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Solutions Exercise Set 7

Exercise/Oppgave

1. Let A,B,C be sets. Consider relations X ⊆ A×B and Y ⊆ B×C. We define the composition of

relations X and Y as the relation Y ◦X ⊆ A× C consisting of ordered pairs (a, c), for which there

exists an element b ∈ B such that (a, b) ∈ X and (b, c) ∈ Y .

We define for a relation W ⊆ A×B the inverse relation W−1 := {(b, a) | (a, b) ∈W} ⊆ B ×A.

Consider the relations R,S ⊂ N× N defined by:

R = {(0, 2), (0, 5), (0, 9), (1, 9), (1, 12), (1, 15), (2, 2)}

S = {(2, 0), (2, 6), (5, 6), (9, 8), (12, 1), (12, 7), (15, 4)}.

Determine R−1, S−1 and (S ◦R)−1 and deduce a connection between the three relations?

Solution. According to the definition of composition of relation, the list of elements in S ◦ R is the

following:

(0, 2) ∈ R, (2, 0) ∈ S ⇒ (0, 0) ∈ S ◦R,

(0, 2) ∈ R, (2, 6) ∈ S ⇒ (0, 6) ∈ S ◦R,

(0, 9) ∈ R, (9, 8) ∈ S ⇒ (0, 8) ∈ S ◦R,

(1, 9) ∈ R, (9, 8) ∈ S ⇒ (1, 8) ∈ S ◦R,

(1, 12) ∈ R, (12, 1) ∈ S ⇒ (1, 1) ∈ S ◦R,

(1, 12) ∈ R, (12, 7) ∈ S ⇒ (1, 7) ∈ S ◦R,

(1, 15) ∈ R, (15, 4) ∈ S ⇒ (1, 4) ∈ S ◦R,

(2, 2) ∈ R, (2, 0) ∈ S ⇒ (2, 0) ∈ S ◦R,

(2, 2) ∈ R, (2, 6) ∈ S ⇒ (2, 6) ∈ S ◦R.

S ◦R = {(0, 0), (0, 6), (0, 8), (1, 8), (1, 1), (1, 7), (1, 4), (2, 0), (2, 6)}.
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By definition, we have that (x, y) ∈ R−1 if and only if (y, x) ∈ R. Hence the inverses of the three

above relations are

R−1 = {(2, 0), (2, 2), (5, 0), (9, 0), (9, 1), (12, 1), (15, 1)},

S−1 = {(0, 2), (1, 12), (4, 15), (6, 2), (6, 5), (7, 12), (8, 9)},

(S ◦R)−1 = {(0, 0), (0, 2), (1, 1), (4, 1), (6, 0), (6, 2), (7, 1), (8, 0), (8, 1)}.

We can compute R−1 ◦ S−1 as before and conclude that (S ◦R)−1 = R−1 ◦ S−1. �

Exercise/Oppgave

2. Let U be the universe. For the set S ⊂ U we define the characteristic function fS : U → {0, 1}
by fS(x) := 1 if x ∈ S and fS(x) := 0 otherwise. Now, let A and B be two sets in U . Show that

∀x ∈ U : fA∪B = fA(x) + fB(x)− (fAfB)(x).

Solution. We shall prove the formula by cases. Note that U = (A ∪ B) ∪ A ∪B and the union is

clearly disjoint. Then we have two cases:

• x ∈ A ∪B. This is equivalent to say that x 6∈ A∪B, and by DeMorgan’s Law, it is equivalent

to say that x 6∈ A and x 6∈ B. Since x 6∈ A∪B, then fA∪B(x) = 0. On the other hand, x 6∈ A

and x 6∈ B implies that fA(x) = fB(x) = 0, and then fA(x)fB(x) = 0. This allows us to

conclude that fA(x) + fB(x)− (fAfB)(x) = 0 = fA∪B(x).

