0
Norwegian University of Science and Technology
Department of Mathematical
Sciences

TMA4145 Linear Methods
 Fall 2015

Solutions to exercise set 9

Note that there are several ways to approach the problems, but that only one is presented here. Other solutions may be just as valid!

1 a) The equation is equivalent to the fixed-point equation

$$
\begin{equation*}
f(x)=x \tag{1}
\end{equation*}
$$

for the function $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ defined in the hint. We need to show that this function is a contraction. Now, for $x, y \in \mathbb{R}^{4}$ we have

$$
d_{\infty}(f(x), f(y))=\max _{k}\left|((A x+b)-(A y+b))_{k}\right|=\max _{k}\left|(A(x-y))_{k}\right|,
$$

and for $z \in \mathbb{R}^{4}$ we have

$$
\begin{aligned}
(A z)_{1} & =\frac{1}{3} z_{2}-\frac{1}{3} z_{3}+\frac{1}{6} z_{4} \\
(A z)_{2} & =\frac{1}{4} z_{1}+\frac{2}{5} z_{3}-\frac{1}{5} z_{4} \\
(A z)_{3} & =\frac{1}{4} z_{1}+\frac{1}{4} z_{2}-\frac{1}{4} z_{4} \\
(A z)_{4} & =\frac{1}{3} z_{2}-\frac{1}{3} z_{3} .
\end{aligned}
$$

Observe that

$$
\left|(A z)_{1}\right| \leq \frac{1}{3}\left|z_{2}\right|+\frac{1}{3}\left|z_{3}\right|+\frac{1}{6}\left|z_{4}\right| \leq\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{6}\right) \max _{k}\left|z_{k}\right|=\frac{5}{6} \max _{k}\left|z_{k}\right|,
$$

and similarly

$$
\left|(A z)_{2}\right| \leq \frac{17}{20} \max _{k}\left|z_{k}\right|, \quad\left|(A z)_{3}\right| \leq \frac{3}{4} \max _{k}\left|z_{k}\right|, \quad\left|(A z)_{4}\right| \leq \frac{2}{3} \max _{k}\left|z_{k}\right| .
$$

In particular

$$
\max _{k}\left|(A z)_{k}\right| \leq\left(\max \left\{\frac{5}{6}, \frac{17}{20}, \frac{3}{4}, \frac{2}{3}\right\}\right) \max _{k}\left|z_{k}\right|=\frac{17}{20} \max _{k}\left|z_{k}\right|,
$$

and so

$$
d_{\infty}(f(x), f(y))=\max _{k}\left|(A(x-y))_{k}\right| \leq \frac{17}{20} \max _{k}\left|(x-y)_{k}\right|=\frac{17}{20} d_{\infty}(x, y)
$$

shows that f is a contraction on $\left(\mathbb{R}^{4}, d_{\infty}\right)$.

Since f is a contraction on the complete metric space $\left(\mathbb{R}^{4}, d_{\infty}\right)$, we can use the Banach fixed-point theorem to conclude that (1) has a unique solution x^{*}, and that the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ defined by

$$
x_{n}=f\left(x_{n-1}\right)=A x_{n-1}+b
$$

for $n \geq 1$ converges to x^{*} in $\left(\mathbb{R}^{4}, d_{\infty}\right)$ for any $x_{0} \in \mathbb{R}^{4}$.
b) We find

$$
x_{1}=f\left(x_{0}\right)=A x_{0}+b=b
$$

when $x_{0}=0$. Continuing, the second iteration is

$$
x_{2}=f\left(x_{1}\right)=A x_{1}+b=A b+b=\left[\begin{array}{cccc}
1 & 1 / 3 & -1 / 3 & 1 / 6 \\
1 / 5 & 1 & 2 / 5 & -1 / 5 \\
1 / 4 & 1 / 4 & 1 & -1 / 4 \\
0 & 1 / 3 & -1 / 3 & 1
\end{array}\right]\left[\begin{array}{c}
2 \\
2 \\
2 \\
-2
\end{array}\right]=\left[\begin{array}{c}
5 / 3 \\
18 / 5 \\
7 / 2 \\
-2
\end{array}\right]
$$

(The distance between x_{2} and x^{*} in $\left(\mathbb{R}^{4}, d_{\infty}\right)$ is approximately 0.7.)

