthonormal basis (en). Then the projection of x onto M is given by

Px =

∞∑
n=1

〈x, en〉en.

Proof. We have that
∑∞
n=1〈x, en〉en converges to a vector y in M and from

the orthonormal basis property we have

〈em, x− y〉 = 〈em, x〉 −
∞∑
n=1

〈en, x〉〈em, en〉 = 0

for all m ∈ N. Thus 〈em, x−y〉 = 0, i.e. x−y ∈ (span{em})⊥ = M⊥. Consequently,
y is the closest point to x. �

The case M equal to X is of special interest and is known as Parseval’s identity.

Theorem 3.26 (Parseval’s identity). If {en} is a countable basis for the Hilbert
space X, then any x ∈ X can be decomposed as

x =

∞∑
n=1

〈x, en〉en.

If x =
∑∞
n=1〈x, en〉en and y =

∑∞
n=1〈y, en〉en, then

〈x, y〉 =

∞∑
n=1

〈x, en〉〈y, en〉.

In particular,

‖x‖2 =

∞∑
n=1

|〈x, en〉|2.

Proof. The statement about the decomposition of x follows from Px = x for
all x ∈ X for M = X. The remaining assertions are elementary computations. �

Two Hilbert spaces X and Y are called isomorphic if there exists a unitary
operator T from X to Y with ran(X) = Y .
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Theorem 3.27 (Riesz-Fischer theorem). Any separable Hilbert space X is iso-
morphic to `2. Suppose (en) is an orthonormal basis of X. Then the isomorphism
T : X → `2 is given by x 7→ 〈(x, en〉)n∈N.

Proof. Bessel’s inequality yields that the Fourier coefficients (〈x, en〉) are in
`2. T is linear and by Parseval’s identity J preserves innerproducts: 〈x, y〉 =
〈Tx, Ty〉. T is surjective: It maps

∑
n anen to (an) which lies in `2. Hence T is an

isometry between X and `2. �





CHAPTER 4

Topology of normed spaces and continuity

4.1. Topology of normed spaces

Definitions and properties of open and closed sets, sequences and other notions
have natural counterparts in the setting of normed spaces. The motivation is once
more an understanding of sequences of elements in normed spaces.

Definition 4.1.1. (1) A set U ⊂ X is a neighborhood of x ∈ X if Br(x) ⊂
U for some r > 0.

(2) A set O ⊂ X is open if every x ∈ O has a neighborhood U contained in
O.

(3) A set C ⊂ X is closed if its complement Cc = X\F is open.

Note that the definition of open sets depends on the norm. In other words,
open sets with respect to one norm need not be open with respect to another norm.

Lemma 4.1. Let (X, ‖.‖) be normed space. Then Br(x) is open and Br(x) is
closed for x ∈ X and r > 0.

Proof. The proof goes along the same lines as in the case of the real line.
Suppose that y ∈ Br(x) and choose ε as ε = r−d(x, y) > 0. The triangle inequality
yields that Bε(y) ⊂ Br(x), i.e. Br(x) is open.
We show that X\Br(x) is open. For y ∈ X\Br(x) we set ε = d(x, y) − r > 0
and once more by the triangle inequality we deduce that Bε(y) ⊂ X\Br(x). Hence
X\Br(x) is open and Br(x) is closed. �

Definition 4.1.2. For a subset A of (X, ‖.‖) we introduce some notions.

(1) The closure of a subset A of X, denoted by A, is the intersection of all
closed sets containing A.

(2) The interior of a subset of A of X, denoted by intA, is the union of all
open subsets of X contained in A.

(3) The boundary of a subset A of X, denoted by bdA, is the set A\intA.

We continue with some definitions

Definition 4.1.3. Let A be a subset of (X, ‖.‖).
(1) A point x ∈ A is isolated in A if there exists a neighborhood U of x such

that U ∩A = {x}.
(2) A point x ∈ R is said to be an accumulation point of A if every neighbor-

hood of x contains points in A\{x}.

Definition 4.1.4. A subset A of (X, ‖.‖) is said to be dense in R if its closure
is equal to X, i.e. A = X. If the dense subset A is countable, then X is called
separable.

51
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In other words, a subset A of a normed space X is dense in X if for each x ∈ X
and each ε > 0 there exists a vector y ∈ A such that

‖x− y‖ < ε.

The relevance of a dense subset of a normed space is that it provides a way to
approximate elements of the normed space by ones from the dense subset up to any
given precision.

Lemma 4.2. Suppose A is a dense subspace of a normed space X. For any
x ∈ X there exists a sequence of elements xk ∈ A such that ‖xk − x‖ → 0 as
k →∞.

Proof. For x ∈ X there exists an xk such that ‖xk − x‖ < 1/k for k = 1, 2, ...
By construction xk converges to x. �

The next results have been proved in the section on real numbers and these are
also true for normed spaces. The proofs of these results are along the same lines as
the ones for the real line.

Lemma 4.3. Let {Oj : j ∈ J} be a family of open sets of (X, ‖.‖).

(1) ∩nj=1Oj is an open set for any n ∈ N.
(2) ∪j∈JOj is open for a general index set J .

Note that open and closed subset of a normed space also applies to subspaces,
since these are sets with some extra properties. For the most part we are going to
discuss closed subspaces of a normed space.

Lemma 4.4. Suppose A is a subset of (X, ‖.‖).
(1) A = (Int(Ac))c and int(A) = (Ac)c

(2) bdA = bd(Ac) = A ∩Ac
(3) A = A ∪ brA = intA ∪ bdA

Lemma 4.5. Suppose A is a subset of (X, ‖.‖).
(1) A = {x ∈ X : every neighborhood of x intersects A}
(2) int(A) = {x ∈ X : some neighborhood of x is contained in A}
(3) bd(A) = {x ∈ X : every neighborhood of x intersects A and its complement}

Lemma 4.6. A point x in a normed space (X, ‖.‖) is an accumulation point of
A if and only if every neighborhood of x contains infinitely many points of A.

We collect all notions of continuity required in this course.

