TMA4140

DISKRET MATEMATIKK - DISCRETE MATHEMATICS NTNU, HØST/FALL2020

Exercise Set 9 / Øving 9
The solutions must be submitted via OVSYS (to the assigned group/TA). Løsningene må sendes inn via OVSYS (til den tildelte gruppen/TA).
Deadline for submission: Friday, 30 October, 4:00pm
Innleveringsfrist: \quad Fredag, 30. Oktober, kl. 16:00
Textbook: K. H. Rosen, Discrete Mathematics and Its Applications, 8. edition

Exercise/Oppgave

1. Consider the set $X=\{2,16,128,1024,8192,65536\}$. Use the pigeonhole principle to show that if four numbers are selected from X, then two of those four numbers must have the product 131072. Hint: think in terms of powers of 2 .

Solution. Notice that $X=\{2,16,128,1024,8192,65536\}=\left\{2^{1}, 2^{4}, 2^{7}, 2^{10}, 2^{13}, 2^{16}\right\}$ and $131072=2^{17}$. Notice that X can be partitioned into the following three subsets: $\left\{2,2^{16}\right\},\left\{2^{4}, 2^{13}\right\}$ and $\left\{2^{7}, 2^{10}\right\}$. By the pigeonhole principle, if we choose four numbers from X, we will necessarily choose one of the the previous three subsets. Noticing that the product of each pair of numbers is equal to 2^{17}, we conclude that if we choose four numbers from X, then two of those four numbers must have the product 131072.

Exercise/Oppgave

2. Use induction to show that $\sum_{k=1}^{n}(6 k-4)=n(3 n-1)$.

Solution. By induction on n. For the base case $n=1$, note that $\sum_{k=1}^{1}(6 k-4)=2=1(3 \cdot 1-1)$, so the base case is valid. For the induction hypothesis, assume that there exists a positive integer $m \geq 1$ such that $\sum_{k=1}^{m}(6 k-4)=m(3 m-1)$. We shall prove that the formula is valid for $m+1$. Indeed, by splitting

[^0]the sum and using the induction hypothesis, we have
\[

$$
\begin{aligned}
\sum_{k=1}^{m+1}(6 k-4) & =\sum_{k=1}^{m}(6 k-4)+(6(m+1)-4) \\
& =m(3 m-1)+6 m+2 \\
& =3 m^{2}+5 m+2 \\
& =(m+1)(3 m+2) \\
& =(m+!)(3(m+1)-1)
\end{aligned}
$$
\]

Hence the formula is valid for $m+1$. By mathematical induction, we conclude that $\sum_{k=1}^{n}(6 k-4)=n(3 n-1)$, for all $n \in \mathbb{N}$.

Exercise/Oppgave

3. Consider the sequence $\left\{f_{n}\right\}_{n \geq 0}$ of Fibonacci numbers determined for $n>1$ by $f_{n}=f_{n-1}+f_{n-2}$, $f_{0}=0, f_{1}=1$. Show by induction that for positive integers n : $\sum_{i=1}^{n}(-1)^{i+1} f_{i+1}=(-1)^{n-1} f_{n}$.

Solution. By induction on n. For the base case $n=1$, we have $\sum_{i=1}^{1}(-1)^{i+1} f_{i+1}=f_{2}=1=(-1)^{1-1} f_{1}$, and hence the base case is true. For the induction hypothesis, assume that there exists a positive integer $k \geq$ such that $\sum_{i=1}^{k}(-1)^{i+1} f_{i+1}=(-1)^{k-1} f_{k}$. We will show that the formula is true for $k+1$. By splitting the sum and using the induction hypothesis, we have that

$$
\begin{aligned}
\sum_{i=1}^{k+1}(-1)^{i+1} f_{i+1} & =(-1)^{k-1} f_{k}+(-1)^{k+1+1} f_{k+1+1} \\
& =(-1)^{k}\left(f_{k+2}-f_{k}\right) \\
& =(-1)^{(k+1)-1} f_{k+1}
\end{aligned}
$$

where we used that $f_{k+2}=f_{k}+f_{k+1}$, for all $k \geq 0$. Hence the formula is valid for $k+1$. By mathematical induction, we conclude that $\sum_{i=1}^{n}(-1)^{i+1} f_{i+1}=(-1)^{n-1} f_{n}$ for all $n \geq 1$.

Exercise/Oppgave

4. Let S be a set and let $P=\left\{A_{1}, \ldots, A_{k}\right\}$ be a partition of S. We define the map $f: S \rightarrow P$ by $f(s)=A_{j}$ if $s \in A_{j}$. Show that f is surjective.

