TMA4140
DISCRETE MATHEMATICS
NTNU, H2022

Exercise Set 3

Exercise sets are to be handed in individually by each student using the OVSYS system. Each set will be graded (godkjent / ikke godkjent). To get an exercise set approved you are required to have solved correctly at least 70% (providing detailed arguments/computations).
To be admitted to the exam in December $(15 / 12 /)$, you must have at least $4+4$ set out of the 12 assignments approved. At least 4 of the approved exercises sets must be from the first 6 sets, and at least 4 must be from the last 6 exercise sets.
You are asked to pay attention to the quality of presentation, in particular, the correctness of mathematical notation and formalism.

Exercise 1. Is the following statement a contradiction (write down the truth table)?

$$
((\neg p \wedge q) \wedge(q \wedge r)) \wedge \neg q
$$

Use the laws of logic to simplify (give all steps):

$$
(\neg p \vee \neg q) \wedge((r \wedge \neg r) \vee p) \wedge p
$$

Solution. This is exam problem 1.5 (1) and (2) from Fall 2020. https://wiki.math.ntnu.no/ _media/tma4140/2020h/exam_tma4140-h2020eng-final-solutions.pdf

Exercise 2. Let A, B, C be sets.
(1) Prove or disprove that $A=B$ is a logical consequence of $A \cup C=B \cup C$.
(2) Prove or disprove that $A=B$ is a logical consequence of $A \cap C=B \cap C$.

Solution. Counterexamples:
(1) $A=\{1\}, B=\{1,2\}, C=\{2\}$.
(2) $A=\{1\}, B=\{2\}, C=\{3\}$.

Exercise 3. Prove or disprove the following statements:
(1) $p \rightarrow(q \wedge r)$ is equivalent to $(p \rightarrow q) \wedge(p \rightarrow r)$.
(2) $p \rightarrow(q \vee r)$ is equivalent to $(p \rightarrow q) \vee(p \rightarrow r)$.
(3) $(p \wedge q) \rightarrow r$ is equivalent to $(p \rightarrow r) \wedge(q \rightarrow r)$.
(4) $(p \vee q) \rightarrow r$ is equivalent to $(p \rightarrow r) \vee(q \rightarrow r)$.
(5) $p \wedge(q \rightarrow r)$ is equivalent to $(p \wedge q) \rightarrow(p \wedge r)$.
(6) $p \vee(q \rightarrow r)$ is equivalent to $(p \vee q) \rightarrow(p \vee r)$.

Solution.

(1) Equivalent. If p is false, then both formulas are true. If p is true, then both q and r has to be true for either formula to be true.
(2) Equivalent. If p is false, then both formulas are true. If p is true, then one of q or r has to be true for either formula to be true.
(3) Equivalent. If r is true, then both formulas are true. If r is false, then both p and q has to be true for either formula to be true.
(4) Equivalent. If r is true, then both formulas are true. If r is false, then one of p or q has to be true for either formula to be true.
(5) Not equivalent. If $p=0$, then the first formula is false and the second formula is true.
(6) Equivalent. If p is true, then both formulas are true. If p is false, then both formulas has the same value as $q \rightarrow r$.

Exercise 4. Prove or disprove the following statements:
(1) p is a logical consequence of $\{q \vee r, q \rightarrow p, r \rightarrow p\}$.
(2) $p \rightarrow q$ is a logical consequence of $\{p \rightarrow r, r \rightarrow q\}$.

Solution.

(1) If $\{q \vee r, q \rightarrow p, r \rightarrow p\}$ is true, then either q is true or r is true. If q is true and $q \rightarrow p$ is true, then p is true. If r is true and $r \rightarrow p$ is true, then p is true. Therefore p is a logical consequence.
(2) If $\{p \rightarrow r, r \rightarrow q\}$ is true, then either p is false or r is true. If p is false, then $p \rightarrow q$ is true. If r is true and $r \rightarrow q$ is true, then q is true. If q is true, then $p \rightarrow q$ is true. Therefore $p \rightarrow q$ is a logical consequence.

Exercise 5. For the following relations on the set $\{1,2,3\}$, determine which of the following properties the relations has: reflexive, symmetric, transitive, antisymmetric, irreflexive.
(1) $R_{1}=\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle\}$
(2) $R_{2}=\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle,\langle 1,2\rangle\}$
(3) $R_{3}=\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle,\langle 1,2\rangle,\langle 2,3\rangle\}$
(4) $R_{4}=\emptyset$
(5) $R_{5}=\{\langle 1,2\rangle\}$
(6) $R_{6}=\{\langle 1,1\rangle,\langle 1,2\rangle,\langle 2,1\rangle\}$
(7) $R_{7}=\{\langle 3,3\rangle,\langle 3,2\rangle,\langle 2,1\rangle\}$

Solution.

