Norwegian University of Science and Technology Department of Mathematical Sciences TMA4145 Linear Methods Fall 2015

Solutions to exercise set 9

Note that there are several ways to approach the problems, but that only one is presented here. Other solutions may be just as valid!

a) The equation is equivalent to the fixed-point equation

$$f(x) = x \tag{1}$$

for the function $f: \mathbb{R}^4 \to \mathbb{R}^4$ defined in the hint. We need to show that this function is a contraction. Now, for $x, y \in \mathbb{R}^4$ we have

$$d_{\infty}(f(x), f(y)) = \max_{k} |((Ax+b) - (Ay+b))_{k}| = \max_{k} |(A(x-y))_{k}|,$$

and for $z \in \mathbb{R}^4$ we have

$$(Az)_{1} = \frac{1}{3}z_{2} - \frac{1}{3}z_{3} + \frac{1}{6}z_{4}$$
$$(Az)_{2} = \frac{1}{4}z_{1} + \frac{2}{5}z_{3} - \frac{1}{5}z_{4}$$
$$(Az)_{3} = \frac{1}{4}z_{1} + \frac{1}{4}z_{2} - \frac{1}{4}z_{4}$$
$$(Az)_{4} = \frac{1}{3}z_{2} - \frac{1}{3}z_{3}.$$

Observe that

$$(Az)_1| \le \frac{1}{3}|z_2| + \frac{1}{3}|z_3| + \frac{1}{6}|z_4| \le \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{6}\right)\max_k |z_k| = \frac{5}{6}\max_k |z_k|,$$

and similarly

$$|(Az)_2| \le \frac{17}{20} \max_k |z_k|, \quad |(Az)_3| \le \frac{3}{4} \max_k |z_k|, \quad |(Az)_4| \le \frac{2}{3} \max_k |z_k|.$$

In particular

$$\max_{k} |(Az)_{k}| \le \left(\max\left\{\frac{5}{6}, \frac{17}{20}, \frac{3}{4}, \frac{2}{3}\right\} \right) \max_{k} |z_{k}| = \frac{17}{20} \max_{k} |z_{k}|,$$

and so

$$d_{\infty}(f(x), f(y)) = \max_{k} |(A(x-y))_{k}| \le \frac{17}{20} \max_{k} |(x-y)_{k}| = \frac{17}{20} d_{\infty}(x, y)$$

shows that f is a contraction on (\mathbb{R}^4, d_∞) .

Since f is a contraction on the complete metric space (\mathbb{R}^4, d_∞) , we can use the Banach fixed-point theorem to conclude that (1) has a unique solution x^* , and that the sequence $(x_n)_{n\in\mathbb{N}}$ defined by

$$x_n = f(x_{n-1}) = Ax_{n-1} + b$$

for $n \ge 1$ converges to x^* in (\mathbb{R}^4, d_∞) for any $x_0 \in \mathbb{R}^4$.

b) We find

$$x_1 = f(x_0) = Ax_0 + b = b$$

when $x_0 = 0$. Continuing, the second iteration is

$$x_{2} = f(x_{1}) = Ax_{1} + b = Ab + b = \begin{bmatrix} 1 & 1/3 & -1/3 & 1/6 \\ 1/5 & 1 & 2/5 & -1/5 \\ 1/4 & 1/4 & 1 & -1/4 \\ 0 & 1/3 & -1/3 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 2 \\ -2 \end{bmatrix} = \begin{bmatrix} 5/3 \\ 18/5 \\ 7/2 \\ -2 \end{bmatrix}$$

(The distance between x_2 and x^* in (\mathbb{R}^4, d_∞) is approximately 0.7.)

a) For $x, y \in C([0, 1])$, we have

$$\begin{aligned} |(Gx)(t) - (Gy)(t)| &= \left| \int_0^t sx(s) \, ds - \int_0^t sy(s) \, ds \right| \\ &= \left| \int_0^t s(x(s) - y(s)) \, ds \right| \\ &\leq \int_0^t s|x(s) - y(s)| \, ds \\ &\leq \int_0^t sd_\infty(x, y) \, ds \\ &= \frac{1}{2} d_\infty(x, y) \end{aligned}$$

for every $t \in [0, 1]$. Hence,

$$d_{\infty}(Gx, Gy) \le \frac{1}{2}d_{\infty}(x, y), \qquad x, y \in C([0, 1]),$$

and so G is a contraction on $(C([0,1]), d_{\infty})$.

b) The formula is correct for n = 1, because

$$(F(x_0))(t) = (F(0))(t) = \frac{t^2}{2} - (G0)(t) = \frac{t^2}{2} = \sum_{k=1}^{1} (-1)^{k+1} \frac{t^{2k}}{2^k k!}.$$

Suppose therefore that it holds for n = m. Then

$$(F^{m+1}(x_0))(t) = (F(F^m(x_0)))(t) = \frac{t^2}{2} - (GF^m(x_0))(t)$$
$$= \frac{t^2}{2} - \int_0^t s \sum_{k=1}^n m(-1)^{k+1} \frac{s^{2k}}{2^k k!} \, ds$$
$$= \frac{t^2}{2} - \sum_{k=1}^m \frac{(-1)^{k+1}}{2^k k!} \int_0^t s^{2k+1} \, ds.$$

If we now compute the integral and make the substitution l = k + 1, then we find

$$(F^{m+1}(x_0))(t) = \frac{t^2}{2} - \sum_{k=1}^m \frac{(-1)^{k+1}}{2^k k!} \frac{t^{2k+2}}{2k+2}$$

