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Exercise/Oppgave

1. 1) Write down the truth table of the so-called EXCLUSIVE OR: p⊕ q, which is defined to be true

if either p is true and q is false, or p is false and q is true, and it is false in all other cases. Verify

that p⊕ q is logically equivalent to (p ∧ ¬q) ∨ (¬p ∧ q).

2) Use the laws of logic to simplify
(
s ∨ (p ∧ r ∧ s)

)
∧
(
p ∨ (p ∧ q ∧ ¬r) ∨ (p ∧ q)

)
.

3) Provide the reasons for each step (using inference rules) required to verify that the following

argument is valid:

(¬p ∨ q)⇒ r

r ⇒ (s ∨ t)
¬s ∧ ¬u
¬u⇒ ¬t
∴ p

4) Provide a specific set of truth values for p, q, r, s showing that the following argument is invalid,

i.e., the premises are true while the conclusion is false.

p

p→ r

p→ (q ∨ ¬r)
¬q ∨ ¬s
∴ s

Solution. 1) According to the definition, p ⊕ q is true if and only if p and q have different truth

values. The truth table is the following:

p q p⊕ q
T T F

T F T

F T T

F F F
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Now, we proceed to write down the table truth for p⊕ q and (p ∧ ¬q) ∨ (¬p ∧ q):

p q p⊕ q ¬p ¬q p ∧ ¬q ¬p ∧ q (p ∧ ¬q) ∨ (¬p ∧ q)
T T F F F F F F

T F T F T T F T

F T T T F F T T

F F F T T F F F

Third and eighth columns are identical, then p⊕ q is logically equivalent to (p ∧ ¬q) ∨ (¬p ∧ q).

2) Notice that, by Absorption Law, s∨ (p∧ r ∧ s) ≡ s. Also by Absorption Law, p∨ (p∧ q ∧¬r)∨
(p ∧ q) ≡ p. Hence (

s ∨ (p ∧ r ∧ s)
)
∧
(
p ∨ (p ∧ q ∧ ¬r) ∨ (p ∧ q)

)
≡ s ∧ p.

3)

Steps Reasons

1 ¬s ∧ ¬u Premise

2 ¬u Rule of Conjunctive Simplification in 1

3 ¬u⇒ ¬t Premise

4 ¬t Modus Ponens from 2 and 3

5 ¬s Rule of Conjunctive Simplification in 1

6 ¬s ∧ ¬t Rule of Conjunction from 4 and 5

7 ¬(s ∨ t) DeMorgan’s Law in 6

8 r ⇒ (s ∨ t) Premise

9 ¬r Modus Tollens from 7 and 8

10 (¬p ∨ q)⇒ r Premise

11 ¬(¬p ∨ q) Modus Tollens from 9 and 10

12 p ∧ ¬q DeMorgan’s Law in 11

13 p Rule of Conjunctive Simplification in 12

4) We need that the premises are true. In particular p is true. Since p ⇒ r and p is true, then r is

true. Since p ⇒ (q ∨ ¬r) is true and p is also true, then q ∨ ¬r is true. However, r is true, then ¬r
is false and then q is true. Finally, since ¬q ∨ ¬s is true and q is true, then ¬q is false and then ¬s
is true. So, s is false. Then, with the values

p q r s p⇒ r p⇒ (q ∨ ¬r) ¬q ∨ ¬s
T T T F T T T

we have that the argument is invalid. �

Exercise/Oppgave

2. 1) Compute the power set of the set A := {{a, b}, {c}, {d, e, f}}.
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2) Consider three set A,B,C. Recall that the symmetric difference was defined by A4B := (A −
B) ∪ (B −A). Show the following properties:

a) A4B = (A ∪B)− (A ∩B), b) A4B = B4A and that c) A4(B4C) = (A4B)4C.

3) Consider the sets X and Y . Show that the following statements are equivalent:

i) X ⊆ Y , ii) X ∩ Y = X, iii) X ∪ Y = Y .

