TMA4145 Linear Methods
Fall 2015

_ . ) Solutions to exercise set 3
Norwegian University of Science

and Technology
Department of Mathematical
Sciences

Note that there are several ways to approach the problems, but that only one is presented
here. Other solutions may be just as valid!

a) This linear system is much simpler to solve than a general one, due to all the
structure in the coefficients. Observe that

1)+B): 24 +2a3 = fi + [ (5)
(1) —(3): 2a3 + 2a4 = fi1 — 3 (6)
2)+4): 201 —2a3 = f2 + fa (7)
(2) — (4) . 2ia2 — 2ia4 = f2 — f4. (8)
Repeating a similar procedure again, we find
BG)+(M): 4 =fi+ fot+tfas+ fa
(5) —(7) 4as =h— fot+tfz— Ja
(6) —i(8) : day =fi—ifa—fs+ifa
(6) +4(8) : dag = f1+ifo— f3—ifs,

where it only remains to divide by 4.

b) The matrix B is given by

1 1 1 1
1+ -1 —
B= 1 -1 1 -1
1 — =1 4,
and from a) we read that
1 1 1 1
111 —¢ -1 4
-1 _ 1+
Bo=3h 11 4
1 ¢ =1 -1,

which is equal to i? = %B*.

a) From the first question we know that Fy = B/2 is unitary, which means that
F{Fy =1, where I is the identity matrix. But this shows that the columns of

September 7, 2015 Page 1 of 4



Solutions to exercise set 3

F are orthonormal in C?, because we also have

uj (ur,ur) (ug,u1) (us,u1) (ug,ur)
FrF, = (0 [ uz us wa] = (ur,ug) (ug,uz) (us,uz) (ua,uz)
: u3 (ui,uz) (ug,uz) (uz,uz) (u4,us)
(N (ur,ug) (ug,us) (us,ug) (ug,uq)
b) In order to simplify this, we make the observation that
_ o |u| _ |u
ug uj
We can now compute

uy [(ut,u1)  (ug,ur)  (us,ur)  (ug, ur)
F2= " [uy ws us wi] = (ui,ug) (us,uz) (ug,uz) (uz,uz)
ug (ur,ug) (ug,uz) (uz,uz) (uz,us)
u; (w1, wa)  (ug,uq) (us,uq) (ug,uq)

1 0 0 0

oo o1

10 0 1 0|’

0100

which in turn can be used to compute Fj. This matrix simply reorders the
columns of another matrix if multiplied on the right. Namely,

FEZFZLFEZ [ul u2 U3 U4]

o O O
_ o O O
o= O O
o O = O

where the last equality comes from the observation in (9). It finally follows that
F} = FyF} = FyF} =1,

since F} is unitary.

Linear independence of the v; means, by definition, that if

n
E ;U = 0
=1

for scalars «;, then all the «; are zero. Stated in a different way, if the «; are not all

zero, then
n
Z ;U0; 75 0.
i=1
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In particular, for any fixed ¢ we can choose a; = 1 and a;; = 0 for j # i to obtain
% 75 0.

Hence all the v; are different from the zero vector.

Suppose that m > n (we show the contrapositive). Since the v; span X, we can find
scalars a;; such that

n
U; = E aijvj
j=1

for i =1,...,m. The matrix A = (;;) has m rows and n columns, and since m > n
the rows of A (which lie in K™) must be linearly dependent. We can therefore find
scalars 3;, not all zero, such that

Z Bicij =0
i—1

for j =1,...,n. But then

m n

D Biui=>_ B> iy
i=1 i=1  j=1
¥ (z @-%) )
=1 \i=1

=0

shows that the w; are linearly dependent. (Hence if the u; are linearly independent,
then m < n.)

Every vector space has a basis, so let v1,...,v, be a basis for V. Next, define the

map T: R" — V by
n
Tx = Z:}:ZUZ
i=1

We need to verify that T is linear, injective and surjective. These properties together
will be imply that T is an isomorphism (of vector spaces), and therefore that V' is
isomorphic to R™. If o, 8 € R and z,y € R", we find

n

T(ax + By) = Z(Oﬂfi + BYyi)vi

1=1
n n
=a) i+ B yivi
=1 =1
=oTzx + BTy,

which shows that 7" is linear.
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For surjectivity, let w € V' be arbitrary. Since the v; form a basis, there are scalars x;

such that .
u = Z T;U;.
=1

The right hand side of this equation is simply Tz, so Tx = u and T is surjective.

Finally, if
0=Tx = Z T;0;,
i=1

then all the z; must be zero by linear independence of the v;. Thus x = 0, and so T’
is injective. A linear map being injective is equivalent to it having a trivial kernel
(why?).
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