2 a) For $x, y \in C([0,1])$, we have

$$
\begin{aligned}
|(G x)(t)-(G y)(t)| & =\left|\int_{0}^{t} s x(s) d s-\int_{0}^{t} s y(s) d s\right| \\
& =\left|\int_{0}^{t} s(x(s)-y(s)) d s\right| \\
& \leq \int_{0}^{t} s|x(s)-y(s)| d s \\
& \leq \int_{0}^{t} s d_{\infty}(x, y) d s \\
& =\frac{1}{2} d_{\infty}(x, y)
\end{aligned}
$$

for every $t \in[0,1]$. Hence,

$$
d_{\infty}(G x, G y) \leq \frac{1}{2} d_{\infty}(x, y), \quad x, y \in C([0,1])
$$

and so G is a contraction on $\left(C([0,1]), d_{\infty}\right)$.
b) The formula is correct for $n=1$, because

$$
\left(F\left(x_{0}\right)\right)(t)=(F(0))(t)=\frac{t^{2}}{2}-(G 0)(t)=\frac{t^{2}}{2}=\sum_{k=1}^{1}(-1)^{k+1} \frac{t^{2 k}}{2^{k} k!}
$$

Suppose therefore that it holds for $n=m$. Then

$$
\begin{aligned}
\left(F^{m+1}\left(x_{0}\right)\right)(t) & =\left(F\left(F^{m}\left(x_{0}\right)\right)\right)(t)=\frac{t^{2}}{2}-\left(G F^{m}\left(x_{0}\right)\right)(t) \\
& =\frac{t^{2}}{2}-\int_{0}^{t} s \sum_{k=1}^{n} m(-1)^{k+1} \frac{s^{2 k}}{2^{k} k!} d s \\
& =\frac{t^{2}}{2}-\sum_{k=1}^{m} \frac{(-1)^{k+1}}{2^{k} k!} \int_{0}^{t} s^{2 k+1} d s
\end{aligned}
$$

If we now compute the integral and make the substitution $l=k+1$, then we find

$$
\begin{aligned}
\left(F^{m+1}\left(x_{0}\right)\right)(t) & =\frac{t^{2}}{2}-\sum_{k=1}^{m} \frac{(-1)^{k+1}}{2^{k} k!} \frac{t^{2 k+2}}{2 k+2} \\
& =\frac{t^{2}}{2}+\sum_{k=1}^{m}(-1)^{(k+1)+1} \frac{1}{2^{k+1}(k+1)!} t^{2(k+1)} \\
& =\frac{t^{2}}{2}+\sum_{l=2}^{m+1}(-1)^{l+1} \frac{1}{2^{l} l!} t^{2 l} \\
& =\sum_{l=1}^{m+1}(-1)^{l+1} \frac{t^{2 l}}{2^{l} l!}
\end{aligned}
$$

which shows that the formula holds for $n=m+1$. Hence it holds for all $n \in \mathbb{N}$.
c) For $x, y \in C([0,1])$ we have

$$
d_{\infty}(F(x), F(y))=d_{\infty}(G x, G y) \leq \frac{1}{2} d_{\infty}(x, y)
$$

so F is also a contraction on $\left(C([0,1]), d_{\infty}\right)$. As this is a complete metric space, the Banach fixed-point theorem says that F has a unique fixed point x^{*} in $C([0,1])$. It also says that this fixed point can be found as the limit of the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ defined by $x_{n}=F^{n}\left(x_{0}\right)$ for any $x_{0} \in C([0,1])$. In particular, if $x_{0}=0$ we get

$$
x_{n}(t)=\sum_{k=1}^{n}(-1)^{k+1} \frac{t^{2 k}}{2^{k} k!}, \quad t \in[0,1], n \in \mathbb{N}
$$

by b). Since x_{n} converges uniformly, and therefore pointwise, to x^{*}, we must have

$$
x^{*}(t)=\sum_{k=1}^{\infty}(-1)^{k+1} \frac{t^{2 k}}{2^{k} k!}=1-\sum_{k=0}^{\infty} \frac{\left(-t^{2} / 2\right)^{k}}{k!}=1-e^{-t^{2} / 2}
$$

for $t \in[0,1]$.

