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Fall 2015

_ . ) Solutions to exercise set 1
Norwegian University of Science

and Technology
Department of Mathematical
Sciences

Note that there are several ways to approach the problems, but that only one is presented
here. Other solutions may be just as valid!

Suppose that, on the contrary, both m and m + 1 are integer multiples of n. Write
m = an and m + 1 = bn, where a < b are integers. Then

l=(m+1)—m=bn—an=(b—a)n, (1)
where
(b—a)n>2, (2)
since b—a > 1 and n > 2. Equations (1) and (2) imply that

1>2,

which is a contradiction. Hence m + 1 is not an integer multiple of n.

= Since n is even, we have n = 2m for an integer m. Then

n? =4m? =2m, m=2m?,

so n? is even.

<= We want to prove “If n? is even, then n is even”. It is easier to look at the
contrapositive statement (which is logically equivalent!) “If n is not even, then

n? is not even”, or “If n is odd, then n? is odd” instead.

Suppose therefore that n is odd, which means that we can write n = 2m + 1 for
an integer m. Then

n?=4m?>+4m+1=2m+1, m=2m?+2m,

so n? is odd.

We show the two inclusions (AN B)¢ C A°U B¢ and (AN B)¢ 2O A°U B¢ separately.

C Suppose that z € (AN B)¢. Then x ¢ AN B, which implies that z ¢ A or x ¢ B
(keep in mind that “or” can mean that both are true). Thus x € A€ or x € B¢,
meaning that z € A°U B¢. Hence (AN B)¢ C A°U B°.
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O All the implications in the argument for C are in fact equivalences (convince
yourself of this!) We can therefore run the argument in reverse to conclude that

(ANB)¢ D A°U B°.

It is often the case that it is simpler to think in one direction first, and then only
later check if you can do the argument in the other direction.

a) The differentiation operator is not injective, because we can change the constant
term without changing the derivative. For instance,

D(z+1)=D(z+2)=1
Next, we show that D is surjective. Let therefore

g(x) =) b’ (3)
=0

be an arbitrary element of P. If we now define p by

we see that
n+1 b

(Dp)() =D i~
N (5)

= Z biz' = q(x).
i=0

Bonus: As we indicated, the reason why D: P — P is not injective is that
differentiation “destroys” the information about the constant term. We therefore
let @ be the set of polynomials with no constant term; that is, polynomials of

the form .
p(z) = Z a;x’
i=1

forn=0,1,2,... and real numbers a;. The map D: Q@ — P is still a surjection,
since the polynomial p in (4) lies in Q. However, it is now also injective: Suppose
that the two polynomials

r(x) = i cazt, s(z) = idixi
i=1 i=1

in @ are mapped to the same polynomial by D (note that we can use the same
n for r and s by padding with coefficients that are zero). Then

n

0= (D)) = (Ds)@) = Y ile: — '™,

i=1
which implies that ¢; = d; for all ¢, due to the fundamental theorem of algebra.
Hence r = s.
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b)

The integration operator is not surjective, because (Ip)(x) has no constant term
for any p. However, it is injective: Suppose that the two polynomials

p(z) = Z aixt, qx) = Z bz
=0 ‘

are mapped to the same polynomial by I. Then

n

a; — bl :
0= (D — (D =) Lyt
(Dp)(z) — (Dg)(x) ; R
which implies that a; = b; for all ¢ (by the fundamental theorem of algebra).
Hence p = q.
Bonus: The reason why I: P — P is not surjective is that it maps to polynomials
without constant terms. We should therefore choose R = Q, which was defined

in a). The map Z: P — Q is then surjective: If

q(x) = Z bzt
=1

is an arbitrary element of Q, we may define

n

p(x) = Z ibz' !

i=1
n—1

= (i + b2,
=0

which satisfies

n—

1,.
(Z + 1)bi+1 l‘iJrl

= t+1
n .

= Z bix' = q(z)
i=1

We have in fact (almost) already showed that D o I =idp. The polynomial p
defined in (4) is equal to Iq, where g was the arbitrary polynomial in (3), and
(5) shows that

(Dol)(q) = D(Iq) = Dp=q.
Hence D o I = idp.
Next, we want to show that I o D # idp. From before, we know that constant

terms cause trouble. We therefore look at what happens to the polynomial = + 1.
Indeed

(IoD)(xz+1)=I1(D(z+1))
=1(1)
=z #x+1,
so I oD #idp.
Bonus: They are inverses of each other; D = I~! and I = D~!. This follows

from the identity D o I = idp (which still holds after modifying the domain of
D and the codomain of I) and the fact that they are bijections.

August 19, 2015 Page 3 of 4



Solutions to exercise set 1

5] a)

b)

First off, the map go f: X — Z is well defined since the domain of g: Y — Z is
equal to the codomain of f: X — Y.

In order to show that go f: X — Z is surjective, let z € Z. Because g is
surjective, there is some y € Y such that ¢g(y) = z; and because f is surjective,
there is some x € Y such that f(x) =y. Now

(go f)(z) =9g(f(x)) =g(y) =2

shows that g o f is surjective.

Assume that (go f)(z) = (go f)(y), or g(f(z)) = g(f(y)). Using the injectivity
of g, we conclude that f(z) = f(y), which in turn implies that x = y through

the injectivity of f. Hence g o f is injective, and thus a bijection.

We know that g o f is a bijection under the assumption in a). Hence it has an
inverse map (go f)~': Z — X, which by definition satisfies the identity

(gof)o(gof) ™ =idg,

gofol(gof) ' =idz.

We will find an expression for (g o f)~! by solving this equation. If we compose
g~ ! with each side of the equation, we obtain

(g7 og)ofo(gof) =g 'oidy
idy of o (go f) "t =g"
folgof)y t=g"

Doing the same thing with f~!, we find

idyo(go f) ' =flog™!
(gof)y ' =fTlog™,

which is what we wanted to show.

@ When proving something by induction, we need two things:

e The inductive step, where we show that if the statement is true for n, then it is

true for n + 1 as well.

e The base case, where we show that the statement is true for some ng € N.

If one has both these, then the statement holds for all natural numbers n > ng. The
problem in the proof given in the problem is that there is no base case. We cannot
conclude anything without the base case.
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