Definition 4.1.5 (Different types of continuity). Let (X, ‖ · ‖) and (Y, ‖ · ‖) be
two normed spaces, let A ⊂ X and let f : A→ Y be a function.

(1) We say that f is continuous at a point a ∈ A if for all ε > 0 there is δ > 0
such that for all x ∈ A with ‖x− a‖ < δ we have ‖f(x)− f(a)‖ < ε.

(2) We say that f is continuous on A if it is continuous at each point of A.
(3) We say that f is uniformly continuous on A if for all ε > 0 there is δ > 0

such that for all x, y ∈ A with ‖x− y‖ < δ we have ‖f(x)− f(y)‖ < ε.
(4) We say that f is Lipschitz (with Lipschitz constant L ∈ R) if

‖f(x)− f(x′)‖ ≤ L ‖x− x′‖ for all x, x′ ∈ A .
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Lemma 4.7. If f : A→ Y is a Lipschitz function, where A ⊂ X and X,Y are
normed spaces, then f is continuous at every point a ∈ A. Moreover, f is uniformly
continuous.

Proof. Let a ∈ A. We assume that f is Lipschitz with Lipschitz constant
L > 0 and we show that f is continuous at a.

Let ε > 0. Put δ := ε
L , so if ‖x− a‖ < δ, then

‖f(x)− f(a)‖ ≤ L ‖x− a‖ < Lδ = L
ε

L
= ε,

so ‖f(x)− f(a)‖ < ε.
Since ε > 0 was arbitrary, this proves the continuity of f at a. Since a ∈ A

was arbitrary, this proves the continuity of f everywhere on A. Since the δ is
independent of the choice of a we deduce that f is uniformly continuous. �

Here is a useful criterion for continuity of a function.

Proposition 4.1.6. Let f : A→ Y be a function, where A ⊂ X and X,Y are
normed spaces. Let a ∈ A. Prove that the following two statements are equivalent.

(i) f is continuous at a.
(ii) For every sequence (xn) ⊂ A, if xn → a then f(xn)→ f(a).

Proof. i) ⇒ (ii): We assume that f is continuous at a.
Let (xn) ⊂ A be a sequence such that xn → a. We prove that f(xn)→ f(a).
Let ε > 0. Since f is continuous at a, there is δ > 0 such that if ‖x − a‖ < δ

then ‖f(x)− f(a)‖ < ε.
Since xn → a, there is N ∈ N such that for all n ≥ N we have ‖xn − a‖ < δ.

From the above, if n ≥ N we must then have ‖f(xn)− f(a)‖ < ε.
As ε was arbitrary, this proves that f(xn)→ f(a).
(i) ⇐ (ii): We assume by contradiction that f is not continuous at a. Let us

write down carefully what that means.
Firstly, we recall the definition of continuity. f is continuous at the point a ∈ A

means:
for all ε > 0 there is δ > 0 such that for all x ∈ A with ‖x − a‖ < δ we have
‖f(x)− f(a)‖ < ε.

Next, we formulate the negation of this statement.
The function f is not continuous the point a ∈ A means:

there is ε0 > 0 such that for all δ > 0 there is an element of A, which we denote by
xδ, such that ‖xδ − a‖ < δ but ‖f(xδ)− f(a)‖ ≥ ε0.

For every n ≥ 1, we may choose δ = 1
n . Then for some element of A, which we

denote by xn, we have that ‖xn − a‖ < 1
n but ‖f(xn)− f(a)‖ ≥ ε0.

We have thus obtained a sequence (xn) ⊂ A such that ‖xn − a‖ < 1
n → 0, so

xn → a. However, since ‖f(xn)− f(a)‖ ≥ ε0, the sequence f(xn) 6→ f(a), which is
a contradiction.

Hence f must be continuous at a. �

Lemma 4.8. et I ⊂ R be an interval and let f : I → R be a differentiable
function. Assume that for some L ∈ R we have

(4.1) |f ′(x)| ≤ L for all x ∈ I .

Then f is Lipschitz with Lipschitz constant L.
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Proof. We use the mean value theorem (also called Rolle’s theorem). Since
f is differentiable everywhere throughout the interval I, for any two points a, b ∈ I
with a < b, there is c ∈ (a, b) such that

f ′(c) =
f(a)− f(b)

a− b
.

From here we get, using (4.1), that

|f(a)− f(b)| = |f ′(c)| |a− b| ≤ L |a− b| ,

which proves that f is Lipschitz with Lipschitz constant L. �

The norm and the innerproduct are continuous mappings.

Lemma 4.9. Let X be a normed space. Then x → ‖x‖ is continuous and
moreover Lipschitz continuous with constant 1.

Proof. By the triangle inequality we have

‖x‖ − ‖y‖ = ‖x− y + y‖ − ‖y‖ ≤ ‖x− y‖+ ‖y‖ − ‖y‖ = ‖x− y‖,

and if ‖y‖ > ‖x‖ we get

‖‖x‖ − ‖y‖| ≤ ‖x− y‖.
Hence ‖.‖ is a Lipschitz continuous and in particular continuous. �

Lemma 4.10. Let X be an innerproduct space. Then the innerproduct is con-
tinuous in each component.

Proof. We have to show that x→ 〈x, y〉 is continuous for a fixed y ∈ X. By
the symmetry of innerproducts this also yields the continuity with respect to the
second component.
By Cauchy-Schwarz

| 〈x− x′, y〉 | ≤ ‖x− x′‖‖y‖
for a fixed y. Hence for ε > 0 we take δ‖y‖ in the definition of continuity or by

noticing that we have a bounded map. �

Example 4.1.7. For a = (an) ∈ `∞ we define ϕ(x) =
∑
n anxn for (xn)`1.

Then ϕ is continuous, i.e. a bounded linear functional on `1.
First we show that ϕ is well-defined.

|ϕ(x)| ≤
∑
n

|an||xn| ≤ ‖a‖∞
∑
n

|xn| = ‖a‖∞‖x‖1.

Furthermore this yields that ϕ is a bounded linear mapping from `1 to C and hence
continuous.

Linear mapping between normed spaces are an important class of continuous
functions.