Solution. Recall the definition of a surjective function: $f: A \rightarrow B$ is surjective if for all $b \in B$, there is $a \in A$ such that $f(a)=b$. Consider then $f: S \rightarrow P$ as in the exercise. Take $A_{j} \in P$. We know, by definition of partition that A_{1}, \ldots, A_{k} are non-empty, disjoint subsets of S such that $\bigcup_{i=1}^{k}=S$. Since A_{j} is non-empty, there is $s \in A$ such that $s \in A_{j}$. Then, by definition of f, we have $f(s)=A_{j}$. We conclude, that for any $A_{j} \in P$, there is $s \in S$ such that $f(s)=A_{j}$. Therefore f is surjective.

Exercise/Oppgave

5. Let X be a non-empty set and consider functions $f, g: X \rightarrow X$. Assume that $f=g \circ f \circ f$ and $g=f \circ g \circ f$. Show that $f=g$.

Solution. Take $x \in X$. We will show that $f(x)=g(x)$. By assumption, we have

$$
\begin{equation*}
f(x)=g\left(f(f(x))=f(g(f(f(f(x)))))=f\left(g \circ f^{2} \circ f(x)\right) .\right. \tag{1}
\end{equation*}
$$

We will compute $f^{2}(x)$. Again by assumption, we have

$$
\begin{equation*}
f^{2}(x)=f(f(x))=f(g(f(f(x))))=f\left(g \circ f^{2}(x)\right) \tag{2}
\end{equation*}
$$

Plugging (2) into (1), we have

$$
\begin{aligned}
f(x) & =f\left(g \circ f^{2} \circ f(x)\right) \\
& =f^{2}(f(x)) \\
& \left.=f^{2}(g(f(f(x)))) \quad \text { (using that } f=g \circ f \circ f\right) \\
& =f(\underbrace{f(g(f(f(x)))))}_{=g} \\
& =f(g(f(x))) \\
& =g(x) .
\end{aligned}
$$

Therefore $f=g$.

Exercise/Oppgave

6. Let $A=\{1,2,3,4,5,6,7,8,9\}$. Consider the set partitions P_{1} of A with blocks $P_{11}=\{1,3,5,7,9\}$, $P_{12}=\{2,4,6,8\}$, and the set partition P_{2} of A with blocks $P_{21}=\{1,2,3,4\}, P_{22}=\{5,7\}, P_{23}=\{6,8,9\}$. Compute the set $P_{3}:=\left\{P_{1 i} \cap P_{2 j} \mid i=1,2, j=1,2,3\right\} \backslash \emptyset$. Show that P_{3} is a partition of A.

Solution. First compute the sets of the collection P_{3} :

$$
\begin{aligned}
& P_{11} \cap P_{21}=\{1,3,5,7,9\} \cap\{1,2,3,4\}=\{1,3\}, \\
& P_{11} \cap P_{22}=\{1,3,5,7,9\} \cap\{5,7\}=\{5,7\}, \\
& P_{11} \cap P_{23}=\{1,3,5,7,9\} \cap\{6,8,9\}=\{9\}, \\
& P_{12} \cap P_{21}=\{2,4,6,8\} \cap\{1,2,3,4\}=\{2,4\}, \\
& P_{12} \cap P_{22}=\{2,4,6,8\} \cap\{5,7\}=\emptyset \\
& P_{12} \cap P_{23}=\{2,4,6,8\} \cap\{6,8,9\}=\{6,8\} .
\end{aligned}
$$

Hence

$$
P_{3}=\{\{1,3\},\{5,7\},\{9\},\{2,4\},\{6,8\}\} .
$$

Now we show that P_{3} is a partition of A. This is by definition since all the elements of P_{3} are pairwise disjoint sets and their union is exactly A :

$$
\{1,3\} \cup\{5,7\} \cup\{9\} \cup\{2,4\} \cup\{6,8\}=A
$$

Exercise/Oppgave

7. Consider a surjective function $f: A \rightarrow B$. Define for $b \in B$ the set $f^{-1}(b):=\{a \in A \mid f(a)=b\} \subseteq A$. Show that $P:=\left\{f^{-1}(b) \mid b \in B\right\}$ defines a partition of A.

