Please justify your answers! The most important part is how you arrive at an answer, not the answer itself.

1 Let X be a vector space. We denote the annihilator

$$
\left\{f \in X^{\prime}: f(x)=0 \text { for all } x \in U\right\}
$$

of a subspace $U \subseteq X$ by U^{\perp}. The annihilator U^{\perp} is a subspace of the dual space X^{\prime}.
Let Y_{1} and Y_{2} be subspaces of X. Show that:
a) If $Y_{1} \subseteq Y_{2}$, then $Y_{2}^{\perp} \subseteq Y_{1}^{\perp}$ (note the reversal!)
b) $Y_{1}^{\perp}+Y_{2}^{\perp} \subseteq\left(Y_{1} \cap Y_{2}\right)^{\perp}$

Bonus: Show the other inclusion when X is finite-dimensional (it is not true in general).
c) $\left(Y_{1}+Y_{2}\right)^{\perp}=Y_{1}^{\perp} \cap Y_{2}^{\perp}$

2 Let \mathcal{P}_{3} be the space of polynomials of degree at most 3 . For each $x \in \mathbb{R}$ we define the $\operatorname{map} l_{x}: \mathcal{P}_{3} \rightarrow \mathbb{R}$ by $l_{x}(p)=p(x)$; the evaluation of polynomials at x.
a) Show that l_{x} is a linear functional, and therefore a member of \mathcal{P}_{3}^{\prime}.
b) Let $x_{1}, x_{2}, x_{3}, x_{4}$ be distinct real numbers. Show that $\left\{l_{x_{1}}, l_{x_{2}}, l_{x_{3}}, l_{x_{4}}\right\}$ is a basis for \mathcal{P}_{3}^{\prime}.
Hint: Find a basis for \mathcal{P}_{3} which this is the dual basis to.
c) Revisit Lagrange's interpolation formula from the point of view of \mathbf{b}).

3 We denote by $\mathcal{M}_{n}(\mathbb{R})$ the vector space of real n-by- n matrices.
a) Show that $\operatorname{dim} \mathcal{M}_{n}(\mathbb{R})=n^{2}$.
b) Fix a nonzero $B \in \mathcal{M}_{n}(\mathbb{R})$ and define the $\operatorname{map} T: \mathcal{M}_{n}(\mathbb{R}) \rightarrow \mathcal{M}_{n}(\mathbb{R})$ by

$$
T(A)=B A-A B
$$

Show that $\operatorname{rank}(T) \leq n^{2}-1$ and nullity $(T) \geq 1$.

4 Consider the matrices

$$
T_{1}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & & \vdots \\
\vdots & & & \ddots & 0 \\
0 & & & & 1 \\
1 & 0 & & \cdots & 0
\end{array}\right] \quad \text { and } \quad T_{2}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & & \vdots \\
\vdots & & & \ddots & 0 \\
0 & & & & 1 \\
0 & 0 & & \cdots & 0
\end{array}\right]
$$

a) Describe the actions of T_{1} and T_{2} as linear mappings on \mathbb{C}^{n}.
b) Show that $T_{1}^{n}=I, T_{2}^{n-1} \neq 0$ and $T_{2}^{n}=0$.
c) Find all eigenvectors and eigenvalues for T_{1} and T_{2}.

5 Let P be a projection on a finite-dimensional vector space V and let q be a polynomial

$$
q(t)=\sum_{j=0}^{n} a_{j} t^{j}
$$

Show that

$$
q(P)=a_{0} I+\left(\sum_{j=1}^{n} a_{j}\right) P
$$

6 Let A and S be square matrices of the same size, with S invertible. Show that

$$
p\left(S^{-1} A S\right)=S^{-1} p(A) S
$$

for every polynomial p.

7 Consider the linear operator P defined on $\mathcal{M}_{n}(\mathbb{R})$ by

$$
P(A)=\frac{1}{2}\left(A+A^{T}\right)
$$

Show that P is a projection, and describe its image and kernel.