Proposition 4.1.8. Let X and Y be normed spaces. For a linear transforma-
tion T : X → Y the follwing conditions are equivalent:

(1) T is uniformly continuous.
(2) T is continuous on X.
(3) T is continuous at 0.
(4) T is a bounded operator.
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Proof. We will show the following implications to demonstrate the assertions.
From the definitions we have (i) implies (ii) and (ii) implies (iii).

(iii)⇒ (iv) By the continuity of T at 0 there exists a δ > 0 for ε = 1 such that
‖Tx‖ < ε = 1 for ‖x‖ ≤ δ. We want to show that there exists a constant
C > 0 such that

‖Tx‖ ≤ C‖x‖ for all x with ‖x‖ ≤ 1

Note that for x ∈ B1(0) we have δx
2 ∈ Bδ(0):

‖ δx2 ‖ = δ‖x‖/2 ≤ δ/2 < δ.

Hence ‖T ( δx2 )‖ < 1 Since T is linear transformation this condition is

equivalent to ‖T ( δx2 )‖ = δ‖T (x)‖/2 < 1 and thus ‖Tx‖ ≤ 2/δ for x ∈
B1(0). In other words, T is a bounded operator.

(iv)⇒ (i) Since T is linear we have

‖Tx− Ty‖ = ‖T (x− y)‖ ≤ C‖x− y‖
for all x, y ∈ X. Let ε > 0 and δ = ε/C. Then for all x, y ∈ X with
‖x− y‖ < δ

‖Tx− Ty‖ = ‖T (x− y)‖ ≤ C‖x− y‖ ≤ Cε/C = ε.

Hence T is uniformly continuous.

�

We just state the equivalence between continuity and the boundedness of a
linear mapping as a separate statement due to its relevance.

Proposition 4.1.9 (Boundedness⇔ Continuity). A linear operator T between
two normed spaces X and Y is continuous if and only if it is bounded.





CHAPTER 5

Linear mappings between finite dimensional vector
spaces

5.1. Linear mappings between finite dimensional vector spaces

Finite-dimensional vector spaces and linear mappings between them are a use-
ful tool for engineers, scientists and mathematicians, aka Linear Algebra. In this
chapter we present some basic results from Linear Algebra.

We restrict our discussion to complex vector spaces, but many results in this
section are true for general vector spaces.

5.1.1. Spanning sets and bases. Let X be a complex vector space. Recall
that a linear combination of vectors x1, ..., xn in X is a vector x ∈ X of the form

x = α1x1 + α2x2 + · · ·+ αnxn

for some scalars α1, ...αn ∈ C.

The set of all possible linear combinations of the vectors x1, ..., xn in X is cal-
led the span of x1, ..., xn, denoted by span{x1, ..., xn}.

Recall that a set of vectors {x1, ..., xn} ⊂ X is linearly independent if for all α1, ..., α
the equation

α1x1 + · · ·+ αnxn = 0

has only α1 = · · · = αn = 0 as solution. If there exists a non-trivial linear combi-
nation of the xi’s, then we call the {x1, ..., xn} linearly dependent.
We often will denote the set of vectors by S and call it linearly independent without
explicity specifying the vectors.

Here are a few elementary observations about linear independence.

Lemma 5.1. {x1, ..., xn} ⊂ X is linearly dependent if and only if there exists a
vector, e.g. xj, that is a linear combination of the others, i.e.

span{x1, ..., xj , ..., xn} = span{x1, ..., xj−1, xj+1, ..., xn}

Example 5.1.1. {1, cosx, sinx} is linearly independent in C(R) and {1, cosx, sinx, cos2 x, sin2 x}
is linearly dependent in C(R).

Lemma 5.2. {x1, ..., xn} ⊂ X is linearly independent if and only if every x ∈
span{x1, ..., xn} can be written uniquely as a linear combination of elements of
{x1, ..., xn}.

57
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Proof. (⇒) Assume {x1, ..., xn} is linearly independent. Suppose there are
two ways to express x:

x = α1x1 + · · ·+ αnxn

x = α′1x1 + · · ·+ α′nxn.

Then we have
0 = (α1 − α′1)x1 + · · ·+ (αn − α′n)xn.

By linear independence all these scalars have to be zero, hence the representation
is unique. Contradicting our assumption.

(⇐) Suppose every x ∈ span{x1, ..., xn} can be written uniquely as a linear com-
bination of elements of {x1, ..., xn}. Hence there exist unique scalars α1, ..., αn for
every x ∈ span{x1, ..., xn} such that

x = α1x1 + · · ·+ αnxn.

In particular x = 0 is uniquely represented, hence the trivial decomposition α1 =
· · · = αn = 0 is the only way to represent the zero vector. Hence the set {x1, ..., xn}
is linearly independent. �

Proposition 5.1.2 (Linear Dependence Lemma). Suppose {x1, ..., xn} in X is
linearly dependent and assume with out loss of generality that x1 6= 0. Then there
exists a vector xj for some j ∈ {2, ..., n} such that the following holds:

(1) xj ∈ span{x1, ..., xj−1},
(2) span{x1, ..., xj−1, xj+1, ..., xn} = span{x1, ..., xn}.

There are two central notions in the theory of vector spaces:

Definition 5.1.3. Let X be a vector space.

(1) If there exists a set S ⊆ X with span(S) = X, then we call S a spanning
set. In case that S consists of finitely many elements {x1, ..., xn}, then we
say that X is finite-dimensional. Finally, if there exists no finite spanning
set for X, then we call the vector space infinite-dimensional.

(2) If there exists a linearly independent spanning set B for X, then we call
B a basis for X.

Example 5.1.4. (1) The space of polynomials of degree at most n is
finite-dimensional, because the set of monomials {1, x, x2, ..., xn} is a span-
ning set and even a basis for Pn.

(2) The space of all polynomials P is infinite dimensional.

