

TMA4145 Linear Methods Autumn 2014

Exercise set 6

Read Sections 3.4-6 of Chapter 3 in Lecture Notes.

1 Kreyszig 3.1, problem 7

Suppose that X is an inner-product space, $u, v \in X$ are such that $\langle u, x \rangle = \langle v, x \rangle$ for any $x \in X$. Show that u = v.

2 Let vectors v_1, \ldots, v_k in an inner-product space X be pair-wise orthogonal. Show that they are linearly independent.

Hint: Assume that $a_1v_1 + \cdots + a_kv_k = 0$ and use the orthogonality to prove that $a_1 = \cdots = a_k = 0$.

3 Show that l_1 with the usual norm $||x|| = \sum_{n=1}^{\infty} |x_n|$ is not an inner-product space, i.e., there is no inner product in l_1 compatible with the norm $|| \cdot ||_1$.

Hint: use the polarization identity.

4 Kreyszig 3.1, problem 15

Let X be a finite dimensional vector space with a basis $\{e_j\}_{j=1}^n$. Show that an inner product on X is uniquely determined by its values on the pairs of basis vectors, $c_{ij} = \langle e_i, e_j \rangle$. Can the values c_{ij} be chosen arbitrarily?

- a) Suppose that X is a normed space, show that the unit ball B₁(0) = {x ∈ X : ||x|| < 1} is a convex set.
 (Recall that a subset S of a vector space X is called *convex* if for any x, y ∈ S and any t ∈ (0, 1), tx + (1 t)y ∈ S.)
 - **b)** Let S be a convex bounded non-empty open centrally symmetric (meaning that $x \in S \Rightarrow -x \in S$) set in \mathbb{R}^2 . Define $||x||_S = \inf\{c > 0 : c^{-1}x \in S\}$. Prove that it is a norm in \mathbb{R}^2 and the unit ball in this norm is S.

6 Problem 3 from cont. exam 2009

Let $(X, \|\cdot\|)$ be a normed vector space.

a) Let (a_n) be a sequence of points in X with the property that the series $\sum ||a_n||$ converges in \mathbb{R} . Prove that the sequence (s_n) in X defined by

$$s_n = \sum_{k=1}^n a_k$$

is Cauchy.

b) Prove that a normed vector space $(X, \|\cdot\|)$ is complete if and only if whenever (a_n) is a sequence in X with the property that $\sum \|a_n\|$ converges, then the sequence of partial sums (s_n) with $s_n = \sum_{k=1}^n a_k$ converges in X. You may assume that a Cauchy sequence (s_n) in X has a subsequence (s_{n_m}) with the property that $\|s_{n_{m+1}} - s_{n_m}\| < \frac{1}{2^m}$.

7 Problem 5 from Exam 2006

Consider the subspace

$$M = \left\{ x | x(t) = 0 \text{ for } 0 \leqslant t \leqslant \frac{1}{2} \right\}$$

of C[0,1], and let C[0,1] have the norm derived from the inner product given by

$$\langle x, y \rangle = \int_0^1 x(t) \overline{y(t)} \, \mathrm{d}t.$$

a) Show that if $x \in C[0,1]$ and $y \in M$, then

$$\int_0^{\frac{1}{2}} |x(t)|^2 \, \mathrm{d}t \le ||x - y||^2.$$

Show that M is a closed subset of C[0, 1].

b) Show that $||x - 1|| \ge \frac{1}{\sqrt{2}}$ for all $x \in M$. Does there exist an element $x_0 \in M$ such that $||x_0 - 1|| = \frac{1}{\sqrt{2}}$?

(Here 1 denotes the constant function 1(t) = 1 for $0 \le t \le 1$.)