Read Sections 3.4-6 of Chapter 3 in Lecture Notes.

1 Kreyszig 3.1, problem 7

Suppose that X is an inner-product space, $u, v \in X$ are such that $\langle u, x\rangle=\langle v, x\rangle$ for any $x \in X$. Show that $u=v$.

2 Let vectors v_{1}, \ldots, v_{k} in an inner-product space X be pair-wise orthogonal. Show that they are linearly independent.
Hint: Assume that $a_{1} v_{1}+\cdots+a_{k} v_{k}=0$ and use the orthogonality to prove that $a_{1}=\cdots=a_{k}=0$.

3 Show that l_{1} with the usual norm $\|x\|=\sum_{n=1}^{\infty}\left|x_{n}\right|$ is not an inner-product space, i.e., there is no inner product in l_{1} compatible with the norm $\|\cdot\|_{1}$.

Hint: use the polarization identity.

4 Kreyszig 3.1, problem 15

Let X be a finite dimensional vector space with a basis $\left\{e_{j}\right\}_{j=1}^{n}$. Show that an inner product on X is uniquely determined by its values on the pairs of basis vectors, $c_{i j}=\left\langle e_{i}, e_{j}\right\rangle$. Can the values $c_{i j}$ be chosen arbitrarily?

5 a) Suppose that X is a normed space, show that the unit ball $B_{1}(0)=\{x \in X$: $\|x\|<1\}$ is a convex set.
(Recall that a subset S of a vector space X is called convex if for any $x, y \in S$ and any $t \in(0,1), t x+(1-t) y \in S$.)
b) Let S be a convex bounded non-empty open centrally symmetric (meaning that $x \in S \Rightarrow-x \in S)$ set in \mathbb{R}^{2}. Define $\|x\|_{S}=\inf \left\{c>0: c^{-1} x \in S\right\}$. Prove that it is a norm in \mathbb{R}^{2} and the unit ball in this norm is S.

6 Problem 3 from cont. exam 2009

Let $(X,\|\cdot\|)$ be a normed vector space.
a) Let $\left(a_{n}\right)$ be a sequence of points in X with the property that the series $\sum\left\|a_{n}\right\|$ converges in \mathbb{R}. Prove that the sequence $\left(s_{n}\right)$ in X defined by

$$
s_{n}=\sum_{k=1}^{n} a_{k}
$$

is Cauchy.
b) Prove that a normed vector space $(X,\|\cdot\|)$ is complete if and only if whenever $\left(a_{n}\right)$ is a sequence in X with the property that $\sum\left\|a_{n}\right\|$ converges, then the sequence of partial sums $\left(s_{n}\right)$ with $s_{n}=\sum_{k=1}^{n} a_{k}$ converges in X.
You may assume that a Cauchy sequence $\left(s_{n}\right)$ in X has a subsequence $\left(s_{n_{m}}\right)$ with the property that $\left\|s_{n_{m+1}}-s_{n_{m}}\right\|<\frac{1}{2^{m}}$.

7 Problem 5 from Exam 2006

Consider the subspace

$$
M=\left\{x \mid x(t)=0 \text { for } 0 \leqslant t \leqslant \frac{1}{2}\right\}
$$

of $C[0,1]$, and let $C[0,1]$ have the norm derived from the inner product given by

$$
\langle x, y\rangle=\int_{0}^{1} x(t) \overline{y(t)} \mathrm{d} t
$$

a) Show that if $x \in C[0,1]$ and $y \in M$, then

$$
\int_{0}^{\frac{1}{2}}|x(t)|^{2} \mathrm{~d} t \leqslant\|x-y\|^{2}
$$

Show that M is a closed subset of $C[0,1]$.
b) Show that $\|x-1\| \geqslant \frac{1}{\sqrt{2}}$ for all $x \in M$. Does there exist an element $x_{0} \in M$ such that $\left\|x_{0}-1\right\|=\frac{1}{\sqrt{2}}$?
(Here 1 denotes the constant function $1(t)=1$ for $0 \leqslant t \leqslant 1$.)