Let us present the argument for this fact. We have to show that for any
n there is only just the trivial linear combination of monomials {x0(t) =
1, x1(t) = t2, ..., xn(t) = tn} that represents the zero function. We use
induction: For n = 0 we have α0 = 0 if and only if α = 0.
Suppose for n we know that

α0x0(t) + · · ·+ αnxn(t) = 0 for all t ∈ R
only holds for α0 = α1 = · · · = αn = 0. Then we want to show that
this is also true for n + 1. We reduce the latter case to the case n by
differentiation. Suppose that

f(t) = α0x0(t) + · · ·+ αnxn(t) + an+1xn+1(t) = 0 for all t ∈ R.
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Then

f ′(t) = α1t+ · · ·+ nαn−1
n ) + (n+ 1)an+1t

n = 0 for all t ∈ R.
Now the induction hypothesis implies that α1 = · · ·αn+1 = 0 and by the
induction base we get a0 = 0. Hence f(t) is identically zero. Hence the set
of monomials is a linearly independet set of P and it spans the space of
polynomials by definition. Hence it is even a basis of infinite cardinality.

(3) The space of continuous functions on the real-line, or the space of continu-
ously differentiable function, or the space of infinitely often differentiable
functions are infinite-dimensional vector spaces.

Proposition 5.1.5 (Basis Reduction Theorem). If {x1, ..., xn} is a spanning
set for X, then either {x1, ..., xn} is a basis for X or some xj’s can be removed
from {{x1, ..., xn}} to obtain a basis.

As a consequence we get that every finite-dimensional vector space has a basis.

Proposition 5.1.6. Every finite-dimensional vector space has a basis.

An often used result is the following one:

Proposition 5.1.7 (Basis Extension Theorem). Let X be a finite-dimensional
vector space. Then any linearly independent subset of X can be extended to a basis.

Proposition 5.1.8 (Exchange Lemma). Suppose {x1, ..., xm} and {y1, ..., yn}
are two bases for X. Then for each i ∈ {1, ...,m} there exists some j ∈ {1, ..., n}
such that {x1, ., xj−1, yj , xj+1.., xm} is a basis for X.

Corollary 5.1.9. Any two bases of a finite-dimensional vector space have the
same number of elements.

Lemma 5.3. Let X be a finite-dimensional vector space of dimension n. Then
any set {x1, ..., xn} of n linearly independent vectors is a basis of X. In other words,
any set of vectors {x1, ..., xm} with m > n is linearly dependent.

These observations motivate

Definition 5.1.10. Suppose X has a basis {x1, ..., xn}. Then we call the
number of elements of this basis the dimension of X, denoted by dim(X). If X is
infinite-dimensional, then we write dim(X) =∞.

Example 5.1.11. dim(Cn) = n, dim(Pn) = n+ 1 and dim(P) =∞.

Proposition 5.1.12. Let M,N be subspaces of a finite-dimensional vector
space X. Then

dim(()M +N) + dim(()M ∩N) = dim(M) + dim(N).

5.1.2. Linear transformations. Let T be a linear transformation from X
to Y . Then the kernel of T is

ker(T ) = {x ∈ X : Tx = 0}
and the range of T is

ran(T ) = {y ∈ Y : y = Tx for some x ∈ X}.
The ker(T ) is a subspace of X and the ran(T ) is a subspace of Y . Suppose X and
Y are finite dimensional vector spaces. Then one can construct bases for ker(T )
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and ran(T ). We call the dimenion of the ker(T ) the nullity of T and the dimension
of ran(T ) the rank of T .

Proposition 5.1.13. Let X and Y be finite dimensional vector spaces. For a
linear mapping T : X → Y we have

dim(X) = dim(ker(T )) + dim(ran(T )).

Proof. Idea is to use the dimension formula for the sum of vector spaces.
Let V be a n-dimensional vector space. Suppose {x1, ..., xk} is a basis for ker(T ).
Then there exist xk+1, ..., xn in X such that {x1, ..., xk, ..., xn} is a basis for X. We
denote by S = span{xk+1, ..., xn}. Then by construction we have

ker(T ) ∩ S = {0}
and by the dimension formula for subspaces we have

dim(X) = dim(ker(T )) + dim(ran(T )).

Note that ran(T ) = T (S) and the restriction of T to S is injective. Hence
dim(ran(T (S))) = dim(S) = dim(ran(T )). Thus we have the desired assertion. �

We associate two linear mappings to a basis B = {x1, ..., xn} of a finite-
dimensional vector space. Then each x can be uniquely expressed as

x = α1x1 + · · ·+ αnxn

and we define the coefficient map C : X → Cn by

Cx =

α1

...
αn


often denoted by Cx = [x]B, and the synthesis map D : Cn → X by

x = α1x1 + · · ·+ αnxn.

Next we discuss the link between matrices and linear transformations. On the one
hand a m×n matrix A defines a linear transformation from Cn to Cm by Tx = Ax.

On the other hand any linear transformation on finite-dimensional vector spaces
can by represented in matrix form relative to a choice of bases.

We present the details for this assertion. Let B = {x1, ..., xn} be a basis of X and
C = {y1, ..., ym} be a basis of Y . Suppose T is a linear transformation T : X → Y
Then

x =

n∑
i=1

αixi

yields

T (x) =

n∑
i=1

αiT (xi)

and thus

[T (x)]C =

n∑
i=1

αi[T (xi)]C .
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We define a m×n matrix A which has as its j-th column [[T (xj)]C ]. Then we have

[Tx]C = A[x]B.

The matrix A represents T with respect to the bases B and C. Sometimes, we
denote this A sometimes by [T ]CB.

We address now the relation between the matrix representation of T depending
on the change of bases. Suppose we have two bases B = {x1, ..., xn} and R =
{y1, ..., yn} for X. Let x =

∑n
j=1 αixi. Then

[x]R =

n∑
j=1

αi ~xiR.

Define the n×n matrix P with j-th column ~xjR, and we call P the change of bases
matrix:

[x]R = P [x]B

and by the invertibility of P we also have

[x]B = P−1[x]R.

Let now C and S be two bases for Y . Then a linear transformation T : X → Y has
two matrix representations:

A = [T ]CB and B = [T ]SR.