= $\frac{t^2}{2} + \sum_{k=1}^m (-1)^{(k+1)+1} \frac{1}{2^{k+1}(k+1)!} t^{2(k+1)}$
= $\frac{t^2}{2} + \sum_{l=2}^{m+1} (-1)^{l+1} \frac{1}{2^l l!} t^{2l}$
= $\sum_{l=1}^{m+1} (-1)^{l+1} \frac{t^{2l}}{2^l l!},$

which shows that the formula holds for n = m + 1. Hence it holds for all $n \in \mathbb{N}$. c) For $x, y \in C([0, 1])$ we have

$$d_{\infty}(F(x), F(y)) = d_{\infty}(Gx, Gy) \le \frac{1}{2}d_{\infty}(x, y),$$

so F is also a contraction on $(C([0, 1]), d_{\infty})$. As this is a complete metric space, the Banach fixed-point theorem says that F has a unique fixed point x^* in C([0, 1]). It also says that this fixed point can be found as the limit of the sequence $(x_n)_{n \in \mathbb{N}}$ defined by $x_n = F^n(x_0)$ for any $x_0 \in C([0, 1])$. In particular, if $x_0 = 0$ we get

$$x_n(t) = \sum_{k=1}^n (-1)^{k+1} \frac{t^{2k}}{2^k k!}, \qquad t \in [0,1], n \in \mathbb{N}$$

by **b**). Since x_n converges uniformly, and therefore pointwise, to x^* , we must have

$$x^*(t) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{t^{2k}}{2^k k!} = 1 - \sum_{k=0}^{\infty} \frac{(-t^2/2)^k}{k!} = 1 - e^{-t^2/2}$$

for $t \in [0, 1]$.

3 By using the definition of the metric, we find

$$d_{1}(Ax, Ay) = \sum_{k=1}^{n} |(Ax)_{k} - (Ay)_{k}| = \sum_{k=1}^{n} |(A(x-y))_{k}|$$

$$= \sum_{k=1}^{n} \left| \sum_{i=1}^{n} a_{ik}(x-y)_{k} \right|$$

$$\leq \sum_{k=1}^{n} \sum_{i=1}^{n} |a_{ik}| |x_{k} - y_{k}| = \sum_{k=1}^{n} \left(\sum_{i=1}^{n} |a_{ik}| \right) |x_{k} - y_{k}|$$

$$\leq \sum_{k=1}^{n} \left(\max_{j} \sum_{i=1}^{n} |a_{ij}| \right) |x_{k} - y_{k}|$$

$$= \left(\max_{j} \sum_{i=1}^{n} |a_{ij}| \right) d_{1}(x, y).$$

The result follows, because the expression in the parentheses is smaller than one by assumption.

a) The equation is of the form

$$\dot{y}(t) = f(t, y(t))$$

where the function $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is defined by

$$f(t,y) = t + y^2.$$

The function f is clearly continuous, and it is locally Lipschitz in the second variable because

$$|f(t,y) - f(t,x)| = |(t+y^2) - (t+x^2)| = |y^2 - x^2| = |y+x||y-x|$$

for all $t, x, y \in \mathbb{R}$. Specifically, if M > 0 then

$$|f(t,y) - f(t,x)| = |y + x||y - x| \le (|x| + |y|)|y - x| \le 2M|y - x|$$

for all $t \in \mathbb{R}$ and $x, y \in [-M, M]$.

(This implies the condition used in the lecture notes: If $(t_0, y_0) \in \mathbb{R} \times \mathbb{R}$, then we can choose M large enough so that (t_0, y_0) is an interior point of $\mathbb{R} \times [-M, M]$. Finally, choose $\epsilon > 0$ such that the ball $B_{\epsilon}(t_0, y_0)$ is contained in the rectangle. Then f is Lipschitz in y in this ball, with constant L = 2M.)

The Picard–Lindelöf theorem therefore applies, and yields *local* existence and uniqueness of a solution to the initial value problem.

(Note that this solution cannot be written down in terms of elementary functions.)

b) We find

$$y_0(t) = 0,$$

$$y_1(t) = \int_0^t f(s, y_0(s)) \, ds = \int_0^t s \, ds = \frac{1}{2}t^2,$$

$$y_2(t) = \int_0^t f(s, y_1(s)) \, ds = \int_0^t (s + (s^2/2)^2) \, ds = \frac{1}{2}t^2 + \frac{1}{20}t^5$$

for $t \in \mathbb{R}$. Note that the Picard–Lindelöf theorem only guarantees that these iterations converge to a solution of the initial value problem in a small interval around 0.

(In fact, it is possible to prove that the solution blows up in finite time. Numerical evidence seems to suggest that the maximal existence interval is $(-\infty, 1.986...)$. See Figure 1 below.)

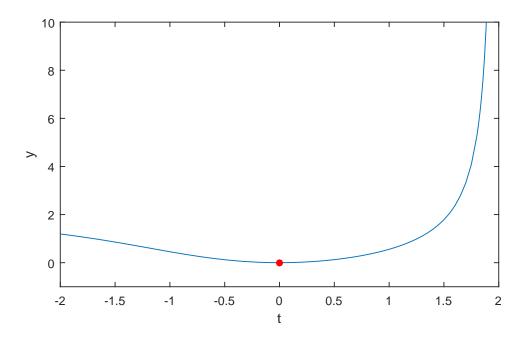


Figure 1: Numerical solution of the initial value problem.