Read 4.3-4.4 of Chapter 4 in Lecture Notes.

1 Friedberg et al, 2.2 problem 10

Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for V. Show that there exists a linear transformation $T: V \rightarrow V$ such that $T\left(v_{1}\right)=v_{1}, T\left(v_{j}\right)=v_{j-1}+v_{j}, j=2, \ldots, n$. Find the matrix of this transformation in the basis $\left\{v_{1}, \ldots, v_{n}\right\}$.

2 Let $P(\mathbb{C})$ be the vector space of all polynomials and let $T(p)=p^{(k)}$ be the k-th derivative of p. Find the range and the kernel of T.

3 Let V be a finite dimensional vector space and T be a linear transformation. Show that the following three statements are equivalent

1. $\operatorname{ran}(T) \cap \operatorname{ker}(T)=\{0\}$,
2. $\operatorname{ran}(T)+\operatorname{ker}(T)=V$, i.e., for any $x \in V$ there exists $y_{1} \in \operatorname{ran}(T)$ and $y_{2} \in \operatorname{ker}(T)$ such that $x=y_{1}+y_{2}$,
3. $\operatorname{ran}(T) \oplus \operatorname{ker}(T)=V$.

Be sure you use that V is finite dimensional.
Hint: Apply the rank-nullity theorem.

4 Friedberg et al, 2.3 problem 16

Let V be a finite-dimensional vector space, and let $T: V \rightarrow V$ be a linear transformation. Prove the following statements.
a) $\operatorname{ran}\left(\mathrm{T}^{2}\right) \subset \operatorname{ran}(\mathrm{T})$ and $\operatorname{rank}(T) \geq \operatorname{rank}\left(T^{2}\right)$.
b) If $\operatorname{rank}(T)=\operatorname{rank}\left(T^{2}\right)$, then $\operatorname{ran}(T) \cap \operatorname{ker}(T)=\{0\}$.

Hint: Consider $T: \operatorname{ran}(T) \rightarrow \operatorname{ran}\left(T^{2}\right)$.
c) $V=\operatorname{ran}\left(T^{k}\right) \oplus \operatorname{ker}\left(T^{k}\right)=\{0\}$ for some positive integer k.

Hint: Use b) and Problem 2.

5 Problem 5, Friedberg et al, 2.2 problem 13
Let X and Y be vector spaces and T and S be linear transformations from X to Y. Suppose that $\operatorname{ran}(T) \cap \operatorname{ran}(S)=\{0\}$. Show that $\{S, T\}$ is a linear independent set in $L(X, Y)$.

6 Problem 2 from continuation Exam 2009

a) Let $(X,\|\cdot\|)$ be a Banach space. Let $T: X \rightarrow X$ be a continuous linear transformation. Let $b \in X$ be a fixed vector.
Consider the map $X \rightarrow X$ given by $x \mapsto T x+b$. Express as simply as you can the condition that is needed for this to be a contraction.
b) Recall that l_{∞} is the space of all bounded sequences of real numbers with the supremum norm,

$$
\left\|\left(\xi_{n}\right)\right\|_{\infty}=\sup \left\{\left|\xi_{n}\right|: n \in \mathbb{N}\right\}
$$

Let $I: l_{\infty} \rightarrow l_{\infty}$ be the map

$$
I\left(\xi_{n}\right)=\left(\frac{1}{n} \xi_{n+1}\right)
$$

For example,

$$
I(1,1, \ldots)=\left(0,1, \frac{1}{2}, \frac{1}{3}, \ldots\right)
$$

Let $b \in l_{\infty}$ be the sequence $(1,0,0, \ldots)$. Prove that the map $x \mapsto I x+b$ is not a contraction on l_{∞}, but that $x \mapsto I(I x+b)+b$ is a contraction. What is the contraction constant?
c) Carry out the first five iterations (of $x \mapsto I x+b$) starting from $x_{0}=0$. Then carry out the first five iterations starting from an arbitrary sequence $x_{0}=$ $\left(\xi_{1}, \xi_{2}, \ldots\right)$. What do you notice?

7 Problem 2 from Exam 2012
a) Find an $L U$-decomposition of

$$
A=\left[\begin{array}{lll}
2 & 3 & 3 \\
0 & 5 & 7 \\
6 & 9 & 8
\end{array}\right]
$$

What is ker A and $\operatorname{ran} A$?
b) Determine the coordinates $\left(x_{1}, x_{2}, x_{3}\right)_{A}$ of an arbitrary vector $y=\left(y_{1}, y_{2}, y_{3}\right)$ in the basis $\left\{A_{1}, A_{2}, A_{3}\right\}$ given by the column vector of A.
c) Perform a Gram-Schmidt orthonormalisation of $\left\{A_{1}, A_{2}, A_{3}\right\}$.

