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Solutions to exercise set 9

Note that there are several ways to approach the problems, but that only one is presented
here. Other solutions may be just as valid!

1 a) The equation is equivalent to the fixed-point equation

f(x) = x (1)

for the function f : R4 → R4 defined in the hint. We need to show that this
function is a contraction. Now, for x, y ∈ R4 we have

d∞(f(x), f(y)) = max
k
|((Ax+ b)− (Ay + b))k| = max

k
|(A(x− y))k|,

and for z ∈ R4 we have

(Az)1 = 1
3z2 −

1
3z3 + 1

6z4

(Az)2 = 1
4z1 + 2

5z3 −
1
5z4

(Az)3 = 1
4z1 + 1

4z2 −
1
4z4

(Az)4 = 1
3z2 −

1
3z3.

Observe that

|(Az)1| ≤
1
3 |z2|+

1
3 |z3|+

1
6 |z4| ≤

(1
3 + 1

3 + 1
6

)
max
k
|zk| =

5
6 max

k
|zk|,

and similarly

|(Az)2| ≤
17
20 max

k
|zk|, |(Az)3| ≤

3
4 max

k
|zk|, |(Az)4| ≤

2
3 max

k
|zk|.

In particular

max
k
|(Az)k| ≤

(
max

{5
6 ,

17
20 ,

3
4 ,

2
3

})
max
k
|zk| =

17
20 max

k
|zk|,

and so

d∞(f(x), f(y)) = max
k
|(A(x− y))k| ≤

17
20 max

k
|(x− y)k| =

17
20d∞(x, y)

shows that f is a contraction on (R4, d∞).
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Since f is a contraction on the complete metric space (R4, d∞), we can use the
Banach fixed-point theorem to conclude that (1) has a unique solution x∗, and
that the sequence (xn)n∈N defined by

xn = f(xn−1) = Axn−1 + b

for n ≥ 1 converges to x∗ in (R4, d∞) for any x0 ∈ R4.

b) We find
x1 = f(x0) = Ax0 + b = b

when x0 = 0. Continuing, the second iteration is

x2 = f(x1) = Ax1 + b = Ab+ b =


1 1/3 −1/3 1/6

1/5 1 2/5 −1/5
1/4 1/4 1 −1/4
0 1/3 −1/3 1




2
2
2
−2

 =


5/3
18/5
7/2
−2

 .
(The distance between x2 and x∗ in (R4, d∞) is approximately 0.7.)

2 a) For x, y ∈ C([0, 1]), we have

|(Gx)(t)− (Gy)(t)| =
∣∣∣∣∫ t

0
sx(s) ds−

∫ t

0
sy(s) ds

∣∣∣∣
=
∣∣∣∣∫ t

0
s(x(s)− y(s)) ds

∣∣∣∣
≤
∫ t

0
s|x(s)− y(s)| ds

≤
∫ t

0
sd∞(x, y) ds

= 1
2d∞(x, y)

for every t ∈ [0, 1]. Hence,

d∞(Gx,Gy) ≤ 1
2d∞(x, y), x, y ∈ C([0, 1]),

and so G is a contraction on (C([0, 1]), d∞).

b) The formula is correct for n = 1, because

(F (x0))(t) = (F (0))(t) = t2

2 − (G0)(t) = t2

2 =
1∑

k=1
(−1)k+1 t

2k

2kk! .

Suppose therefore that it holds for n = m. Then

(Fm+1(x0))(t) = (F (Fm(x0)))(t) = t2

2 − (GFm(x0))(t)

= t2

2 −
∫ t

0
s

n∑
k=1

m(−1)k+1 s
2k

2kk! ds

= t2

2 −
m∑
k=1

(−1)k+1

2kk!