• x ∈ A ∪B. In this case we have that fA∪B(x) = 1. We have then three disjoint subcases:

– x ∈ A and x ∈ B. Then fA(x) = 1 and fB(x) = 1. We also have that fA(x)fB(x) = 1.

Hence fA(x) + fB(x)− (fAfB)(x) = 1 + 1− 1 = 1 = fA∪B(x).

– x ∈ A and x 6∈ B. Then fA(x) = 1 and fB(x) = 0. We have that fA(x)fB(x) = 0.

Hence fA(x) + fB(x)− (fAfB)(x) = 1 + 0− 0 = 1 = fA∪B(x).

– x 6∈ A and x ∈ B. Then fA(x) = 0 and fB(x) = 1. We have that fA(x)fB(x) = 0.

Hence fA(x) + fB(x)− (fAfB)(x) = 0 + 1− 0 = 1 = fA∪B(x).

Since in all the cases the formula holds, we conclude that

fA∪B(x) = fA(x) + fB(x)− (fAfB)(x),

for all x ∈ U . �

Exercise/Oppgave

3. A car dealership has 30 cars. 20 cars have radios, 8 cars have air conditioners and 25 cars have

fuel injection. Note: 20 have at least two of these features and 6 have all three.

a) How may cars have at least one of the features?

b) How many have none of these features?

c) How many have exactly one?

Solution. a) Let C be the set of cars that the dealership has. We know that |C| = 30. We also define

• R as the subset of cars with radios,

• A as the subset of cars with air conditioner,

• F as the subset of cars with fuel injection.



TMA4140 DISKRET MATEMATIKK – DISCRETE MATHEMATICS NTNU, HØST/FALL2020 3

Notice that R ∪A ∪ F is the subset of cars that have at least one of the features. By the statement

of the problem, we have that

|(R ∩A) ∪ (R ∩ F ) ∪ (A ∩ F )| = 20 and |R ∩A ∩ F | = 6.

By the Principle of Exclusion–Inclusion, we have that

|R ∪A ∪ F | = |R|+ |A|+ |F | − |R ∩A| − |R ∩ F | − |A ∩ F |+ |R ∩A ∩ F |

Noticing that

|(R ∩A) ∪ (R ∩ F ) ∪ (A ∩ F )| = 20 = |R ∩A|+ |R ∩ F |+ |A ∩ F | − 2|R ∩A ∩ F |,

we get that

|R ∩A|+ |R ∩ F |+ |A ∩ F | = 20 + 12 = 32.

Hence

|R ∪A ∪ F | = 20 + 8 + 25− 32 + 6 = 27.

b) Note that the number of cars have none of the features is just |C| − |R ∪A ∪ F | = 30− 27 = 3.

c) The number of cars that have exactly one feature is the same that the number of cars that have at

least one feature minus the number of cars that have at least two features, which is 27− 20 = 7. �

Exercise/Oppgave

4. Section/Sektion 6.1: 27, 46

Solution. Already solved in Set 5. �

Exercise/Oppgave

5. Section/Sektion 6.2: 18, 20

Solution. Already solved in Set 5. �

Exercise/Oppgave

6. Section/Sektion 6.3: 19a,b,c, 20

Solution. • 19. a) Notice that each flip has exactly two outcomes and there are 10 independent flips.

Then the total number of outcomes is 210 = 1024.

b) We need that there are exactly two heads. If this is the case, then there will be exactly 8 tails.

Since the exact number of heads determines the number of tails, then we only need to count the

number of ways that we can distribute the two heads into the ten flips. This number is counted by

the combinations
(

10
2

)
= 45.

c) The number of outcomes that contain at most three tails is given by the sum of the number of

outcomes that exactly contain i tails, for i = 0, 1, 2, 3. By the above argument, this number is given

by (
10

0

)
+

(
10

1

)
+

(
10

2

)
+

(
10

3

)
= 176.