Solution. We have to show that the elements of P are pairwise disjoint and their union is A. Indeed,

$$
\bigcup_{b \in B} f^{-1}(b)=f^{-1}\left(\bigcup_{b \in B}\{b\}\right)=f^{-1}(B)=A
$$

by properties of the inverse image. On the other hand, consider $b, c \in B$. Then

$$
f^{-1}(b) \cap f^{-1}(c)=f^{-1}(\{b\} \cap\{c\})=\left\{\begin{array}{cl}
f^{-1}(b) & \text { if } b=c \\
\emptyset & \text { if } b \neq c
\end{array}\right.
$$

Hence the elements of P are pairwise disjoint. Finally, since f is surjective, then $f^{-1}(b) \neq \emptyset$ for all $b \in B$ and hence $\emptyset \notin P$. We conclude that P defines a partition of A.

Exercise/Oppgave

8. Let $A=\{2,3,4,6,9\}$. Draw the directed graph of the relation defined by

$$
R=\{(2,3),(2,9),(3,2),(3,4),(4,3),(4,9),(9,2),(9,4)\}
$$

Solution. Recall that the directed graph $G=(V, E)$ of the relation is defined by $V=A$ and $E=R$. Then the corresponding graph of the above relation is given by

Exercise/Oppgave

9. Section/Sektion 9.1: 2a, 7, 42a, $42 c$

Solution. 2a. Let $A=\{1,2,3,4,5,6\}$ and the relation on A given by $R=\{(a, b) \mid a$ divides $b\}$. Then R is given by

$$
R=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,6),(3,6)\}
$$

7.

- $x \neq y$. It is not reflexive since $x=x$ for all $x \in \mathbb{Z}$. Clearly it is symmetric. It is not antisymmetric since $x \neq y$ and $y \neq x$ does not imply that $x=y$. It is not transitive since, for instance $0 \neq 1$ and $1 \neq 0$ and $0=0$.
- $x y \geq 1$. It is not reflexive since $0 \cdot 0=0 \nsupseteq 1$. It is symetrric since if $x y \geq 1$, then $y x=x y \geq 1$. It is not antisymmetric since $1 \cdot 2=2 \cdot 1 \geq 1$ and $1 \neq 2$. It is transitive. Assume that $x y \geq 1$ and $y z \geq 1$. Then we have that $y \neq 0$. Also, both inequalities imply that $x z y^{2} \geq 1$, and so $x z \geq 1 / y^{2}>0$. Since x, z are both integers, then $x z$ is also an integer, then we get that $x z \geq 1$.
- $x=y+1$ or $x=y-1$. It is not reflexive since $x \neq x+1$ and $x \neq x-1$. It is symmetric. If $(x, y) \in R$ then $x=y+1$ or $x=y-1$. This is equivalent to $y=x-1$ and $y=x+1$. Hence $(y, x) \in R$. It is not antisymmetric since $2=1+1$ and $1=2-1$ and $1 \neq 2$. It is not transitive since $2=1+1$ and $3=2+1$ but $(1,3) \notin R$.
- $x \equiv y(\bmod 7)$. It is reflexive since $x \equiv x(\bmod 7)$ is equivalent to $7|x-x \Rightarrow 7| 0$ and this is true for all $x \in \mathbb{Z}$. It is symmetric since $x \equiv y(\bmod 7)$ implies that $y \equiv x(\bmod 7)$. It is not antisymmetric since $7 \equiv 0(\bmod 7)$ and $0 \equiv 7(\bmod 7)$ and $7 \neq 0$. It is transitive: if $x \equiv y(\bmod 7)$ and $y \equiv z$ $(\bmod 7)$, then $7 \mid(x-y)$ and $7 \mid(y-z)$. This implies that $7|(x-y+y-z) \Rightarrow 7|(x-z) \Rightarrow x \equiv z$ $(\bmod 7)$.
- x is a multiple of y. It is reflexive since x is multiple of x for all $x \in \mathbb{Z}$ since $x=1 \cdot x$. It is not symmetric: 2 is clearly multiple of 1 but 1 is not multiple of 2 . It is not antisymmetric, since 1 is multiple of $-1,-1$ is multiple of 1 , but $1 \neq-1$. It is transitive: if x is multiple of y and y is multiple of z then there are s, t integers such that $x=y t$ and $y=s z$. Then $x=y t=z(s t)$. This implies that x is multiple of z.
- x and y are both negative or both nonnnegative. It is reflexive x and x have the same sign for all $x \in \mathbb{Z}$. It is symmetric: if x, y are both negative or both nonnegative then y, x are both negative or both nonnegative. It is not antisymmetric since 1,2 satisfy that $(1,2),(2,1) \in R$ but $1 \neq 2$. It is transitive: if x, y have the same sign and y, z have the same sign, then x, y, z have the same sign. This implies that x, z have the same sign, i.e. $(x, z) \in R$.
- $x=y^{2}$. It is not reflexive since $2 \neq 4=2^{2}$. It is not symmetric since $4=2^{2}$ but $2 \neq 4^{2}$. It is antisymmetric $x=y^{2}$ and $y=x^{2}$ imply that $x=x^{4}$ and this implies that $x=1$ or $x=0$. Hence $y=1$ or $y=0$, respectively, so $x=y$. It is not transitive: $4=2^{2}$ and $16=4^{2}$ and $16 \neq 2^{2}$.
- $x \geq y^{2}$. It is not reflexive since $2 \nsupseteq 2^{2}$. It is not symmetric since $9 \geq 3^{2}$ but $3 \nsupseteq 9^{2}$. It is antisymmetric: if $x \geq y^{2}$ and $y \geq x^{2}$ then $x \geq x^{4}$. This implies that $x \geq 0$. If $x=0$ then $y=0$ and so $x=y$. If $x>0$ then $1 \geq x^{3}$ and this implies that $x=1$, so $y=1$. Hence $x=y$. It is transitive: if $x \geq y^{2}$ and $y \geq z^{2}$, then $x \geq z^{4} \geq z^{2}$.