4) Recall that relations are just sets, such that the set operations ∪, ∩ and complement apply to them.

Let A,B be two non-empty sets. Let R ⊆ A×B be a relation. We denote the domain of R by dom(R)

and the range of R by ran(R). The complement of R is defined as R̄ := (A×B)\R = (A×B)−R.

Now let R1, R2 ⊆ A×B be two binary relations. Show that:

i) dom(R1 ∪R2) = dom(R1) ∪ dom(R2) ii) dom(R1 ∩R2) ⊆ dom(R1) ∩ dom(R2).

Solution. 1) The power set of A is defined as the collection of subsets of A. We have then that the

power set of A is the following:

P(A) = {∅, {{a, b}}, {{c}}, {{d, e, f}}, {{a, b}, {c}}, {{c}, {d, e, f}}, {{a, b}, {d, e, f}}, A}

2) a) We know that for X,Y sets, then X − Y = X ∩ Y . Using this and Distributive Law, we have

that

A4B = (A−B) ∪ (B −A)

= (A ∩B) ∪ (B ∩A)

= ((A ∩B) ∪B) ∩ ((A ∩B) ∪A)

= ((A ∪B) ∩ (B ∪B)) ∩ ((A ∪A) ∩ (B ∪A))

= ((A ∪B) ∩ U) ∩ (U ∩ (B ∪A))

= (A ∪B) ∩ (A ∩B) (Identity Law and DeMorgan’s Law)

= (A ∪B)− (A ∩B)).

b) This immediately follows from Commutativity Law of union of sets:

A4B = (A−B) ∪ (B −A) = (B −A) ∪ (A−B) = B4A.

c)

A4(B4C) = (A ∩ (B4C)) ∪ ((B4C) ∩A) (Definition of 4 and Exercise 4)

= (A ∩ ((B ∩ C) ∪ (C ∩B))) ∪ (((B ∩ C) ∪ (C ∩B)) ∩A) (Definition of 4)

= (A ∩ ((B ∪ C) ∩ (C ∪B))) ∪ (((B ∩ C) ∪ (C ∩B)) ∩A) DeMorgan’s Law

= (A ∩ ((B ∩ (C ∪B)) ∪ (C ∩ (C ∪B))) ∪ (((B ∩ C) ∪ (C ∩B)) ∩A) Distributive Law

= (A ∩ ((B ∩ C) ∪ (B ∩B)) ∪ (C ∩ C) ∪ (C ∩B))) ∪ (((B ∩ C) ∪ (C ∩B)) ∩A) Distributive Law

= (A ∩ ((B ∩ C) ∪ ∅ ∪ ∅ ∪ (C ∩B))) ∪ (((B ∩ C) ∪ (C ∩B)) ∩A) Disjoint intersection

= (A ∩ ((B ∩ C) ∪ (C ∩B))) ∪ (((B ∩ C) ∪ (C ∩B)) ∩A) Identity Law

= (A ∩B ∩ C) ∪ (A ∩ C ∩B) ∪ (B ∩ C ∩A) ∪ (C ∩B ∩A) Distributive Law
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Now, by part b), we have that (A4B)4C = C4(A4B). We can use the previous development but

just changing the label of the sets:

C4(A4B) = (C ∩A ∩B) ∪ (C ∩B ∩A) ∪ (A ∩B ∩ C) ∪ (B ∩A ∩ C).

Finally, because union and intersection of sets is commutative, we conclude that

A4(B4C) = (A ∩B ∩ C) ∪ (A ∩ C ∩B) ∪ (B ∩ C ∩A) ∪ (C ∩B ∩A)

= (A ∩B ∩ C) ∪ (C ∩B ∩A) ∪ (B ∩A ∩ C) ∪ (C ∩A ∩B) (rearranging intersections)

= (C ∩A ∩B) ∪ (C ∩B ∩A) ∪ (A ∩B ∩ C) ∪ (B ∩A ∩ C) (rearranging unions)

= C4(A4B)

= (A4B)4C,

that is what we wanted to prove.

