TMAA4145 Linear Methods
Fall 2015

) o ] Solutions to exercise set 9
Norwegian University of Science

and Technology
Department of Mathematical
Sciences

Note that there are several ways to approach the problems, but that only one is presented
here. Other solutions may be just as valid!
a) The equation is equivalent to the fixed-point equation

flz) == (1)

for the function f: R* — R?* defined in the hint. We need to show that this
function is a contraction. Now, for z,y € R* we have

doo(f(2), f(y)) = max [((Az +b) — (Ay + b))x| = max [(A(z — y))xl,
and for z € R* we have

1 1 1
(Az)1 =20 — =23+ =24

3 3 6
(Az)s = i a+ ?7,3 _ %@1
(Az)3 = 41121 + 41122 - 224
1 1
(Az)y = 372~ 3%
Observe that
(23] < gleal + ool + glaal < (5 + 5 + 5 ) maxlaal = g maxa,

and similarly
I( )|<_—17mx\ | I¢ )|<_*3mX| | I¢ )\<_72mx| |
A a A a A .
Z)9 50 2 2|, Z)3 7 e 2k, Z)4 3 l? Zk

In particular

mx|(Az)|<(mx{51732}>mx| |—me|z|
s RIS A\MAX 60907 10 3 ) MRFIRRL = o0 MR IRRD
and so
0o (F(2), f(4)) = max | (A(x — 9))i] < o max (@ — y)i] = o ooz, 9)
o (f(x), fly _mI?X T 20m]?x x k—zooox,y

shows that f is a contraction on (R*,dy).
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b)

b)

Since f is a contraction on the complete metric space (R*, ds), we can use the
Banach fixed-point theorem to conclude that (1) has a unique solution z*, and
that the sequence (x,,)nen defined by

In = f(xn—l) =Arp,_1+0b
for n > 1 converges to z* in (R*, dy) for any zg € R*.

We find
I :f(xo) :A.T()-f—b:b

when xg = 0. Continuing, the second iteration is

1 1/3 -1/3 1/6 7] [2 5/3

B B B |15 01 2/5 —1/50 | 2| [18/5
xy = f(#1) = Ay +b=Ab+b= 1/4 1/4 1 —1/4] |2 7/2
0 1/3 -1/3 1 —2 —2

(The distance between z2 and z* in (R%, d.) is approximately 0.7.)

For z,y € C([0,1]), we have

(Ga)(0)— @0 = | [ sals)ds— [ su(s)ds
[ stat) ~ vt ds
< [ shats) o)l s

t
S/ Sdoo(2,y) ds
0

1

for every t € [0,1]. Hence,
1

and so G is a contraction on (C([0,1]), dso)-

The formula is correct for n = 1, because

2 2 1 2k
(Faw))() = (RO = 5 = (@0)0) = 5 = S0 g
Suppose therefore that it holds for n = m. Then
2
(F™ @) (1) = (F(E™ o)1) = 5 — (CF™(a0)) (1
2 t n fa1 S

:2—/Osl€z::1m( 1) Qkk'd
2 mo(_1q k+1 t

_ % -y ( 2k>k" /0 G2k g
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If we now compute the integral and make the substitution [ = k + 1, then we
find
t2 m (_l)k"‘rl t2k‘+2

k
2 & 2Rkl 2k +2

2 m
_v S(- 1)(k+1)+1;t2(k+1)

2 = 2k+1(k 4+ 1)!
t2 m+1 } 1

_ v +1 21

=3 " IZ:;( ) 20!
m+1 ¢

_ I+1

which shows that the formula holds for n = m + 1. Hence it holds for all n € N.
c) For z,y € C([0,1]) we have

4o (F(2), F(3)) = do(G, Gy) < 3duc(,9),

so F'is also a contraction on (C([0,1]),d~ ). As this is a complete metric space,
the Banach fixed-point theorem says that F' has a unique fixed point z* in
C([0,1]). It also says that this fixed point can be found as the limit of the
sequence (Zy,)nen defined by z, = F™(zg) for any zo € C([0,1]). In particular,
if zg =0 we get

ap(t) =D (—-1)F —— te[0,1],n €N

by b). Since z;,, converges uniformly, and therefore pointwise, to 2*, we must

have
. > t2k X, (—t2/2)k e
k=1 ’ k=0 '
for t € [0, 1].

By using the definition of the metric, we find

NE

di(Az, Ay) = Y _|(Az)x — (Ay)ul = D_[(A(z — )il

=
Il
—
B
Il
—

n n
=22 @ =)k
k=1li=1
n n n n
<Y laaller —url = (Z%k) |8 — Yk
k=11i=1 k=1 \i=1

I
M=

(mjax Z!%‘) |2k — Ykl
1
(m]aXZ|a”|>d1(x Y).

The result follows, because the expression in the parentheses is smaller than one by
assumption.

i

October 23, 2015 Page 3 of 5



Solutions to exercise set 9

4] a)

b)

The equation is of the form

y(t) = f(t y(t))

where the function f: R x R — R is defined by

flty) =t+y"

The function f is clearly continuous, and it is locally Lipschitz in the second
variable because

[f(ty) = ft,2) = |t +1°) = (t+2%) = y* = 2®| = |y + 2|y — 2|

for all ¢t,z,y € R. Specifically, if M > 0 then

[f(ty) = [t o) = [y + ally — o] < (Je] + |yDly — 2| < 2Mly — z|

for all t € R and =,y € [-M, M].

(This implies the condition used in the lecture notes: If (t9,y0) € R x R, then we
can choose M large enough so that (¢, yo) is an interior point of R x [—M, M].
Finally, choose € > 0 such that the ball B¢(tg,y0) is contained in the rectangle.
Then f is Lipschitz in y in this ball, with constant L = 2M.)

The Picard—Lindel6f theorem therefore applies, and yields local existence and
uniqueness of a solution to the initial value problem.

(Note that this solution cannot be written down in terms of elementary functions.)

We find
yo(t) =0,
n(t) = /Otf(s,yg(s))ds — /Otsds _ %tQ’
wit) = [ fo.n@)ds = [+ (2722 ds = 14 L

for t € R. Note that the Picard—Lindel6f theorem only guarantees that these
iterations converge to a solution of the initial value problem in a small interval
around 0.

(In fact, it is possible to prove that the solution blows up in finite time. Numerical
evidence seems to suggest that the maximal existence interval is (—o0,1.986...).
See Figure 1 below.)
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Figure 1: Numerical solution of the initial value problem.
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