

TMA4145 Linear Methods Fall 2015

Exercise set 5

Please justify your answers! The most important part is how you arrive at an answer, not the answer itself.

1 Let X be a vector space. We denote the annihilator

 $\{f \in X' : f(x) = 0 \text{ for all } x \in U\}$

of a subspace $U \subseteq X$ by U^{\perp} . The annihilator U^{\perp} is a subspace of the dual space X'. Let Y_1 and Y_2 be subspaces of X. Show that:

- **a)** If $Y_1 \subseteq Y_2$, then $Y_2^{\perp} \subseteq Y_1^{\perp}$ (note the reversal!)
- b) $Y_1^{\perp} + Y_2^{\perp} \subseteq (Y_1 \cap Y_2)^{\perp}$ Bonus: Show the other inclusion when X is finite-dimensional (it is not true in general).
- c) $(Y_1 + Y_2)^{\perp} = Y_1^{\perp} \cap Y_2^{\perp}$
- 2 Let \mathcal{P}_3 be the space of polynomials of degree at most 3. For each $x \in \mathbb{R}$ we define the map $l_x \colon \mathcal{P}_3 \to \mathbb{R}$ by $l_x(p) = p(x)$; the evaluation of polynomials at x.
 - **a)** Show that l_x is a linear functional, and therefore a member of \mathcal{P}'_3 .
 - b) Let x_1, x_2, x_3, x_4 be distinct real numbers. Show that $\{l_{x_1}, l_{x_2}, l_{x_3}, l_{x_4}\}$ is a basis for \mathcal{P}'_3 .

Hint: Find a basis for \mathcal{P}_3 which this is the dual basis to.

c) Revisit Lagrange's interpolation formula from the point of view of b).

3 We denote by $\mathcal{M}_n(\mathbb{R})$ the vector space of real *n*-by-*n* matrices.

a) Show that dim $\mathcal{M}_n(\mathbb{R}) = n^2$.

b) Fix a nonzero $B \in \mathcal{M}_n(\mathbb{R})$ and define the map $T: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ by

T(A) = BA - AB.

Show that $\operatorname{rank}(T) \leq n^2 - 1$ and $\operatorname{nullity}(T) \geq 1$.

4 Consider the matrices

	0	1	0	•••	0			0	1	0	•••	0
	0	0	1		:			0	0	1		:
$T_1 =$:			۰.	0	and	$T_2 =$:			۰.	0
	0				1			0				1
	1	0		• • •	0			0	0		•••	0

- **a)** Describe the actions of T_1 and T_2 as linear mappings on \mathbb{C}^n .
- **b)** Show that $T_1^n = I$, $T_2^{n-1} \neq 0$ and $T_2^n = 0$.
- c) Find all eigenvectors and eigenvalues for T_1 and T_2 .

5 Let P be a projection on a finite-dimensional vector space V and let q be a polynomial

$$q(t) = \sum_{j=0}^{n} a_j t^j.$$

Show that

$$q(P) = a_0 I + \left(\sum_{j=1}^n a_j\right) P$$

6 Let A and S be square matrices of the same size, with S invertible. Show that

$$p(S^{-1}AS) = S^{-1}p(A)S$$

for every polynomial p.

7 Consider the linear operator P defined on $\mathcal{M}_n(\mathbb{R})$ by

$$P(A) = \frac{1}{2}(A + A^T).$$

Show that P is a projection, and describe its image and kernel.