Note that there are several ways to approach the problems, but that only one is presented here. Other solutions may be just as valid!

1 Suppose that, on the contrary, both m and $m+1$ are integer multiples of n. Write $m=a n$ and $m+1=b n$, where $a<b$ are integers. Then

$$
\begin{equation*}
1=(m+1)-m=b n-a n=(b-a) n, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
(b-a) n \geq 2 \tag{2}
\end{equation*}
$$

since $b-a \geq 1$ and $n \geq 2$. Equations (1) and (2) imply that

$$
1 \geq 2,
$$

which is a contradiction. Hence $m+1$ is not an integer multiple of n.
$2 \Longrightarrow$ Since n is even, we have $n=2 m$ for an integer m. Then

$$
n^{2}=4 m^{2}=2 \tilde{m}, \quad \tilde{m}=2 m^{2},
$$

so n^{2} is even.
\Longleftarrow We want to prove "If n^{2} is even, then n is even". It is easier to look at the contrapositive statement (which is logically equivalent!) "If n is not even, then n^{2} is not even", or "If n is odd, then n^{2} is odd" instead.
Suppose therefore that n is odd, which means that we can write $n=2 m+1$ for an integer m. Then

$$
n^{2}=4 m^{2}+4 m+1=2 \tilde{m}+1, \quad \tilde{m}=2 m^{2}+2 m,
$$

so n^{2} is odd.

3 We show the two inclusions $(A \cap B)^{c} \subseteq A^{c} \cup B^{c}$ and $(A \cap B)^{c} \supseteq A^{c} \cup B^{c}$ separately.
\subseteq Suppose that $x \in(A \cap B)^{c}$. Then $x \notin A \cap B$, which implies that $x \notin A$ or $x \notin B$ (keep in mind that "or" can mean that both are true). Thus $x \in A^{c}$ or $x \in B^{c}$, meaning that $x \in A^{c} \cup B^{c}$. Hence $(A \cap B)^{c} \subseteq A^{c} \cup B^{c}$.
\supseteq All the implications in the argument for \subseteq are in fact equivalences (convince yourself of this!) We can therefore run the argument in reverse to conclude that $(A \cap B)^{c} \supseteq A^{c} \cup B^{c}$.

It is often the case that it is simpler to think in one direction first, and then only later check if you can do the argument in the other direction.

4 a) The differentiation operator is not injective, because we can change the constant term without changing the derivative. For instance,

$$
D(x+1)=D(x+2)=1
$$

Next, we show that D is surjective. Let therefore

$$
\begin{equation*}
q(x)=\sum_{i=0}^{n} b_{i} x^{i} \tag{3}
\end{equation*}
$$

be an arbitrary element of \mathcal{P}. If we now define p by

$$
\begin{align*}
p(x) & =\sum_{i=0}^{n} \frac{b_{i}}{i+1} x^{i+1} \tag{4}\\
& =\sum_{i=1}^{n+1} \frac{b_{i-1}}{i} x^{i}
\end{align*}
$$

we see that

$$
\begin{align*}
(D p)(x) & =\sum_{i=1}^{n+1} i \frac{b_{i-1}}{i} x^{i-1} \tag{5}\\
& =\sum_{i=0}^{n} b_{i} x^{i}=q(x)
\end{align*}
$$

Bonus: As we indicated, the reason why $D: \mathcal{P} \rightarrow \mathcal{P}$ is not injective is that differentiation "destroys" the information about the constant term. We therefore let \mathcal{Q} be the set of polynomials with no constant term; that is, polynomials of the form

$$
p(x)=\sum_{i=1}^{n} a_{i} x^{i}
$$

for $n=0,1,2, \ldots$ and real numbers a_{i}. The map $D: \mathcal{Q} \rightarrow \mathcal{P}$ is still a surjection, since the polynomial p in (4) lies in \mathcal{Q}. However, it is now also injective: Suppose that the two polynomials

$$
r(x)=\sum_{i=1}^{n} c_{i} x^{i}, \quad s(x)=\sum_{i=1}^{n} d_{i} x^{i}
$$

in \mathcal{Q} are mapped to the same polynomial by D (note that we can use the same n for r and s by padding with coefficients that are zero). Then

$$
0=(D r)(x)-(D s)(x)=\sum_{i=1}^{n} i\left(c_{i}-d_{i}\right) x^{i-1}
$$

which implies that $c_{i}=d_{i}$ for all i, due to the fundamental theorem of algebra. Hence $r=s$.
b) The integration operator is not surjective, because $(I p)(x)$ has no constant term for any p. However, it is injective: Suppose that the two polynomials

