Solutions to exercise set 3

Norwegian University of Science and Technology
Department of Mathematical
Sciences

Note that there are several ways to approach the problems, but that only one is presented here. Other solutions may be just as valid!

1 a) This linear system is much simpler to solve than a general one, due to all the structure in the coefficients. Observe that

$$
\begin{align*}
(1)+(3): & 2 a_{1}+2 a_{3} & =f_{1} & +f_{3} \tag{5}\\
(1)-(3): & 2 a_{2}+2 a_{4} & =f_{1} & -f_{3} \tag{6}\\
(2)+(4): & 2 a_{1}-2 a_{3} & = & f_{2}+f_{4} \tag{7}\\
(2)-(4): & 2 i a_{2}-2 i a_{4} & = & f_{2} \tag{8}
\end{align*}
$$

Repeating a similar procedure again, we find

$$
\begin{array}{rlrl}
(5)+(7): & 4 a_{1} & & =f_{1}+f_{2}+f_{3}+f_{4} \\
(5)-(7): & & 4 a_{3} & \\
(6)-i(8): & & =f_{1}-f_{2}+f_{3}-f_{4} \\
(6)+i(8): & & & =f_{1}-i f_{2}-f_{3}+i f_{4} \\
4 a_{4} & =f_{1}+i f_{2}-f_{3}-i f_{4},
\end{array}
$$

where it only remains to divide by 4 .
b) The matrix B is given by

$$
B=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i,
\end{array}\right]
$$

and from a) we read that

$$
B^{-1}=\frac{1}{4}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -i & -1 & i \\
1 & -1 & 1 & -1 \\
1 & i & -1 & -i,
\end{array}\right]
$$

which is equal to $\frac{1}{4} \bar{B}=\frac{1}{4} B^{*}$.

2 a) From the first question we know that $F_{4}=B / 2$ is unitary, which means that $F_{4}^{*} F_{4}=I$, where I is the identity matrix. But this shows that the columns of
F_{4} are orthonormal in \mathbb{C}^{4}, because we also have

$$
F_{4}^{*} F_{4}=\left[\begin{array}{l}
u_{1}^{*} \\
u_{2}^{*} \\
u_{3}^{*} \\
u_{4}^{*}
\end{array}\right]\left[\begin{array}{llll}
u_{1} & u_{2} & u_{3} & u_{4}
\end{array}\right]=\left[\begin{array}{llll}
\left\langle u_{1}, u_{1}\right\rangle & \left\langle u_{2}, u_{1}\right\rangle & \left\langle u_{3}, u_{1}\right\rangle & \left\langle u_{4}, u_{1}\right\rangle \\
\left\langle u_{1}, u_{2}\right\rangle & \left\langle u_{2}, u_{2}\right\rangle & \left\langle u_{3}, u_{2}\right\rangle & \left\langle u_{4}, u_{2}\right\rangle \\
\left\langle u_{1}, u_{3}\right\rangle & \left\langle u_{2}, u_{3}\right\rangle & \left\langle u_{3}, u_{3}\right\rangle & \left\langle u_{4}, u_{3}\right\rangle \\
\left\langle u_{1}, u_{4}\right\rangle & \left\langle u_{2}, u_{4}\right\rangle & \left\langle u_{3}, u_{4}\right\rangle & \left\langle u_{4}, u_{4}\right\rangle
\end{array}\right] .
$$

b) In order to simplify this, we make the observation that

$$
F_{4}=F_{4}^{T}=\left[\begin{array}{l}
u_{1}^{T} \tag{9}\\
u_{2}^{T} \\
u_{3}^{T} \\
u_{4}^{T}
\end{array}\right]=\left[\begin{array}{l}
u_{1}^{*} \\
u_{4}^{*} \\
u_{3}^{*} \\
u_{2}^{*}
\end{array}\right] .
$$

We can now compute

$$
\begin{aligned}
F_{4}^{2}=\left[\begin{array}{l}
u_{1}^{*} \\
u_{4}^{*} \\
u_{3}^{*} \\
u_{2}^{*}
\end{array}\right]\left[\begin{array}{llll}
u_{1} & u_{2} & u_{3} & u_{4}
\end{array}\right] & =\left[\begin{array}{llll}
\left\langle u_{1}, u_{1}\right\rangle & \left\langle u_{4}, u_{1}\right\rangle & \left\langle u_{3}, u_{1}\right\rangle & \left\langle u_{2}, u_{1}\right\rangle \\
\left\langle u_{1}, u_{2}\right\rangle & \left\langle u_{4}, u_{2}\right\rangle & \left\langle u_{3}, u_{2}\right\rangle & \left\langle u_{2}, u_{2}\right\rangle \\
\left\langle u_{1}, u_{3}\right\rangle & \left\langle u_{4}, u_{3}\right\rangle & \left\langle u_{3}, u_{3}\right\rangle & \left\langle u_{2}, u_{3}\right\rangle \\
\left\langle u_{1}, u_{4}\right\rangle & \left\langle u_{4}, u_{4}\right\rangle & \left\langle u_{3}, u_{4}\right\rangle & \left\langle u_{2}, u_{4}\right\rangle
\end{array}\right] \\
& =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right],
\end{aligned}
$$