3) We have to prove i) ⇔ ii), ii) ⇔ iii) and iii) ⇔ i). By Law of Syllogism, this is equivalent to

show i)⇒ ii), ii)⇒ iii) and iii)⇒ i).

Proof of i) ⇒ ii). Assume that X ⊆ Y . Then ii) follows by the Absorption Law. We can prove

it as follows: by definition of intersection, we have that X ∩ Y ⊆ X. On the other hand, consider

x ∈ X. By i), we have that x ∈ Y . By conjunction, we have that x ∈ X and x ∈ Y , i.e., x ∈ X ∩ Y .

We have shown that X ⊆ X ∩ Y . Hence X = X ∩ Y .

Proof of ii)⇒ iii). Assume that X ∩ Y = X. Then

X ∪ Y = (X ∩ Y ) ∪ Y = (X ∪ Y ) ∩ (Y ∪ Y ) = (X ∪ Y ) ∩ Y = Y,

where we used the Absorption Law (or the first implication that we proved) in the last equality since

Y ⊆ X ∪ Y .

Proof of iii)⇒ i). Assume now that X ∪ Y = Y . In general, we know that X ⊆ X ∪ Y , but since

X ∪ Y = Y , we can conclude that X ⊆ Y .

4) i)

x ∈ dom(R1 ∪R2) ⇔ there exists y ∈ B such that (x, y) ∈ R1 ∪R2

⇔ there exists y ∈ B such that (x, y) ∈ R1 or (x, y) ∈ R2

⇔ x ∈ dom(R1) or x ∈ dom(R2)

⇔ x ∈ dom(R1) ∪ dom(R2)

The third (⇔) may not be so clear because in a principle, x ∈ dom(R1) or x ∈ dom(R2) is equivalent,

by definition that (there exists y ∈ B such that (x, y) ∈ R), or (there exists y ∈ B such that

(x, y) ∈ R). However, by properties of the quantifier ∃, the latter sentence is equivalent to say that

there exists y ∈ B such that ((x, y) ∈ R or (x, y) ∈ R).

ii) In a similar way to i), by definition of dom we have that
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x ∈ dom(R1 ∩R2) ⇔ there exists y ∈ B such that (x, y) ∈ R1 ∩R2

⇔ there exists y ∈ B such that (x, y) ∈ R1 and (x, y) ∈ R2

⇒ x ∈ dom(R1) and x ∈ dom(R2)

⇔ x ∈ dom(R1) ∩ dom(R2).

Hence dom(R1∩R2) ⊆ dom(R1)∩dom(R2). Note that in this case, we cannot guarantee the converse

in the third sentence; the element y ∈ B in the definition of dom may be different in R1 and R2. �

Exercise/Oppgave

3. Define the numbers

α :=
1 +
√

5

2
β :=

1−
√

5

2

a) Compute the numbers 1/α and 1/β. Compute the numbers an = αn−βn

α−β for n = 0, 1, 2, 3, 4, 5, 6.

b) For x = α and y = β, compute the values of the following functions:

i) f(x) = x2 − x− 1 ii) f(y) = y2 − y − 1 iii) g(x, y) = xy + 1 iv) h(x, y) = x− y −
√

5

v) w(x, y) = x+ y − 1 vi) v(x, y) = x2 + y2 − 3 vii) u(x, y) = x2 − y2 −
√

5

c) Use the results from part b) to show that 2α+ 1 = α3 = 0 and 2β + 1 = β3 = 0.

d) It is known that the Fibonacci numbers Fn, n ≥ 0, can be expressed as
√

5Fn = αn − βn.

Compare the numbers an computed in a) with the Fibonacci numbers Fn, for n = 0, 1, 2, 3, 4, 5, 6.

