TMA4140

DISCRETE MATHEMATICS

 NTNU, H2022
Exercise Set 5

Exercise sets are to be handed in individually by each student using the OVSYS system. Each set will be graded (godkjent / ikke godkjent). To get an exercise set approved you are required to have solved correctly at least 70% (providing detailed arguments/computations).
To be admitted to the exam in December $(15 / 12 /)$, you must have at least $4+4$ set out of the 12 assignments approved. At least 4 of the approved exercises sets must be from the first 6 sets, and at least 4 must be from the last 6 exercise sets.

You are asked to pay attention to the quality of presentation, in particular, the correctness of mathematical notation and formalism.

Exercise 1. Let $P(\mathbb{R})$ be the set of all subsets of \mathbb{R}. Define a relation $R \subseteq P(\mathbb{R}) \times P(\mathbb{R})$ by $\langle A, B\rangle \in R$ iff for every $\epsilon>0$ there exists $x \in A$ and $y \in B$ such that $|x-y|<\epsilon$. What are the properties of R ? Transitive, antisymmetric, reflexive, symmetric, irreflexive?

Exercise 2. We consider the concept of p-closure of a relation R with respect to a wanted property p (see textbooks $R A$ or LZ for details): expand R into a relation R_{p} with the desired property p in a minimal way, i.e., adding to R as few new pairs as possible.

We define for a relation $R \subseteq A \times A$:
a) The reflexive closure of R is the smallest relation R_{r} such that $R \subseteq R_{r}$ and R_{r} is reflexive.
b) The symmetric closure of R is the smallest relation R_{s} such that $R \subseteq R_{s}$ and R_{s} is symmetric.
c) The transitive closure of R is the smallest relation R_{t} such that $R \subseteq R_{t}$ and R_{t} is transitive.
Here, smallest means that if \tilde{R} is any other relation containing the relation R and having the particular property p, then the p-closure $R_{P} \subseteq \tilde{R}$.

Example: $R=\{(1,5),(2,2),(2,4),(4,1),(4,2)\}$ on the set $[5]=\{1,2,3,4,5\}$. Then we have:

- reflexive closure $R_{r}=R \cup\{(1,1),(3,3),(4,4),(5,5)\}$.
- symmetric closure: $R_{s}=R \cup\{(5.1),(1,4)\}$
- transitive closure: $R_{t}=R \cup\{(2,1),(4,4),(4,5),(2,5)\}$
(1) Consider the set $[5]=\{1,2,3,4,5\}$. What are the i) reflexive, ii) symmetric, iii) transitive closures of

$$
R:=\{(1,2),(1,3),(2,1),(2,3),(3,1),(3,2),(3,4),(4,5)\} ?
$$

[^0]Exercise 3. Recall that a function f is a relation from a set A, its domain, to a set B, its codomain, which associates to an element $a \in A$ its image $f(a) \in B$. In this sense, we can consider k-ary functions as functions with k arguments, by specifying the domain to be the Cartesian product of k sets. Hence, a k-ary function is just a one-argument function with the set $A_{1} \times \cdots \times A_{k}$ as its domain. For notational simplification, we write $f\left(a_{1}, \ldots, a_{k}\right)$ for $f\left(\left(a_{1}, \ldots, a_{k}\right)\right)$.

Let x and y be positive integers. Define the function g recursively: for $x<y, g(x, y)=0$, and for $y \leq x, g(x, y)=g(x-y, y)+1$. Compute explicitly $g(2,3), g(3,2), g(23,6), g(14,3), g(15,3)$. Is g injective? Justify your answer.

Exercise 4. Write the truth table for the following statement:

$$
(p \rightarrow(q \vee p)) \wedge((p \vee q) \rightarrow \neg p)
$$

Exercise 5. Use mathematical induction to prove that a set with n elements has 2^{n} distinct subsets.
Exercise 6. Let R be a transitive relation. Let $a R^{n} b$ mean that there is a sequence of related elements

$$
\left\langle a, x_{1}\right\rangle \in R,\left\langle x_{1}, x_{2}\right\rangle \in R, \ldots,\left\langle x_{n-1}, b\right\rangle \in R
$$

Use induction to prove that $a R b$ is a logical consequence of $a R^{n} b$.
Exercise 7. Use induction to prove the equality:

$$
1 \cdot 2+2 \cdot 3+\cdots+n \cdot(n+1)=\frac{1}{3} n(n+1)(n+2)
$$

for all $n \geq 1$.
Exercise 8. Use induction to prove that the following statement holds for all $n \geq 2$:

$$
\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right) \cdots\left(1-\frac{1}{n}\right)=\frac{1}{n}
$$

Exercise 9. Use induction to prove the inequality:

$$
\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \geq \sqrt{n}
$$

for all $n \geq 1$.
Exercise 10. Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be the function defined by:

$$
f(n)=\left\{\begin{array}{l}
1, \quad n=0 \\
3, \quad n=1 \\
14, \quad n=2, \\
6 f(n-3)-11 f(n-2)+6 f(n-1), \quad n \geq 3
\end{array} .\right.
$$

Compute $f(3), f(4), f(5)$. Use induction to prove that:

$$
f(n)=\frac{5}{2}-5 \cdot 2^{n}+\frac{7}{2} \cdot 3^{n}
$$

[^0]: Date: September 19, 2022.