∫ t

0
s2k+1 ds.
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If we now compute the integral and make the substitution l = k + 1, then we
find

(Fm+1(x0))(t) = t2

2 −
m∑
k=1

(−1)k+1

2kk!
t2k+2

2k + 2

= t2

2 +
m∑
k=1

(−1)(k+1)+1 1
2k+1(k + 1)! t

2(k+1)

= t2

2 +
m+1∑
l=2

(−1)l+1 1
2ll! t

2l

=
m+1∑
l=1

(−1)l+1 t
2l

2ll! ,

which shows that the formula holds for n = m+ 1. Hence it holds for all n ∈ N.

c) For x, y ∈ C([0, 1]) we have

d∞(F (x), F (y)) = d∞(Gx,Gy) ≤ 1
2d∞(x, y),

so F is also a contraction on (C([0, 1]), d∞). As this is a complete metric space,
the Banach fixed-point theorem says that F has a unique fixed point x∗ in
C([0, 1]). It also says that this fixed point can be found as the limit of the
sequence (xn)n∈N defined by xn = Fn(x0) for any x0 ∈ C([0, 1]). In particular,
if x0 = 0 we get

xn(t) =
n∑
k=1

(−1)k+1 t
2k

2kk! , t ∈ [0, 1], n ∈ N

by b). Since xn converges uniformly, and therefore pointwise, to x∗, we must
have

x∗(t) =
∞∑
k=1

(−1)k+1 t
2k

2kk! = 1−
∞∑
k=0

(−t2/2)k

k! = 1− e−t2/2

for t ∈ [0, 1].

3 By using the definition of the metric, we find

d1(Ax,Ay) =
n∑
k=1
|(Ax)k − (Ay)k| =

n∑
k=1
|(A(x− y))k|

=
n∑
k=1

∣∣∣∣∣
n∑
i=1

aik(x− y)k

∣∣∣∣∣
≤

n∑
k=1

n∑
i=1
|aik||xk − yk| =

n∑
k=1

(
n∑
i=1
|aik|

)
|xk − yk|

≤
n∑
k=1

(
max
j

n∑
i=1
|aij |

)
|xk − yk|

=
(

max
j

∑
i=1
|aij |

)
d1(x, y).

The result follows, because the expression in the parentheses is smaller than one by
assumption.
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4 a) The equation is of the form

ẏ(t) = f(t, y(t))

where the function f : R× R→ R is defined by

f(t, y) = t+ y2.

The function f is clearly continuous, and it is locally Lipschitz in the second
variable because

|f(t, y)− f(t, x)| = |(t+ y2)− (t+ x2)| = |y2 − x2| = |y + x||y − x|

for all t, x, y ∈ R. Specifically, if M > 0 then

|f(t, y)− f(t, x)| = |y + x||y − x| ≤ (|x|+ |y|)|y − x| ≤ 2M |y − x|

for all t ∈ R and x, y ∈ [−M,M ].
(This implies the condition used in the lecture notes: If (t0, y0) ∈ R×R, then we
can choose M large enough so that (t0, y0) is an interior point of R× [−M,M ].
Finally, choose ε > 0 such that the ball Bε(t0, y0) is contained in the rectangle.
Then f is Lipschitz in y in this ball, with constant L = 2M .)
The Picard–Lindelöf theorem therefore applies, and yields local existence and
uniqueness of a solution to the initial value problem.
(Note that this solution cannot be written down in terms of elementary functions.)

b) We find

y0(t) = 0,

y1(t) =
∫ t

0
f(s, y0(s)) ds =

∫ t

0
s ds = 1

2 t
2,

y2(t) =
∫ t

0
f(s, y1(s)) ds =

∫ t

0
(s+ (s2/2)2) ds = 1

2 t
2 + 1

20 t
5

for t ∈ R. Note that the Picard–Lindelöf theorem only guarantees that these
iterations converge to a solution of the initial value problem in a small interval
around 0.
(In fact, it is possible to prove that the solution blows up in finite time. Numerical
evidence seems to suggest that the maximal existence interval is (−∞, 1.986 . . .).
See Figure 1 below.)
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Figure 1: Numerical solution of the initial value problem.
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