Show that

Fn =
αn − βn

α− β
e) Use the results from a)-d) together with the binomial formula, (a + 1)n =

∑n
k=0

(
n
k

)
ak1n−k, to

show by a direct calculation, that
n∑
k=0

(
n

k

)
2kFk = F3n.

Solution. a) Note that

1

α
=

2

1 +
√

5
=

2

1 +
√

5

1−
√

5

1−
√

5
=

2(1−
√

5)

1− 5
= −1−

√
5

2
= β.

In this way 1
β = −α. The table of the values of an for n = 0, . . . , 6 is the following:

n 0 1 2 3 4 5 6

an 0 1 1 2 3 5 8

b)

• f(α) = α2 − α− 1 = 0,

• f(β) = β2 − β − 1 = 0,

• g(α, β) = αβ + 1 = α
(
− 1
α

)
+ 1 = −1 + 1 = 0,

• h(α, β) = α− β −
√

5 = 1+
√

5
2 − 1−

√
5

2 −
√

5 =
√

5−
√

5 = 0,

• w(α, β) = α+ β − 1 = 1+
√

5
2 + 1−

√
5

2 − 1 = 1− 1 = 0,

• v(α, β) = α2 + β2 − 3 = 0,

• u(α, β) = α2 − β2 −
√

5 = 0.
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c) From f(α) = 0, we have that α2 − α − 1 = 0. Multiplying by α the previous equation, we get

that α3 − α2 − α = 0. Note that f(α) = 0 also implies that α2 = α+ 1. Then

α3 − α2 − α = 0⇒ α3 − α− 1− α = 0⇒ 2α+ 1− α3 = 0,

that is what we wanted. Since f(β) = 0, we can repeat exactly the above argument with β instead

of α in order to conclude that 2β + 1− β3 = 0.

d) Clearly the values of an that we got in the table of part a) are exactly the first seven Fibonacci

numbers Fn. We know that
√

5Fn = αn − βn, for n ≥ 0. By item iv) in part b), we have that

α− β =
√

5. Hence

Fn =
αn − βn

5
=
αn − βn

α− β
, ∀n ≥ 0.

e) From part c), we know that α3 = 2α+ 1. Using the binomial formula, we obtain

α3n = (α3)n = (2α+ 1)n

=
n∑
k=0

(
n

k

)
(2α)k

=
n∑
k=0

(
n

k

)
2kαk.

Since β3 = 2β + 1, we also obtain that β3n =
∑n

k=0

(
n
k

)
2kβk. Hence

α3n − β3n =
n∑
k=0

(
n

k

)
2k(αk − βk).

Finally, dividing the previous equation by α− β and using part d), we conclude that

F3n =
α3n − β3n

α− β

=

n∑
k=0

(
n

k

)
2k
αk − βk

α− β

=
n∑
k=0

(
n

k

)
2kFk.

�

Exercise/Oppgave

4. Define the function f(x) := x+1
x−1 with domain and codomain D := {x ∈ R|x 6= 1}. Calculate

(f ◦ f)(x) and draw a conclusion.
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Solution. Since the codomain of f coincides with the domain of f , it makes sense to consider the

composition f ◦ f . If x ∈ R− {1} we have

(f ◦ f)(x) = f(f(x))

= f

(
x+ 1

x− 1

)
=

x+1
x−1 + 1
x+1
x−1 − 1

=
x+1+x−1

x−1
x+1−x+1

x−1

=
2x
x−1

2
x−1

=
2x

2
= x.

Note that we can cancel x− 1 in the sixth equality since x− 1 6= 0 because x 6= 1. We conclude that

f is invertible, it is its own inverse, and it is bijective. �

Exercise/Oppgave

5. 1) Show that for all positive integers m,n we have the following identities:

i) n

(
m+ n

m

)
= (m+ 1)

(
m+ n

m+ 1

)
. ii)

(
2n

n

)
−
(

2n

n− 1

)
=

1

n+ 1

(
2n

n

)
2) We define the numbers:

N(0, 0) = 1, N(n, 0) = 0, n > 0, N(n, k) =
1

n

(
n

k

)(
n

k − 1

)
, n ≥ k ≥ 1.