In other words we have

[Tx]C = A[x]B , [Tx]S = B[x]R

for any x ∈ X. Let P be the change of bases matrix of size n × n such that
[x]R = P [x]B for any x ∈ X and let Q be the invertible m ×m matrix such that
[y]S = Q[y]C .
Hence we get that

[Tx]S = BP [x]B

and

[y]S = [Tx]S = Q[Tx]C = QA[x]B

for any x ∈ X. Hence we get that

B = QAPP−1 and A = Q−1BP.

In the case X = Y we have P = Q and we set S = Q−1 to get B = S−1AS. Then
the matrices A and B represent the same linear transformation T on V with respect
to different bases.
These observation motivate the definition.

Definition 5.1.14. Two m×n matrices A and B are called equivalent if there
exists an invertible matrix S such that B = QAP−1. Furthermore, Two n × n
matrices A and B are called equivalent if there exists an invertible matrix S such
that B = S−1AS.
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Given a general n × n matrix A. Two similiar matrices are “essentially the
same”. The notion of similarity is of utmost importance for linear algebra. It al-
lows one to classify matrices. We are going to show that it is possible that any
matrix is similar to an upper triangular matrix, Schur’s theorem, and with more ef-
fort to get into a special upper triangular form, the Jordan normal form. Of special
interest are matrices that are similar to diagonal matrices, which will turn out to be
the normal matrices. The final statement is often referred to as “spectral theorem”.

For a matrix A = (aij) we define its trace to be the sum of its diagonal elements:

tr(A) = a11 + · · ·+ ann.

A computation yields the following useful fact:

Lemma 5.4. Let U be a unitary n× n matrix. Then tr(A) = tr(UA). Further-
more, we have tr(AB) = tr(BA) for any n× n matrices A and B.

Note that

tr(A∗A) =

n∑
i,j=1

|aij |2.

Lemma 5.5. If A and B are unitarily equivalent, then
n∑

i,j=1

|aij |2 =

n∑
i,j=1

|bij |2.

Proof. From
∑n
i,j=1 |aij |2 = tr(A∗A) we want to show that this equals tr(B∗B):

tr(B∗B) = tr((UAU∗)∗UAU∗) = tr(UA∗AU∗) = tr(U∗UA∗A) = tr(A∗A).

�

Definition 5.1.15. A complex number λ is called an eigenvalue of a linear
transformation T : V →W if there exists a non-zero x ∈ X such that Tx = λx. In
other words, x ∈ kerT − λI. The subspace Eλ = kerT − λI is called the eigenspace
of T for the eigenvalue λ. The dimension of Eλ is called the geometric multiplicity
of λ. The set σ(T ) of C

σ(T ) = {z ∈ C : T − zI is not invertible}
is known as the spectrum of T .

Note that Eλ consists of the eigenvectors of T and the zero vector 0. For finite-
dimensional vector spaces σ(T ) is the set of all eigenvalues counting multiplicities
of T .

Theorem 5.6. Suppose T is a linear transformation on a finite-dimensional
complex vector space. Then there exists an eigenvalue λ ∈ C for an eigenvector x
of T .

Proof. We assume that dim(()X) = n and choose any non-zero vector x in
X. Consider the following set of n+ 1 vectors in X:

{x, Tx, T 2x, ..., Tnx}.
Since n + 1 vectors in an n-dimensional vector space X are linearly independent,
there exists a non-trivial linear combination:

a0x+ a1Tx+ · · ·+ anT
n = 0.
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Let us denote by p(t) = a0 + a1t+ · · ·+ ant
n the polynomial that after replacing t

by the linear transformation T and powers of T by the corresponding iterates of T .
Then the non-trivial linear combination among the vectors turns into a polynomial
equation in T :

p(T ) = 0.

By the Fundamental Theorem of Algebra any polynomial can be written as a pro-
duct of linear factors:

p(t) = c(t− λ1)(t− λ2) · · · (t− λn), λi ∈ C, c 6= 0.

Hence p(T ) has a factorization of the form:

p(T ) = c(T − λ1I)(T − λ2I) · · · (T − λnI).

Hence p(T ) is a product of linear mappings T − λjI for j = 1, ..., n. We know
that p(T )x = 0 for a non-zero x 6= 0, which implies that at least one of these
linear mappings is not invertible. Thus it has to have a non-trivial kernel, let’s
say y ∈ ker(T − λiI), which yields that y is an eigenvector for the eigenvalue λi.
Consequently, we have shown the desired assertion. �

Proposition 5.1.16 (Gersgorin’s disks theorem). For any n × n matrix the
spectrum is contained in the following union of disks

∪ni=1{z ∈ C : |z − aii| ≤
n∑

j=1,j 6=i

|aij |}.

The disks Bi = {z ∈ C : |z−aii| ≤
∑n
j=1,j 6=i |aij |} centered at aii abd if radius

ri
∑n
j=1,j 6=i |aij | are called Gresgorin disks.

Proof. Let λ be an eigenvalue of A and eigenvector x. In components the
eigenvalue equation Ax = λx is the set of equations:

n∑
j=1

aijxj = λxi for i = 1, ..., n.

Hence

(λ− aii)xi =

n∑
j=1,j 6=i

aijxj

and by the triangle inequality

|λ− aii||xi| ≤
n∑

j=1,j 6=i

|aij ||xj | ≤
n∑

j=1,j 6=i

|aij |‖x‖∞.

Choose i ∈ {1, ..., n} to be the largest component of x, i.e. |xi| = ‖x‖∞ we obtain
the conclusion after dividing through by ‖x‖∞. �

Proposition 5.1.17. Eigenvalues of a matrix A corresponding to distinct ei-
genvalues are linearly independent.

Proof. Suppose λi 6= λk for i 6= k and Axi = λixi for xi 6= 0. We assume that
{x1, ..., xn} is linearly dependent. Hence there exists a linear dependence realtion
with the fewest number of elements, say m. Thus there exist a1, ..., am such that

m∑
j=1

ajxj = 0.
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Application of A to this linear dependence relation yields
m∑
j=1

ajAxj =

n∑
j=1

ajλjxj0.