(1) Reflexive: Yes, every element in $\{1,2,3\}$ is related to itself.

Symmetric: Yes, for every pair $\langle x, y\rangle$ in the relation, the pair $\langle y, x\rangle$ is also in the relation.
Transitive: Yes, for every pairs of pairs of the form $\langle x, y\rangle,\langle y, z\rangle$ in the relation, $\langle x, z\rangle$ is also in the relation.
Antisymmetric: Yes, the only pairs of pairs in the relation of the form $\langle x, y\rangle,\langle y, x\rangle$ satisfy $x=y$.
Irreflexive: No, for example the element 1 is related to itself.
(2) Reflexive: Yes, every element in $\{1,2,3\}$ is related to itself.

Symmetric: No, 1 is related to 2 but 2 is not related to 1 .
Transitive: Yes, for every pairs of pairs of the form $\langle x, y\rangle,\langle y, z\rangle$ in the relation, $\langle x, z\rangle$ is also
in the relation.
Antisymmetric: Yes, the only pairs of pairs in the relation of the form $\langle x, y\rangle,\langle y, x\rangle$ satisfy $x=y$.
Irreflexive: No, for example the element 1 is related to itself.
(3) Reflexive: Yes, every element in $\{1,2,3\}$ is related to itself.

Symmetric: No, 1 is related to 2 but 2 is not related to 1 .
Transitive: No, 1 is related to 2 and 2 is related to 3 but 1 is not related to 3 .
Antisymmetric: Yes, the only pairs of pairs in the relation of the form $\langle x, y\rangle,\langle y, x\rangle$ satisfy $x=y$.
Irreflexive: No, for example the element 1 is related to itself.
(4) Symmetric, transitive, antisymmetric, irreflexive.
(5) Transitive, antisymmetric, irreflexive.
(6) Symmetric.
(7) Antisymmetric.

Exercise 6. If d, n are natural numbers, we say that d divides n if there exists a natural number m such that $d m=n$. Let $A=\{2,3,4\}$ and $B=\{6,8,10\}$. Write down the relation from A to B defined by that $x \in A$ is related to $y \in B$ iff x divides y.

Solution.

$$
\{\langle 2,6\rangle,\langle 2,8\rangle,\langle 2,10\rangle,\langle 3,6\rangle,\langle 4,8\rangle\}
$$

Exercise 7. For the following relations on the set $A=\{1,2,3\}$, determine which of the following properties the relations has: reflexive, symmetric, transitive, antisymmetric, irreflexive.
(1) The relation \sim on A defined by $x \sim y$ iff $x+y$ is even.
(2) The relation \sim on A defined by $x \sim y$ iff $2 x+y$ is even.
(3) The relation \sim on A defined by $x \sim y$ iff $2 x+y$ is odd.
(4) The relation \sim on A defined by $x \sim y$ iff $x \cdot y$ is even.

Solution.

(1) Reflexive, symmetric, transitive.
(2) Transitive, antisymmetric.
(3) Transitive.
(4) Symmetric.

Exercise 8. Let $X=\{1,2,3,4\}$ and let $P(X)$ be the power set of X. Define the subset $\chi \subset P(X)$ by

$$
\chi=\{Y \subseteq X: 1 \in Y \vee 2 \in Y\}
$$

Let R be the relation on χ defined by that x is related to y iff $x \subseteq y$. Show that R is a partial order. Draw the Hasse diagram. You can read about Hasse diagrams on pages 72-73 in the book Logical Methods.

Solution. This is exam problem 4 from Fall 2018. https://wiki.math.ntnu.no/_media/ tma4140/2018h/tma4140h18lf.pdf

Exercise 9. Let $A=\mathbb{Z}^{+} \times \mathbb{Z}^{+}$. Define the relation R on A by $\langle(a, b),(c, d)\rangle \in R$ iff a divides c and a divides d. Determine which of the following properties is satisfied by R : Reflexiv, symmetric, antisymmetric, transitive.

Solution. This is exam problem 4 from Fall 2014. https://www.math.ntnu.no/emner/TMA4140/, 2009h/eksamener/h2014-lf.pdf

Exercise 10. Let R be the relation on \mathbb{Z} defined by $\langle x, y\rangle \in R$ iff 3 divides $x+2 y$. Determine which of the following properties is satisfied by R : Reflexiv, symmetric, antisymmetric, transitive.

Solution. This is exam problem 4 from Fall 2013. https://www.math.ntnu.no/emner/TMA4140/ 2009h/eksamener/h2013-lf.pdf