42a. Observe that a divides b if and only if b is multiple of a. Then

$$
R_{1} \cup R_{2}=\left\{(a, b) \in \mathbb{N}^{2} \mid \exists c \in \mathbb{N}: a=b c \vee b=a c\right\}
$$

42c. R_{1} is the relation a divides b. Notice that a divides b and a is multiple of b if and only if $a=b s$ for some s and $b=a t$ for some t. Then we have $a=b s=a t s$. This implies that $s t=1$, so $s=t=1$ and $a=b$. Then

$$
R_{1}-R_{2}=\left\{(a, b) \in \mathbb{N}^{2} \mid \exists c \in \mathbb{N}, c \neq 1: a=b c\right\}
$$

Exercise/Oppgave

10. Section/Sektion 9.3: 10, 14, 22

Solution. 10.

- $\{(a, b) \mid a \geq b\}$. The nonzero entries correspond to the entries in the diagonal and below of it. This number is $1+2+\cdots+1000=500500$.
- $\{(a, b) \mid a=b \pm 1\}$. The nonzero entries are the subdiagonal below and above of the main diagonal: $(i, i+1)$ and $(i-1, i)$. The number of nonzero entries is $999+999=1998$,
- $\{(a, b) \mid a+b=1000\}$. This corresponds to the entries $(a, 1000-a)$, for $a \in\{1, \ldots, 999\}$. Hence the number is 999 .
- $\{(a, b) \mid a+b \leq 1001\}$. This corresponds to the entries $(a, 1001-b)$ for $a \in\{1, \ldots, 1000\}$ and $b \in\{1, \ldots, a\}$. Then the number of nonzero entries is $1+2+\cdots+1000=500500$.
- $\{(a, b) \mid a \neq 0\}$. Since $A=\{1, \ldots, 1000\}$, then if $a \in A$ we have that $a \neq 0$. Then all the entries of the matrix are nonzero and this number is $1000^{2}=1000000$.

14.

- $R_{1} \cup R_{2}$. We know that $M_{R_{1} \cup R_{2}}=M_{R_{1}} \vee M_{R_{2}}$. Hence

$$
M_{R_{1} \cup R_{2}}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

- $R_{1} \cap R_{2}$. We know that $M_{R_{1} \cap R_{2}}=M_{R_{1}} \wedge M_{R_{2}}$. Hence

$$
M_{R_{1} \cap R_{2}}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

- $R_{2} \circ R_{1}$. We know that $M_{R_{2} \circ R_{1}}=M_{R_{1}} \odot M_{R_{2}}$. Hence

$$
M_{R_{2} \circ R_{1}}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

- $R_{1} \circ R_{1}$. We know that $M_{R_{1} \circ R_{1}}=M_{R_{1}} \odot M_{R_{1}}$. Hence

$$
M_{R_{1} \circ R_{1}}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

- $R_{1} \oplus R_{2}$. We know that $M_{R_{1} \oplus R_{2}}=M_{R_{1} \cup R_{2}}-M_{R_{1} \cap R_{2}}$. Hence

$$
M_{R_{1} \oplus R_{2}}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

22.

[^0]: Date: November 2, 2020.

