Please justify your answers! The most important part is how you arrive at an answer, not the answer itself.

1 Suppose that $0<a<b$ are real numbers and let $k:[a, b]^{2} \rightarrow \mathbb{C}$ be a continuous function on the square $[a, b]^{2}=[a, b] \times[a, b]$. Then

$$
K=\sup _{(x, y) \in[a, b]^{2}}|k(x, y)|<\infty
$$

by compactness of $[a, b]^{2}$.
Write X for $C([a, b])=C([a, b], \mathbb{C})$ with the usual sup-norm $\|\cdot\|_{\infty}$.
a) Show that the (linear) integral operator $T_{k}: X \rightarrow X$ defined by

$$
\left(T_{k} f\right)(x)=\int_{a}^{b} k(x, y) f(y) d y
$$

is bounded.
b) The function k is (confusingly) known as the kernel of the integral operator T_{k}. Find a kernel $h:[a, b]^{2} \rightarrow \mathbb{C}$ such that $T_{k}^{2}=T_{h}$.
c) Consider T_{k} as an operator on the Hilbert space $L^{2}([a, b])$. Determine its adjoint operator, T_{k}^{*}.

2 Suppose that $A=\left(a_{i j}\right)_{i, j \in \mathbb{N}}$ is an infinite matrix of complex numbers, with

$$
C=\sum_{i, j=1}^{\infty}\left|a_{i j}\right|^{2}<\infty
$$

Show that the linear operator $T: \ell^{2} \rightarrow \ell^{2}$ defined by matrix multiplication with A,

$$
T\left(x_{i}\right)_{i \in \mathbb{N}}=\left(y_{i}\right)_{i \in \mathbb{N}}, \quad \text { where } \quad y_{i}=\sum_{j=1}^{\infty} a_{i j} x_{j}
$$

is bounded.

3 Compute the exponential of the following operators:
a)

$$
D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \quad \text { (Diagonal matrix) }
$$

b)

$$
\left.R=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \quad \text { (Counterclockwise rotation by } 90^{\circ} \text { on } \mathbb{R}^{2} .\right)
$$

c) A nilpotent operator $N \in B(X)$, where X is a Banach space.

4 Find the singular value decomposition of

$$
A=\left[\begin{array}{ccc}
3 & 1 & 1 \\
-1 & 3 & 1
\end{array}\right]
$$

5 Consider the Banach space ℓ^{∞} (with the usual norm). Let $\lambda=\left(\lambda_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty}$ and define the (linear) multiplication operator $M_{\lambda}: \ell^{\infty} \rightarrow \ell^{\infty}$ by

$$
M_{\lambda}\left(x_{n}\right)_{n \in \mathbb{N}}=\left(\lambda_{n} x_{n}\right)_{n \in \mathbb{N}}
$$

a) Show that M_{λ} is injective if and only if $\lambda_{n} \neq 0$ for all $n \in \mathbb{N}$.
b) Show that M_{λ} is surjective if and only if $\delta=\inf _{n \in \mathbb{N}}\left|\lambda_{n}\right|>0$.
c) Show that M_{λ} does not have closed range if $\lambda=(1 / n)_{n \in \mathbb{N}}$.

