Norwegian University of Science and Technology
Department of Mathematical
Sciences

Please justify all the steps in your answers!

1 Consider the following linear system:

$$
\begin{align*}
& a_{1}+a_{2}+a_{3}+a_{4}=f_{1} \tag{1}\\
& a_{1}+i a_{2}-a_{3}-i a_{4}=f_{2} \tag{2}\\
& a_{1}-a_{2}+a_{3}-a_{4}=f_{3} \tag{3}\\
& a_{1}-i a_{2}-a_{3}+i a_{4}=f_{4} \tag{4}
\end{align*}
$$

a) Solve the system.
b) If we write the system above as

$$
B a=f
$$

what is the relationship between B and B^{-1} ?

0 Let F_{4} be the Fourier matrix

$$
\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i .
\end{array}\right]
$$

a) Show that the columns $u_{i}, i=1,2,3$ of F_{4} are orthonormal $\left(\left\langle u_{i}, u_{j}\right\rangle=\delta_{i j}\right)$ in the usual inner product

$$
\langle x, y\rangle=\sum_{i=1}^{4} x_{i} \bar{y}_{i}
$$

on \mathbb{C}^{4}.
(This should be shown without directly computing all the inner products.)
b) Compute the powers F_{4}^{2}, F_{4}^{3} and F_{4}^{4} of F_{4}.
(You are not meant to brute-force this.)

3 Suppose that the vectors v_{1}, \ldots, v_{n} are linearly independent in a vector space V. Show that the zero vector is not among the v_{i}.

4 Suppose that v_{1}, \ldots, v_{n} span a vector space V, and suppose that u_{1}, \ldots, u_{m} are linearly independent in X. Show that $m \leq n$.
You may assume that the result is true in \mathbb{K}^{k} for $k \geq 1$, where \mathbb{K} is the scalar field of X (which is typically proved before this result).

5 Let V be a finite-dimensional real vector space. Show that V is isomorphic to \mathbb{R}^{n}.