$$
p(x)=\sum_{i=0}^{n} a_{i} x^{i}, \quad q(x)=\sum_{i=0}^{n} b_{i} x^{i}
$$

are mapped to the same polynomial by I. Then

$$
0=(D p)(x)-(D q)(x)=\sum_{i=1}^{n} \frac{a_{i}-b_{i}}{i+1} x^{i+1},
$$

which implies that $a_{i}=b_{i}$ for all i (by the fundamental theorem of algebra). Hence $p=q$.
Bonus: The reason why $I: \mathcal{P} \rightarrow \mathcal{P}$ is not surjective is that it maps to polynomials without constant terms. We should therefore choose $\mathcal{R}=\mathcal{Q}$, which was defined in a). The map $\mathcal{I}: \mathcal{P} \rightarrow \mathcal{Q}$ is then surjective: If

$$
q(x)=\sum_{i=1}^{n} b_{i} x^{i}
$$

is an arbitrary element of \mathcal{Q}, we may define

$$
\begin{aligned}
p(x) & =\sum_{i=1}^{n} i b_{i} x^{i-1} \\
& =\sum_{i=0}^{n-1}(i+1) b_{i+1} x^{i},
\end{aligned}
$$

which satisfies

$$
\begin{aligned}
(I p)(x) & =\sum_{i=0}^{n-1} \frac{(i+1) b_{i+1}}{i+1} x^{i+1} \\
& =\sum_{i=1}^{n} b_{i} x^{i}=q(x) .
\end{aligned}
$$

c) We have in fact (almost) already showed that $D \circ I=\operatorname{id}_{\mathcal{P}}$. The polynomial p defined in (4) is equal to $I q$, where q was the arbitrary polynomial in (3), and (5) shows that

$$
(D \circ I)(q)=D(I q)=D p=q .
$$

Hence $D \circ I=\mathrm{id}_{\mathcal{P}}$.
Next, we want to show that $I \circ D \neq \mathrm{id}_{\mathcal{P}}$. From before, we know that constant terms cause trouble. We therefore look at what happens to the polynomial $x+1$. Indeed

$$
\begin{aligned}
(I \circ D)(x+1) & =I(D(x+1)) \\
& =I(1) \\
& =x \neq x+1,
\end{aligned}
$$

so $I \circ D \neq \mathrm{id}_{\mathcal{P}}$.
Bonus: They are inverses of each other; $D=I^{-1}$ and $I=D^{-1}$. This follows from the identity $D \circ I=i d_{\mathcal{P}}$ (which still holds after modifying the domain of D and the codomain of I) and the fact that they are bijections.

5 a) First off, the map $g \circ f: X \rightarrow Z$ is well defined since the domain of $g: Y \rightarrow Z$ is equal to the codomain of $f: X \rightarrow Y$.
In order to show that $g \circ f: X \rightarrow Z$ is surjective, let $z \in Z$. Because g is surjective, there is some $y \in Y$ such that $g(y)=z$; and because f is surjective, there is some $x \in Y$ such that $f(x)=y$. Now

$$
(g \circ f)(x)=g(f(x))=g(y)=z
$$

shows that $g \circ f$ is surjective.
Assume that $(g \circ f)(x)=(g \circ f)(y)$, or $g(f(x))=g(f(y))$. Using the injectivity of g, we conclude that $f(x)=f(y)$, which in turn implies that $x=y$ through the injectivity of f. Hence $g \circ f$ is injective, and thus a bijection.
b) We know that $g \circ f$ is a bijection under the assumption in a). Hence it has an inverse map $(g \circ f)^{-1}: Z \rightarrow X$, which by definition satisfies the identity

$$
(g \circ f) \circ(g \circ f)^{-1}=\operatorname{id}_{Z},
$$

or

$$
g \circ f \circ(g \circ f)^{-1}=\operatorname{id}_{Z}
$$

We will find an expression for $(g \circ f)^{-1}$ by solving this equation. If we compose g^{-1} with each side of the equation, we obtain

$$
\begin{gathered}
\left(g^{-1} \circ g\right) \circ f \circ(g \circ f)^{-1}=g^{-1} \circ \operatorname{id}_{Z} \\
\operatorname{id}_{Y} \circ f \circ(g \circ f)^{-1}=g^{-1} \\
f \circ(g \circ f)^{-1}=g^{-1} .
\end{gathered}
$$

Doing the same thing with f^{-1}, we find

$$
\begin{gathered}
\operatorname{id}_{X} \circ(g \circ f)^{-1}=f^{-1} \circ g^{-1} \\
\quad(g \circ f)^{-1}=f^{-1} \circ g^{-1},
\end{gathered}
$$

which is what we wanted to show.

6 When proving something by induction, we need two things:

- The inductive step, where we show that if the statement is true for n, then it is true for $n+1$ as well.
- The base case, where we show that the statement is true for some $n_{0} \in \mathbb{N}$.

If one has both these, then the statement holds for all natural numbers $n \geq n_{0}$. The problem in the proof given in the problem is that there is no base case. We cannot conclude anything without the base case.

