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Exercise set 13

Please justify your answers! The most important part is how you arrive at an answer, not
the answer itself.

1 Suppose that 0 < a < b are real numbers and let k : [a, b]2 → C be a continuous
function on the square [a, b]2 = [a, b]× [a, b]. Then

K = sup
(x,y)∈[a,b]2

|k(x, y)| <∞

by compactness of [a, b]2.
Write X for C([a, b]) = C([a, b],C) with the usual sup-norm ‖·‖∞.

a) Show that the (linear) integral operator Tk : X → X defined by

(Tkf)(x) =
∫ b

a
k(x, y)f(y) dy

is bounded.

b) The function k is (confusingly) known as the kernel of the integral operator Tk.
Find a kernel h : [a, b]2 → C such that T 2

k = Th.

c) Consider Tk as an operator on the Hilbert space L2([a, b]). Determine its adjoint
operator, T ∗k .

2 Suppose that A = (aij)i,j∈N is an infinite matrix of complex numbers, with

C =
∞∑

i,j=1
|aij |2 <∞.

Show that the linear operator T : `2 → `2 defined by matrix multiplication with A,

T (xi)i∈N = (yi)i∈N, where yi =
∞∑
j=1

aijxj ,

is bounded.
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3 Compute the exponential of the following operators:
a)

D = diag(d1, . . . , dn) (Diagonal matrix)

b)

R =
[
0 −1
1 0

]
(Counterclockwise rotation by 90◦ on R2.)

c) A nilpotent operator N ∈ B(X), where X is a Banach space.

4 Find the singular value decomposition of

A =
[

3 1 1
−1 3 1

]
.

5 Consider the Banach space `∞ (with the usual norm). Let λ = (λn)n∈N ∈ `∞ and
define the (linear) multiplication operator Mλ : `∞ → `∞ by

Mλ(xn)n∈N = (λnxn)n∈N

a) Show that Mλ is injective if and only if λn 6= 0 for all n ∈ N.

b) Show that Mλ is surjective if and only if δ = infn∈N |λn| > 0.

c) Show that Mλ does not have closed range if λ = (1/n)n∈N.
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