3 By using the definition of the metric, we find

$$
\begin{aligned}
d_{1}(A x, A y) & =\sum_{k=1}^{n}\left|(A x)_{k}-(A y)_{k}\right|=\sum_{k=1}^{n}\left|(A(x-y))_{k}\right| \\
& =\sum_{k=1}^{n}\left|\sum_{i=1}^{n} a_{i k}(x-y)_{k}\right| \\
& \leq \sum_{k=1}^{n} \sum_{i=1}^{n}\left|a_{i k}\right|\left|x_{k}-y_{k}\right|=\sum_{k=1}^{n}\left(\sum_{i=1}^{n}\left|a_{i k}\right|\right)\left|x_{k}-y_{k}\right| \\
& \leq \sum_{k=1}^{n}\left(\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|\right)\left|x_{k}-y_{k}\right| \\
& =\left(\max _{j} \sum_{i=1}\left|a_{i j}\right|\right) d_{1}(x, y)
\end{aligned}
$$

The result follows, because the expression in the parentheses is smaller than one by assumption.

4 a) The equation is of the form

$$
\dot{y}(t)=f(t, y(t))
$$

where the function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
f(t, y)=t+y^{2} .
$$

The function f is clearly continuous, and it is locally Lipschitz in the second variable because

$$
|f(t, y)-f(t, x)|=\left|\left(t+y^{2}\right)-\left(t+x^{2}\right)\right|=\left|y^{2}-x^{2}\right|=|y+x||y-x|
$$

for all $t, x, y \in \mathbb{R}$. Specifically, if $M>0$ then

$$
|f(t, y)-f(t, x)|=|y+x||y-x| \leq(|x|+|y|)|y-x| \leq 2 M|y-x|
$$

for all $t \in \mathbb{R}$ and $x, y \in[-M, M]$.
(This implies the condition used in the lecture notes: If $\left(t_{0}, y_{0}\right) \in \mathbb{R} \times \mathbb{R}$, then we can choose M large enough so that $\left(t_{0}, y_{0}\right)$ is an interior point of $\mathbb{R} \times[-M, M]$. Finally, choose $\epsilon>0$ such that the ball $B_{\epsilon}\left(t_{0}, y_{0}\right)$ is contained in the rectangle. Then f is Lipschitz in y in this ball, with constant $L=2 M$.)
The Picard-Lindelöf theorem therefore applies, and yields local existence and uniqueness of a solution to the initial value problem.
(Note that this solution cannot be written down in terms of elementary functions.)
b) We find

$$
\begin{aligned}
& y_{0}(t)=0 \\
& y_{1}(t)=\int_{0}^{t} f\left(s, y_{0}(s)\right) d s=\int_{0}^{t} s d s=\frac{1}{2} t^{2} \\
& y_{2}(t)=\int_{0}^{t} f\left(s, y_{1}(s)\right) d s=\int_{0}^{t}\left(s+\left(s^{2} / 2\right)^{2}\right) d s=\frac{1}{2} t^{2}+\frac{1}{20} t^{5}
\end{aligned}
$$

for $t \in \mathbb{R}$. Note that the Picard-Lindelöf theorem only guarantees that these iterations converge to a solution of the initial value problem in a small interval around 0 .
(In fact, it is possible to prove that the solution blows up in finite time. Numerical evidence seems to suggest that the maximal existence interval is $(-\infty, 1.986 \ldots)$. See Figure 1 below.)

Figure 1: Numerical solution of the initial value problem.

