

Read 4.3–4.4 of Chapter 4 in Lecture Notes.

1 Friedberg et al, 2.2 problem 10

Let $\{v_1, \ldots, v_n\}$ be a basis for V. Show that there exists a linear transformation $T: V \to V$ such that $T(v_1) = v_1$, $T(v_j) = v_{j-1} + v_j$, $j = 2, \ldots, n$. Find the matrix of this transformation in the basis $\{v_1, \ldots, v_n\}$.

- 2 Let $P(\mathbb{C})$ be the vector space of all polynomials and let $T(p) = p^{(k)}$ be the k-th derivative of p. Find the range and the kernel of T.
- $\boxed{3}$ Let V be a finite dimensional vector space and T be a linear transformation. Show that the following three statements are equivalent
 - 1. $ran(T) \cap ker(T) = \{0\},\$
 - 2. $\operatorname{ran}(T) + \operatorname{ker}(T) = V$, i.e., for any $x \in V$ there exists $y_1 \in \operatorname{ran}(T)$ and $y_2 \in \operatorname{ker}(T)$ such that $x = y_1 + y_2$,
 - 3. $\operatorname{ran}(T) \oplus \ker(T) = V$.

Be sure you use that V is finite dimensional.

Hint: Apply the rank-nullity theorem.

4 Friedberg et al, 2.3 problem 16

Let V be a finite-dimensional vector space, and let $T:V\to V$ be a linear transformation. Prove the following statements.

- **a)** ran $(T^2) \subset ran(T)$ and rank $(T) \ge rank(T^2)$.
- b) If $\operatorname{rank}(T) = \operatorname{rank}(T^2)$, then $\operatorname{ran}(T) \cap \ker(T) = \{0\}$. Hint: Consider $T : \operatorname{ran}(T) \to \operatorname{ran}(T^2)$.
- c) $V = \operatorname{ran}(T^k) \oplus \ker(T^k) = \{0\}$ for some positive integer k. Hint: Use b) and Problem 2.

5 Problem 5, Friedberg et al, 2.2 problem 13

Let X and Y be vector spaces and T and S be linear transformations from X to Y. Suppose that $ran(T) \cap ran(S) = \{0\}$. Show that $\{S, T\}$ is a linear independent set in L(X, Y).

6 Problem 2 from continuation Exam 2009

a) Let $(X, \|\cdot\|)$ be a Banach space. Let $T: X \to X$ be a continuous linear transformation. Let $b \in X$ be a fixed vector.

Consider the map $X \to X$ given by $x \mapsto Tx + b$. Express as simply as you can the condition that is needed for this to be a contraction.

b) Recall that l_{∞} is the space of all *bounded* sequences of real numbers with the supremum norm,

$$\|(\xi_n)\|_{\infty} = \sup\{|\xi_n| : n \in \mathbb{N}\}.$$

Let $I: l_{\infty} \to l_{\infty}$ be the map

$$I(\xi_n) = \left(\frac{1}{n}\xi_{n+1}\right).$$

For example,

$$I(1, 1, \dots) = \left(0, 1, \frac{1}{2}, \frac{1}{3}, \dots\right).$$

Let $b \in l_{\infty}$ be the sequence (1, 0, 0, ...). Prove that the map $x \mapsto Ix + b$ is not a contraction on l_{∞} , but that $x \mapsto I(Ix + b) + b$ is a contraction. What is the contraction constant?

c) Carry out the first five iterations (of $x \mapsto Ix + b$) starting from $x_0 = 0$. Then carry out the first five iterations starting from an arbitrary sequence $x_0 = (\xi_1, \xi_2, ...)$. What do you notice?

7 Problem 2 from Exam 2012

a) Find an LU-decomposition of

$$A = \begin{bmatrix} 2 & 3 & 3 \\ 0 & 5 & 7 \\ 6 & 9 & 8 \end{bmatrix}.$$

What is ker A and ran A?

- **b)** Determine the coordinates $(x_1, x_2, x_3)_A$ of an arbitrary vector $y = (y_1, y_2, y_3)$ in the basis $\{A_1, A_2, A_3\}$ given by the column vector of A.
- c) Perform a Gram–Schmidt orthonormalisation of $\{A_1, A_2, A_3\}$.