Multiplication of the last equation by λm and subtracting from the linear depen-
dence relation gives

m∑
j=1

(ajλj − ajλm)xj = 0.

Hence the coefficient for xm is zero. Therefore we have found a linear combination
with m-1 vectors, contrary to our assumption of m being the smallest such linear
combination. �

Definition 5.1.18. A n×n matrix A is called diagonalizable if it has n linearly
independent eigenvectors.

Note that the set of eigenvectors of a diagonalizable matrix is consequently a
basis for Cn.
By definition a diagonalizable n × n matrix A has eigenvalues λ1, ..., λn and asso-
ciated eigenvectors u1, ..., un satisfying:

Au1 = λu1

...Aun = λun.

Collect the eigenvectors of A into one matrix: U = (u1|u2| · · · |un); and the eigen-
values of A into the diagonal matrix

D =


λ1 0 · · · · · · 0
... λ2 0 · · · 0
... 0

. . .
. . . λn

 .

Then the eigenvalue equations turn into a matrix equation:

AU = UD.

Since A is diagonalizable, the eigenvectors are a basis for Cn. Hence U is invertible
and we have

A = UDU−1.

Sometimes U is an unitary matrix, i.e. the eigenvectors yield an orthonormal basis
for Cn. Then we have A = UDU∗.

A well-known criterion for the non-invertiblity of a matrix is the vanishing of its de-
terminant. Hence eigenvalues are the zeros of the polynomial pA(z) = det(zI −A),
known as the characterisitic polynomial.

Lemma 5.7. Similar matrices have the same characteristic equation.

Proof. Let A and B be similar matrices. Thus there exists an invertible
matrix S such that B = S−1AS.

pB(z) = det(zI − S−1AS) = det(zS−1S − S−1AS) = det(S−1(zI−A)S) = pA(z).

�
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As an important consequence of the existence of an eigenvector for linear map-
pings between complex finite-dimensional vector spaces we prove Schur’s triangu-
larization theorem, our first classification theorem. Before we introduce a refined
version of similarity. Namely, if the matrix S in the definition of similar matrices
may be choosen as a unitary matrix, then we call the matrices A and B unitarily
equivalent.

Theorem 5.8 (Triangularization Theorem). Given a n× n matrix with eigen-
values λ1, ..., λn, counting multiplicities. There exists a unitary n × n matrix U
such that

A = UTU∗

for an upper triangular matrix T with the eigenvalues on the diagonal. Hence any
matrix is similar to an upper triangular matrix.

We refer to the decomposition of the theorem as Schur form.

Proof. We proceed by induction on n. For n = 1, there is nothing to show.
Suppose that the result is true up to matrices of size n− 1.
Let A be a n×n matrix with eigenvalues λ1, ..., λn counting multiplicities. Choose
a normalized eigenvector u1 for the eigenvalue λ1. Then we extend u1 to a basis
{u1, ..., un} of Cn and we choose this basis to be orthonormal. Relative to this basis
the matrix is of the form

A = U


λ1 x · · · x
0
... An−1

0

U−1,

where V is the matrix of the system {u1, ..., un} relavtive to the canonical basis.
Since this is a unitary matrix, the similarity, is actually a unitary equivalence. By
the induction hypothesis there exists a (n− 1)× (n− 1)-matrix V such that V AV ∗

is upper triangular. Set Ṽ to be the n × n matrix where v11 = 1 and the other
entries of the first column and row are zero. Then Ṽ is a unitary matrix and UṼ
is the desired unitary matrix. �

Example 5.1.19. Find the Schur form of A =

(
5 7
−2 −4

)
.

First step: Find an eigenvalue of A and associated eigenvector. The characteristic
polynomial is λ2 − λ − 6 = 0 and so λ1 = −2 and λ2 = 3. An eigenvector for

λ1 = −2 is x1 =

(
1
−1

)
.

The second step is to complete it to a basis of C2. In our case we take the eigenvector
to the second eigenvalue and note that the corresponding set of vectors is linearly

independent: x2 =

(
7
−2

)
.

Third step: Use a orthonormalization procedure, e.g. Gram-Schmidt, to turn the

system {x1, x2} into a basis {u1 = 1√
2

(
1
−1

)
, u2 = 1√

2

(
1
1

)
}.

Final step: Form the matrix U = 1√
2

(
1 1
−1 1

)
. Computation of U∗AU =

(
2 9
0 3

)
,

which has the eigenvalues of A on its diagonal and is upper triangular.
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Schur’s triangularization theorem has a number of important consequences.

Theorem 5.9 (Cayley-Hamilton). Given a n× n matrix. Then

pA(A) = 0,

where pA(A) is the characteristic polynomial of A.

We state a refined version of Schur’s triangularization theorem

Theorem 5.10. Given a n× n matrix with distinct eigenvalues λ1, ..., λk with
k ≤ n. Then A is unitarily equivalent to

T1 0 · · · 0

0 T2
. . . 0

...
. . .

...
0 . . . 0 Tk


where Ti has the form 

λi x · · · x

0 λi
. . . x

...
. . .

. . . x
0 . . . 0 λi


We present an interplay on the structure of diagonalizable matrices and the

notions from our discussion of normed spaces. LetMn(C) denote the vector space
of complex n× n matrices, and by D the set of diagonalizable n× n matrices.

Lemma 5.11. Mn(C) is a normed vector space with respect to the Frobenius
norm

‖A‖F = tr(A∗A)1/2

and this norm comes from an innerproduct on Mn(C):

〈A,B〉 = tr(B∗A).

Furthermore ‖A‖F is unitarily equivalent ‖UAV ‖F = ‖A‖F for unitary matrices
U, V .

We leave the proof as an exercise. Use the identification between Mn(C) and

Cn2

and note that then the Frobenius norm is the Euclidean norm on the latter
space.

Proposition 5.1.20. The set of diagonalizable matrices D is dense in Mn(C)
with respect to the Frobenius norm. More explicitly, given A ∈ Mn(C) and ε > 0.

There exists a diagonalizable matrix Ã ∈Mn(C) such that

n∑
i,j=1

|aij − ãij |2 < ε.