• 20. a) Notice that we can follow the argument from the above item. Hence, the number of bit

strings with exactly three zeros is given by the number of ways that we can choose the three positions

among the 10 positions of the string. This number is given by
(

10
3

)
= 120.
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b) Having a string with more zeros than ones is equivalent to having a string with at most four

ones. By the argument of 19c, this number is

4∑
i=0

(
10

i

)
= 386.

c) Similar to above
10∑
i=7

(
10

i

)
= 176.

c) Similar to above
10∑
i=3

(
10

i

)
= 968.

�

Exercise/Oppgave

7. Section/Sektion 6.5: 12, 14, 32, 56

Solution. 12. Notice that we want to compute the number of combinations with repetition of taking

20 elements of five types of objects. This number is given by

C(20 + 6− 1, 20) =

(
25

20

)
= 53130.

14. To count the number of non-negative solutions, we can think that x1 corresponds to take x1

objects of type 1, that x2 corresponds to take x2 objects of type 2, and so on. Finding a solution is

equivalent to find a way to take 17 objects from four different types of objects. Hence, the number

of solutions is given by

C(17 + 4− 1, 17) =

(
20

17

)
= 1140.

32. We can see that in the word MISSISSIPPI, there are 1 M, 4 Is, 4 Ss and 2 Ps. The number of

different strings that we can get is given by

11!

1!4!4!2!
= 34650.

56. We can distribute five indistinguishable objects into three indistinguishable boxes by considering

a partition of 5 of length at most 3. These partitions are the following:

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1).

Hence there are 5 ways to do the distribution. �

Exercise/Oppgave

8. Section/Sektion 6.6: 5

Solution. We find the next larger permutation in lexicograph order after each of the following per-

mutations:

a) 1432. The first position where ai−1 < ai is a2 = 4. We change a1 = 1 by the next larger

element of the elements in front of it, in this case is 2, and then we construct the smaller

permutation of the right-remaining elements. Hence the next larger permutation is 2134.
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b) 54123. Following the same idea above, since a4 = 2 < a5 = 3, we change 2 by 3 and construct

the smaller permutation ]. The next larger permutation is 54132.

c) 12453. The idea is the same. The next larger permutation is 12534.

d) 45231. The next larger permutation is 45312.

e) 6714235. The next larger permutation is 6714253.

f) 31528764. The next larger permutation is 31542678.

�

Exercise/Oppgave

9. Section/Sektion 8.1: 11, 20

Solution. 11. Let an be the number of ways to climb n stairs. For the first step (and each step),

the person can climb one or two stairs. If the person climbs one stair, then it will remain n − 1

stairs and there will be an−1 ways to climb these stairs. On the other hand, if the person climbs two

stairs, then it will remain n− 2 stairs and there will be an−2 ways to climb these stairs. The desired

recurrence relation is the following

an = an−1 + an−2, for n ≥ 3.

The initial conditions are given by a1 and a2. It is clear that a1 = 1 since there is only one way to

climb one stair, and a2 = 2 since there are two ways to climb two stairs (giving one 2-stairs step or

two 1-stair step). We can compute a8 as follows:

a3 = 2 + 1 = 3, a4 = 3 + 2 = 5, a5 = 5 + 3 = 8, a6 = 8 + 5 = 13, a7 = 13 + 8 = 21, a8 = 21 + 13 = 34.

Hence the number of ways of the person can climb a flight of eight stairs is 34. Note: It is possible to

define the recurrence relation from n ≥ 2, where the initial conditions would be a1 = 1 and a0 = 1,

considering the empty way of climbing 0 stairs. The correspondence recurrence equation and the

value of a8 are the same.

