
Norwegian University of Science
and Technology
Department of Mathematical
Sciences

TMA4145 Linear Methods
Fall 2015

Solutions to exercise set 1

Note that there are several ways to approach the problems, but that only one is presented
here. Other solutions may be just as valid!

1 Suppose that, on the contrary, both m and m+ 1 are integer multiples of n. Write
m = an and m+ 1 = bn, where a < b are integers. Then

1 = (m+ 1)−m = bn− an = (b− a)n, (1)

where
(b− a)n ≥ 2, (2)

since b− a ≥ 1 and n ≥ 2. Equations (1) and (2) imply that

1 ≥ 2,

which is a contradiction. Hence m+ 1 is not an integer multiple of n.

2 =⇒ Since n is even, we have n = 2m for an integer m. Then

n2 = 4m2 = 2m̃, m̃ = 2m2,

so n2 is even.

⇐= We want to prove “If n2 is even, then n is even”. It is easier to look at the
contrapositive statement (which is logically equivalent!) “If n is not even, then
n2 is not even”, or “If n is odd, then n2 is odd ” instead.
Suppose therefore that n is odd, which means that we can write n = 2m+ 1 for
an integer m. Then

n2 = 4m2 + 4m+ 1 = 2m̃+ 1, m̃ = 2m2 + 2m,

so n2 is odd.

3 We show the two inclusions (A ∩B)c ⊆ Ac ∪Bc and (A ∩B)c ⊇ Ac ∪Bc separately.

⊆ Suppose that x ∈ (A∩B)c. Then x /∈ A∩B, which implies that x /∈ A or x /∈ B
(keep in mind that “or” can mean that both are true). Thus x ∈ Ac or x ∈ Bc,
meaning that x ∈ Ac ∪Bc. Hence (A ∩B)c ⊆ Ac ∪Bc.
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⊇ All the implications in the argument for ⊆ are in fact equivalences (convince
yourself of this!) We can therefore run the argument in reverse to conclude that
(A ∩B)c ⊇ Ac ∪Bc.

It is often the case that it is simpler to think in one direction first, and then only
later check if you can do the argument in the other direction.

4 a) The differentiation operator is not injective, because we can change the constant
term without changing the derivative. For instance,

D(x+ 1) = D(x+ 2) = 1.

Next, we show that D is surjective. Let therefore

q(x) =

n∑
i=0

bix
i (3)

be an arbitrary element of P. If we now define p by

p(x) =

n∑
i=0

bi
i+ 1

xi+1 (4)

=

n+1∑
i=1

bi−1
i

xi,

we see that

(Dp)(x) =

n+1∑
i=1

i
bi−1
i

xi−1

=

n∑
i=0

bix
i = q(x).

(5)

Bonus: As we indicated, the reason why D : P → P is not injective is that
differentiation “destroys” the information about the constant term. We therefore
let Q be the set of polynomials with no constant term; that is, polynomials of
the form

p(x) =

n∑
i=1

aix
i

for n = 0, 1, 2, . . . and real numbers ai. The map D : Q → P is still a surjection,
since the polynomial p in (4) lies in Q. However, it is now also injective: Suppose
that the two polynomials

r(x) =
n∑

i=1

cix
i, s(x) =

n∑
i=1

dix
i

in Q are mapped to the same polynomial by D (note that we can use the same
n for r and s by padding with coefficients that are zero). Then

0 = (Dr)(x)− (Ds)(x) =

n∑
i=1

i(ci − di)x
i−1,

which implies that ci = di for all i, due to the fundamental theorem of algebra.
Hence r = s.
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b) The integration operator is not surjective, because (Ip)(x) has no constant term
for any p. However, it is injective: Suppose that the two polynomials

p(x) =
n∑

i=0

aix
i, q(x) =

n∑
i=0

bix
i

are mapped to the same polynomial by I. Then

0 = (Dp)(x)− (Dq)(x) =
n∑

i=1

ai − bi
i+ 1

xi+1,

which implies that ai = bi for all i (by the fundamental theorem of algebra).
Hence p = q.
Bonus: The reason why I : P → P is not surjective is that it maps to polynomials
without constant terms. We should therefore choose R = Q, which was defined
in a). The map I : P → Q is then surjective: If

q(x) =
n∑

i=1

bix
i

is an arbitrary element of Q, we may define

p(x) =

n∑
i=1

ibix
i−1

=

n−1∑
i=0

(i+ 1)bi+1x
i,

which satisfies

(Ip)(x) =
n−1∑
i=0

(i+ 1)bi+1

i+ 1
xi+1

=
n∑

i=1

bix
i = q(x).

c) We have in fact (almost) already showed that D ◦ I = idP . The polynomial p
defined in (4) is equal to Iq, where q was the arbitrary polynomial in (3), and
(5) shows that

(D ◦ I)(q) = D(Iq) = Dp = q.

Hence D ◦ I = idP .
Next, we want to show that I ◦D 6= idP . From before, we know that constant
terms cause trouble. We therefore look at what happens to the polynomial x+1.
Indeed

(I ◦D)(x+ 1) = I(D(x+ 1))

= I(1)

= x 6= x+ 1,

so I ◦D 6= idP .
Bonus: They are inverses of each other; D = I−1 and I = D−1. This follows
from the identity D ◦ I = idP (which still holds after modifying the domain of
D and the codomain of I) and the fact that they are bijections.
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5 a) First off, the map g ◦ f : X → Z is well defined since the domain of g : Y → Z is
equal to the codomain of f : X → Y .
In order to show that g ◦ f : X → Z is surjective, let z ∈ Z. Because g is
surjective, there is some y ∈ Y such that g(y) = z; and because f is surjective,
there is some x ∈ Y such that f(x) = y. Now

(g ◦ f)(x) = g(f(x)) = g(y) = z

shows that g ◦ f is surjective.
Assume that (g ◦ f)(x) = (g ◦ f)(y), or g(f(x)) = g(f(y)). Using the injectivity
of g, we conclude that f(x) = f(y), which in turn implies that x = y through
the injectivity of f . Hence g ◦ f is injective, and thus a bijection.

b) We know that g ◦ f is a bijection under the assumption in a). Hence it has an
inverse map (g ◦ f)−1 : Z → X, which by definition satisfies the identity

(g ◦ f) ◦ (g ◦ f)−1 = idZ ,

or
g ◦ f ◦ (g ◦ f)−1 = idZ .

We will find an expression for (g ◦ f)−1 by solving this equation. If we compose
g−1 with each side of the equation, we obtain

(g−1 ◦ g) ◦ f ◦ (g ◦ f)−1 = g−1 ◦ idZ
idY ◦f ◦ (g ◦ f)−1 = g−1

f ◦ (g ◦ f)−1 = g−1.

Doing the same thing with f−1, we find

idX ◦(g ◦ f)−1 = f−1 ◦ g−1

(g ◦ f)−1 = f−1 ◦ g−1,

which is what we wanted to show.

6 When proving something by induction, we need two things:

• The inductive step, where we show that if the statement is true for n, then it is
true for n+ 1 as well.

• The base case, where we show that the statement is true for some n0 ∈ N.

If one has both these, then the statement holds for all natural numbers n ≥ n0. The
problem in the proof given in the problem is that there is no base case. We cannot
conclude anything without the base case.
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