We have the Schur form for A
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Proof.

A = U


λ1 x · · · x

0 λ2
. . . x

...
. . .

. . .
...

0 . . . . . . λn

U∗,

for a unitary matrix and eigenvalues λ1, ..., λn counting multiplicities. Define small
perturbations of these eigenvalues λj such that these new numbers λ̃1, ..., l̃an are
all distinct. We add multiples of a number η to the λj ’s:

λ̃j = λj + jη, η > 0

and fixed at the end of the proof. Set Ã

U


itldela1 x · · · x

0 λ̃2
. . . x

...
. . .

. . .
...

0 . . . . . . λ̃n

U∗,

where we only change the diagonal entries of the upper triangular matrix. Now Ã
is diagonalizable and we have

tr((A− Ã)∗(A− Ã)) =

n∑
i,j=1

|aij − ãij |2

Since the diagonal matrix with entries λ1 − l̃a1, ..., λ1 − l̃a1 is unitarily equivalent
to A− Ã we deduce that

tr((A− Ã)∗(A− Ã)) =

n∑
j=1

|λj − l̃aj |2.

By the definition of l̃aj this gives

n∑
j=1

|λj − l̃aj |2 = η2
n∑
j=1

j2 = η2n(n+ 1)/2.

Consequently,
n∑
j=1

|λj − l̃aj |2 ≤ ε

for η ≤ 2ε/(n(n+ 1)). �

Theorem 5.12. Given a n×n matrix A. Let pA be the characteristic polynomial
of A. Then A annihilates pA, in other words pA(A) = 0.

Proof. Schur’s triangularization theorem gives that A is unitarily equivalent
to an upper triangular matrix T , A = UTU∗ for a unitary matrix U . The powers
of A are also similar to powers of T via the same matrix U :

Aj = UT jU∗,
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e.g. A2 = UTU∗UTU∗ = UT 2U∗ since U∗U = I. Hence the characterisitic
polynomials of A and T are also unitarily equivalent:

pA(A) = UpT (T )U∗.

Consequently, pA(A) = 0 if and only if pT (T ) = 0. The case pT (T ) = 0 is definitely
more accessible than the general one, and one can show by a matrix decomposition
argument that the latter is true. �

Example 5.1.21. We check the statement for a general 2× 2 upper triangular
matrix

T =

(
a b
0 c

)
.

We have to compute T 2

T 2 =

(
a2 ab+ bc
0 c2

)
.

The characteristic polynomial of T is pT (z) = z2 − (a + c)z + ac. For zi 7→ T i we
get

pT (T ) = T 2 − (a+ c)T + acT 0 = T 2 − (a+ c)T + acI,

which is equal to(
a2 ab+ bc
0 c2

)
− (a+ c)

(
a b
0 c

)
+

(
ac 0
0 ac

)
= 0.

Theorem 5.13 (Spectral theorem). Given A ∈ Mn(C). Then the following
statements are equivalent:

(1) A is normal.
(2) A is unitarily diagonalizable. Hence there exists a unitary matrix U such

that A = UDU∗, where D is a diagonal matrix with the eigenvalues of A
as entries of the diagonal, the columns of U are the corresponding eigen-
vectors of A.

(3)
∑n
i,j=1 |aij |2 =

∑n
i,j=1 |λi|2, where λ1, ..., λn are the eigenvalues of A

counting multiplicities.

In the proof we make use of two useful statements. An elementary computation
yields the following fact.

Lemma 5.14. Suppose A and B are unitarily equivalent. Then A is normal if
and only if B is normal, i.e. A is normal if and only if UAU∗ is normal for some
unitary matrix U .

Lemma 5.15. An upper triangular matrix is normal if and only if it is diagonal.

Proof. (⇒) Suppose T is an upper triangular matrix. Then the n, n-th entry

of TT ∗ is |tnn|2 while the n, n-th entry of T ∗T is |tnn|2+
∑n−1
i=1 |tin|2. If T is normal,

then these two entries have to be the same. Hence tin = 0 for i = 1, ..., n − 1.
Repeating this argument for the entries n− 1, n− 1, ..., 1 gives that T is diagonal.
(⇐) If T is diagonal, then T is certainly normal. �

Spectral theorem. (i)⇔ (ii) By Schur’s theorem A is unitarily equivalent
to an upper triangular matrix T . Then we know that A is normal if and only if T is
normal, which is normal if and only if T is diagonal. In other words, A is unitarily
equivalent to a diagonal matrix.
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(ii) ⇔ (iii) Suppose A is unitarily equivalent to a diagonal matrix D where the
diagonal entries of D are the eigenvalues λ1, ..., λn of A. Then

sumn
i,j=1|aij |2 = tr(A∗A) = tr(D∗D) =

n∑
i=1

|λi|2.

(ii)⇔ (ii) By Schur’s theorem A is unitarily equivalent to a triangular matrix T :

n∑
i=1

|λi|2 =

n∑
i,j=1

|aij |2 = tr(A∗A) = tr(T ∗T ) =

n∑
i=1

|tii|2 +

n∑
i,j=1,i6=j

|tij |2.

Since the diagonal entries of T are the eigenvalues of A we have that

n∑
i=1

|λi|2 =

n∑
i=1

|tii|2.

Hence tij = 0 for i 6= j, i.e. T is diagonal and A is unitarily equivalent to a diagonal
matrix. �

Recall that selfadjoint matrices, A = A∗, are normal. Consequently our spectral
theorem for normal matrices implies the spectral theorem for selfadjoint matrices.

Theorem 5.16. Suppose A is a selfadjoint n× n matrix. Then A is unitarily
equivalent to a diagonal matrix, and the eigenvalues of A are real.

Proof. The fact about the diagonalizability follows from the Spectral The-
orem for unitary matrices. Now let U be the unitary matrix implementing this
similarity: A = UDU∗. Then we have A∗ = UDU∗. Hence A is selfadjoint if and
only if the diagonal entries of D are real. Since these entries are the eigenvalues of
A, we have proved that eigenvalues of a selfadjoint matrix are real numbers. �

In the case of unitary matrices we can also use the spectral theorem to deduce
some information about the eigenvalues.