20. Let an be the number of ways that the bus driver can pay a toll of n cents. Recall that the

order matters. For the first coin, the driver can use a nickel or a dime. If the driver uses a nickel,

there will remain n− 5 cents that he/she has to pay and this can be done of an−5 ways. In the case

that the driver uses a dime, there will reman n − 10 cents that he/she has to pay and this can be

done of an−10 ways. The desired recurrence relation is given by:

an = an−5 + an−10, for n = 5k, k ≥ 1,

with obvious initial conditions a0 = 1 and a5 = 1. Note that this is the same sequence from above,

since if n = 5k and bk = a5k, then an = a5k = bk and an−5 + an−10 = bk−1 + bk−2. Hence, a toll of

45 cents can be paid in b9 ways. From above computations we get that b9 = b8 + b7 = 34 + 21 = 55.

Hence the number of ways that the driver can pay a toll of 45 cents is 55. �

Exercise/Oppgave

10. Section/Sektion 8.2: 3c,d,e,g, 6, 11, 42

Solution. • 3c. Solve an = 5an−1 − 6an−2 for n ≥ 2, a0 = 1 and a1 = 0. The characteristic

polynomial of the recurrence is given by x2− 5x+ 6. The roots of the polynomial are x1 = 2
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and x2 = 3. The general solution is given by an = a · 2n + b · 3n. Using the initial conditions,

we have

1 = a0 = a · 20 + b · 30 = a + b, 0 = a1 = a · 21 + b · 31 = 2a + 3b.

Solving the system, we get a = 3 and b = −2. Hence the solution is given by

an = 3 · 2n − 2 · 3n, ∀ n ≥ 0.

• 3d. Solve an = 4an−1−4an−2 for n ≥ 2, a0 = 6 and a1 = 8. The characteristic polynomial of

the recurrence is given by x2−4x+ 4. The root of the polynomial is x1 = 2 with multiplicity

two. The general solution is given by an = a · 2n + b · 2nn. Using the initial conditions, we

have

6 = a0 = a · 20 + b · 20 · 0 = a, 8 = a1 = a · 21 + b · 21 · 1 = 2a + 2b.

Solving the system, we get a = 6 and b = −2. Hence the solution is given by

an = 6 · 2n − 2 · 2nn, ∀ n ≥ 0.

• 3e. Solve an = −4an−1 − 4an−2 for n ≥ 2, a0 = 0 and a1 = 1. The characteristic polynomial

of the recurrence is given by x2 + 4x + 4. The root of the polynomial is x1 = −2 with

multiplicity two. The general solution is given by an = a · (−2)n + b · (−2)nn. Using the

initial conditions, we have

0 = a0 = a · (−2)0 + b · (−2)0 · 0 = a, 1 = a1 = a · (−2)1 + b · (−2)1 · 1 = −2a− 2b.

Solving the system, we get a = 0 and b = −1
2 . Hence the solution is given by

an = (−2)n−1n, ∀ n ≥ 0.

• Solve an = an−2/4 for n ≥ 2, a0 = 1, a1 = 0. The characteristic polynomial of the recurrence

is given by x2 − 1
4 and its roots are x1 = 1

2 and x2 = −1
2 . The general solution is given by

an = a
2n + b

(−2)n . Using the initial conditions, we have

1 = a0 =
a

20
+

b

(−2)0
= a + b, 0 = a1 =

a

21
+

b

(−2)1
= a/2− b/2.

Solving the system, we get a = b = 1
2 . Hence the solution is given by

an =
1

2n+1
− 1

(−2)n+1
, ∀ n ≥ 0.

• 6. First we give the corresponding recurrence relations. Let an be the number of messages

that can be transmitted in n microseconds. For the first signal we have three different

signals. If the signal 1 is used, then we have n− 1 microseconds remaining, and the number

of messages that we can still send is an−1. If any of the other two signals are used, we have

n − 2 microseconds remaining and the number of messages that we can still send is an−2.

Hence, the desired recurrence relation is given by

an = an−1 + 2an−2, ∀ n ≥ 3,
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with initial conditions a1 = 1 and a0 = 1. Now we solve the recurrence relation. The

characteristic polynomial is x2 − x − 2 whose roots are x1 = 2 and x2 = −1. Hence the

general solution is an = a · 2n + b · (−1)n. Using the initial conditions, we have

1 = a0 = a + b, 1 = a1 = 2a− b.