which in turn can be used to compute F_{4}^{3}. This matrix simply reorders the columns of another matrix if multiplied on the right. Namely,

$$
\begin{aligned}
F_{4}^{3}=F_{4} F_{4}^{2} & =\left[\begin{array}{llll}
u_{1} & u_{2} & u_{3} & u_{4}
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{llll}
u_{1} & u_{4} & u_{3} & u_{2}
\end{array}\right] \\
& =F_{4}^{*},
\end{aligned}
$$

where the last equality comes from the observation in (9). It finally follows that

$$
F_{4}^{4}=F_{4} F_{4}^{3}=F_{4} F_{4}^{*}=I,
$$

since F_{4} is unitary.

3 Linear independence of the v_{i} means, by definition, that if

$$
\sum_{i=1}^{n} \alpha_{i} v_{i}=0
$$

for scalars α_{i}, then all the α_{i} are zero. Stated in a different way, if the α_{i} are not all zero, then

$$
\sum_{i=1}^{n} \alpha_{i} v_{i} \neq 0
$$

In particular, for any fixed i we can choose $\alpha_{i}=1$ and $\alpha_{j}=0$ for $j \neq i$ to obtain

$$
v_{j} \neq 0
$$

Hence all the v_{i} are different from the zero vector.

4 Suppose that $m>n$ (we show the contrapositive). Since the v_{i} span X, we can find scalars $\alpha_{i j}$ such that

$$
u_{i}=\sum_{j=1}^{n} \alpha_{i j} v_{j}
$$

for $i=1, \ldots, m$. The matrix $A=\left(\alpha_{i j}\right)$ has m rows and n columns, and since $m>n$ the rows of A (which lie in \mathbb{K}^{n}) must be linearly dependent. We can therefore find scalars β_{i}, not all zero, such that

$$
\sum_{i=1}^{m} \beta_{i} \alpha_{i j}=0
$$

for $j=1, \ldots, n$. But then

$$
\begin{aligned}
\sum_{i=1}^{m} \beta_{i} u_{i} & =\sum_{i=1}^{m} \beta_{i} \sum_{j=1}^{n} \alpha_{i j} v_{j} \\
& =\sum_{j=1}^{n}\left(\sum_{i=1}^{m} \beta_{i} \alpha_{i j}\right) v_{j} \\
& =0
\end{aligned}
$$

shows that the u_{i} are linearly dependent. (Hence if the u_{i} are linearly independent, then $m \leq n$.)

5 Every vector space has a basis, so let v_{1}, \ldots, v_{n} be a basis for V. Next, define the $\operatorname{map} T: \mathbb{R}^{n} \rightarrow V$ by

$$
T x=\sum_{i=1}^{n} x_{i} v_{i}
$$

We need to verify that T is linear, injective and surjective. These properties together will be imply that T is an isomorphism (of vector spaces), and therefore that V is isomorphic to \mathbb{R}^{n}. If $\alpha, \beta \in \mathbb{R}$ and $x, y \in \mathbb{R}^{n}$, we find

$$
\begin{aligned}
T(\alpha x+\beta y) & =\sum_{i=1}^{n}\left(\alpha x_{i}+\beta y_{i}\right) v_{i} \\
& =\alpha \sum_{i=1}^{n} x_{i} v_{i}+\beta \sum_{i=1}^{n} y_{i} v_{i} \\
& =\alpha T x+\beta T y
\end{aligned}
$$

which shows that T is linear.

For surjectivity, let $u \in V$ be arbitrary. Since the v_{i} form a basis, there are scalars x_{i} such that

$$
u=\sum_{i=1}^{n} x_{i} v_{i}
$$

The right hand side of this equation is simply $T x$, so $T x=u$ and T is surjective.
Finally, if

$$
0=T x=\sum_{i=1}^{n} x_{i} v_{i}
$$

then all the x_{i} must be zero by linear independence of the v_{i}. Thus $x=0$, and so T is injective. A linear map being injective is equivalent to it having a trivial kernel (why?).