Proposition 5.1.22. A matrix A is unitary if and only if all of the eigenvalues
of A have modulus one.

Definition 5.1.23. A selfadjoint matrix A on an n-dimensional innerproduct
space (X, 〈., , 〉 .) is said to be positive definite if 〈Ax, x〉 > 0 for all non-zero vectors
x ∈ X.

Definition 5.1.24. Suppose A is a n × n matrix with eigenvalues λ1, ..., λk
with k ≤ n. The algebraic multiplicity ai of the eigenvalue λi equals the number of
times λi appears on the diagonal of the T -matrix in the Schur form A = UTU∗.
The geometric multiplicity gi of the eigenvalue λi equals the dimension of the ei-
genspace associated with λi: gi = dim(ker(A− λiI)).

Note that the geometric multiplicty of an eigenvalue is always less than or equal
to the algebraic multiplicity. In case the sum of the geometric multiplicities is less
than the sum of the algebraic multiplicities, then A has not enough eigenvectors to
form a basis for Cn and the matrix is not invertible.
We still want to find a basis out of vectors associated to the eigenvalues and a way
to accomplish that is to weaken the notion of an eigenvector.
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Definition 5.1.25. A non-zero vector x ∈ Cn is called a generalized eigenvector
of a n × n matrix A associated with the eigenvalue λ if u lies in the generalized
eigenspace ker((A− λI)a), where a is the algebraic multiplicity of λ.



APPENDIX A

Sets and functions

A.1. Sets and functions

In order to formalize our intution about collections of objects we use the frame-
work of set theory. The relation between sets and their elements will be described
by functions.

Definition A.1.1. A set is a collection of distinct objects, its elements. If an
object x is an element of a set X, we denote it by x ∈ X. If x is not an element of
A, then we wrtie x 6= X.

A set is uniquely determined by its elements. Suppose X and Y are sets. Then
they are identical, X = Y , if they have the same elements. More formalized, X = Y
if and only if for all x ∈ X we have x ∈ Y , and for all y ∈ Y we have y ∈ X.

The empty set is the set with no elements, denoted by ∅.

Definition A.1.2. Suppose X and Y are sets. Then Y is a subset of X,
denoted by Y ⊂ X, if for all y ∈ Y we have y ∈ X.

If Y ⊆ X, one says that Y is contained in X. If Y ⊆ X and X 6= Y , then Y is
a proper subset of X and we use the notation Y ⊂ X.

Here are a few constructions of sets.

Definition A.1.3. Let X and Y be sets.

• The union of X and Y , denoted by X ∪ Y , is defined by

X ∪ Y = z| z ∈ X or z ∈ Y .

• The intersection of X and Y , denoted by X ∩ Y , is defined by

X ∩ Y = z| z ∈ X and z ∈ Y .

• . The difference set of X from Y , denoted by X\Y , is defined by

X\Y = {z ∈ X : z ∈ X and z 6= Y }.

If all sets are contained in one set X, then the difference set X ⊂ Y is
called the complement of Y .

• The Cartesian product of X and Y , denoted by X × Y , is the set

X × Y = {(x, y)|x ∈ X, y ∈ Y },

i.e the set of all ordered pairs (x, y), with x ∈ X and y ∈ Y .

Here are some basic properties of sets.

Lemma A.1. Let X,Y and Z be sets.

71
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(1) X ∩ (Y ∪Z) = (X ∩ Y )∪ (X ∩Z) and X ∪ (Y ∩Z) = (X ∪ Y )∩ (X ∪Z)
(distributition law)

(2) (X ∪ Y )c = Xc ∩ Y c and (X ∩ Y )c = Xc ∪ Y c (De Morgan’s laws)
(3) X\(Y ∪ Z) = (X\Y ) ∩ (X\Z) and X\(Y ∩ Z) = (X\Y ) ∪ (X\Z)

Let X and Y be sets. A function with domain X and codomain Y , denoted
by f : X → Y , is a relation between the elements of X and Y satisfying the
properties: for all x ∈ X, there is a unique y ∈ Y such that (x, y) ∈ f , we denote
it by: f(x) = y.

By definition, for each x ∈ X there is exactly one y ∈ Y such that f(x) = y.
We say that y the image of x under f . The graph G(f) of a function f is the subset
of X × Y defined by

G(f) = {(x, f(x))|x ∈ X}.
The range of a function f : X → Y , denoted by range(f), or f(A), is the set of

all y ∈ Y that are the image of some x ∈ X:

range(f) = {y ∈ Y | there existsx ∈ X such that f(x) = y}.
The pre-image of y ∈ Y is the subset of all x ∈ X that have y as their image. This
subset is often denoted by f?1(y):

f?1(y) = {x ∈ X| f(x) = y}.
Note that f?1(y) = ∅ if and only if y ∈ Y \range(f).

The following notions are central for the theory of functions.

Definition A.1.4. Let f : X → be a function.

(1) Then we call f injective or one-to-one if f(x1) = f(x2) implies x1 = x2,
i.e. no two elements of the domain have the same image.

(2) Then we call f surjective or onto if range(f) = Y , i.e. each y ∈ Y is the
image of at least one x ∈ X.

(3) Then we call f bijective if f is both injective and surjective.

Let f : X → Y and g : Y → Z be two functions so that the codomain of f
coincides with the domain of g. Then we define the composition, denoted by g ◦ f ,
as the function g ◦ f : X → Z, defined by x 7→ g(f(x)).

For every set X, we define the identity map, denoted by idX or id for short:
idX : X → X is defined by idX(x) = x for all x ∈ X. The identity mapis a
bijection.

If f is a bijection, then it is invertible. Hence, the inverse relation is also a function,
denoted by f?1. It is the unique bijection Y → X such that f?1 ◦ f = idX and
f ◦ f?1 = idY .

Lemma A.2. Let f : X → Y and g : Y → Z by bijections. Then g ◦ f is also a
bijection and (g ◦ f)−1 = f−1 ◦ g−1.