Solving the system, we have a = 2/3 and b = 1/3. Hence the solution is given by

an =
2

3
2n +

1

3
(−1)n, ∀ n ≥ 0.

• 11. Define bn := fn−1 + fn+1 for all n ≥ 2. We show that the sequence {bn}n satisfies the

recurrence equation defining {Ln}n. The initial conditions are the same: b1 = f0 + f2 =

0 + 1 = 1 = L1 and b2 = f1 + f3 = 1 + 2 = 3 = L0 + L1 = L2. Now, for n ≥ 2 we have that

bn−1 + bn−2 = (fn−2 + fn) + (fn−1 + fn−3)

= (fn−3 + fn−2) + (fn−1 + fn)

= fn−1 + fn+1

= bn,

where we use the recurrence relation of the Fibonacci numbers. By uniqueness of the solution,

we conclude that Ln = bn = fn−1 + fn+1, for all n ≥ 2. Now, for finding an explicit formula

for the Lucas numbers, we can solve the recurrence relation with initial conditions in a similar

way that we did in the previous exercises. However, since we know that Ln = fn−1 + fn+1

for n ≥ 2 and

fn =
1√
5

(
1 +
√

5

2

)n

− 1√
5

(
1−
√

5

2

)n

, ∀n ≥ 0,

then for n ≥ 1 we have

Ln = fn−1 + fn+1

=
1√
5

(
1 +
√

5

2

)n−1

− 1√
5

(
1−
√

5

2

)n−1

+
1√
5

(
1 +
√

5

2

)n+1

− 1√
5

(
1−
√

5

2

)n+1

=
1√
5

(1 +
√

5

2

)n−1
1 +

(
1 +
√

5

2

)2
−(1−

√
5

2

)n−1
1 +

(
1−
√

5

2

)2


=
1√
5

(1 +
√

5

2

)n−1(
5 +
√

5

2

)
−

(
1−
√

5

2

)n−1(
5−
√

5

2

)
=

(
1 +
√

5

2

)n

+

(
1−
√

5

2

)n

.

• 42. In this problem, we can define bn := sfn−1 + tfn for all n ≥ 1 and then prove that

the sequence {bn}n≥1 satisfies the recursion an = an−1 + an−2 and the corresponding initial

conditions. By uniqueness, we can conclude that an = bn for all n ≥ 1. Here we give a proof
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by finding the solutions to the recurrence. For the Fibonacci sequence {fn}n, we know that

fn = − 1√
5
xn1 +

1√
5
xn2

for n ≥ 0, where

x1 =
1−
√

5

2
, x2 =

1 +
√

5

2
.

We notice that

(1) x2 − x1 =
√

5, x1x2 = −1.

We will need that later. Now, we look at the recurrence relation an = an−1 + an−2. The

correspondence characteristic polynomial is given by x2 − x− 1 which has roots given by x1

and x2. Then the general solution is given by an = axn1 + bxn2 , for all n ≥ 0. Using the initial

conditions, we have the system

s = a + b, t = ax1 + bx2.

Solving the system, we find

b =
t− sx1

x2 − x1
=

t− sx1√
5

a =
sx2 − t

x2 − x1
=

sx2 − t√
5

.

Hence, for n ≥ 1 we have that

an = axn1 + bxn2

=
sx2 − t√

5
xn1 +

t− sx1√
5

n

=
1√
5

(sx2x
n
1 − txn1 + txn2 − sx1x

n
2 )

(using that x1x2 = −1) = s

(
1√
5
xn−1

2 − 1√
5
xn−1

1

)
+ t

(
1√
5
xn2 −

1√
5
xn1

)
= sfn−1 + tfn.

Therefore an = sfn−1 + tfn for n ≥ 1, as we wanted to show.

�


