Please justify your answers! The most important part is how you arrive at an answer, not the answer itself.

1 Placeholder. This question will be added later!

2 Let T be the cyclic (left) shift on \mathbb{R}^{3}. That is, the linear operator $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}, x_{3}, x_{1}\right)
$$

If $p \in \mathcal{P}_{2}$, say $p(t)=a_{0}+a_{1} t+a_{2} t^{2}$, we can define a new operator

$$
\begin{equation*}
p(T)=a_{0} I+a_{1} T+a_{2} T^{2} \tag{1}
\end{equation*}
$$

Let

$$
\mathcal{C}=\left\{p(T): p \in \mathcal{P}_{2}\right\}
$$

be the collection of all such operators.
a) Describe the matrices representing operators in \mathcal{C}.
b) Show that the sum and product of two operators in \mathcal{C} is again in \mathcal{C}, and that they commute.
(Two operators A, B commute if $A B=B A$; that is, their product does not depend on the order.)
c) In problem set 5 , you determined the eigenvalues and eigenvectors of T (on \mathbb{C}^{3}). Use this to diagonalize all members of \mathcal{C}.

3 Let T be a nilpotent operator on a finite-dimensional vector space V. Show that $I-T$ is invertible, and give a formula for its inverse. Apply this result to the differentiation operator D on \mathcal{P}_{3} (that is, $\left.(D p)(x)=p^{\prime}(x)\right)$.

04 Let A be the matrix

$$
A=\left[\begin{array}{ccc}
3 & 1 & -2 \\
-1 & 0 & 5 \\
1 & -1 & 4
\end{array}\right]
$$

a) Compute the eigenvalues of A. What are their algebraic and geometric multiplicities?
b) Find a Jordan normal form $P J P^{-1}$ of A.
(You do not have to explicitly invert the P you find.)