Show that N(n, n+ 1− k) = N(n, k). These are the Narayana numbers.

3) Determine the coefficient of:

i) xyz2 in (x+ y + z)4

ii) xyz2 in (2x− y − z)4

iii) w2x2y2z2 in (w + x+ y + z + 1)10

Provide a detailed argument of your way of finding the coefficients.

Solution. 1) Recall the definition of binomial coefficient:(
n

k

)
=

n!

k!(n− k)!
.
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Then for the first one:

n

(
m+ n

m

)
= n

(m+ n)!

m!(m+ n−m)!

= n
(m+ n)!

m!n!

=
(m+ n)!

m!(n− 1)!

=
(m+ 1)(m+ n)!

(m+ 1)m!(n− 1)!

= (m+ 1)
(m+ n)!

(m+ 1)!(n− 1)!

= (m+ 1)
(m+ n)!

(m+ 1)!(m+ n− (m+ 1))!

= (m+ 1)

(
m+ n

n+ 1

)
.

In a similar way, for the second one we have

(
2n

n

)
−
(

2n

n− 1

)
=

(2n)!

n!n!
− (2n)!

(n− 1)!(n+ 1)!

=
(2n)!

n!

(
1

n!
− 1

(n+ 1)(n− 1)!

)
=

(2n)!

n!

(
n+ 1

(n+ 1)n!
− n

(n+ 1)n(n− 1)!

)
completing factorial n! = n(n− 1)!

=
(2n)!

n!

(
n+ 1− n
(n+ 1)n!

)
=

(2n)!

n!

(
1

(n+ 1)n!

)
=

1

n+ 1

(2n)!

n!n!

=
1

n+ 1

(
2n

n

)
.
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2) Consider n > 0. If k = 0 then N(n, k) = 0 and N(n, n+ 1− k) = N(n, n+ 1) = 0, by item (2)

of the definition of Narayana numbers. Now assume that 0 < k ≤ n. Then 1 ≤ n+ 1− k ≤ n and

N(n, n+ 1− k) =
1

n

(
n

n+ 1− k

)(
n

n+ 1− k − 1

)
=

1

n

(
n

n+ 1− k

)(
n

n− k

)
=

1

n

n!

(n− k + 1)!(n− (n− k + 1))!

n!

(n− k)!(n− (n− k))!

=
1

n

n!

(n− (k − 1))!(k − 1)!

n!

(n− k)!k!

=
1

n

(
n

k − 1

)(
n

k

)
= N(n, k).

Hence N(n, k) = N(n, n+ 1− k) as we wanted to show.

3) Recall the multinomial formula: for m ≥ 1 and n ≥ 0, we have that

(x1 + x2 + · · ·+ xm)n =
∑

k1+k2+···+km=n

(
n

k1, k2, . . . , km

)
xk11 x

k2
2 · · ·x

km
m ,

where (
n

k1, k2, . . . , km

)
=

n!

k1!k2! · · · km!
.

i) We want to find the coefficient of xyz2 in (x + y + z)4. Substituting the values n = 4, m = 3,

k1 = 1, k2 = 1, k3 = 2, we get (
4

1, 1, 2

)
=

4!

1!1!2!
= 12.

ii) We have the same values that of the previous item. However, in this case we have to consider

x1 = 2x, x2 = −y and x3 = −z. From above, 12 is the coefficient of x1x2x
2
3 in (x1 + x2 + x3)4.

Observe that

x1x2x
2
3 = (2x)(−y)(−z)2 = −2xyz2.

Hence the coefficient of xyz2 is 12 · (−2) = −24.

iii) Note that w2x2y2z2 = w2x2y2z212. Considering n = 10, m = 5, ki = 2 for i = 1, 2, 3, 4, 5, then

the coefficient of w2x2y2z2 in (w + x+ y + z + 1)10 is(
10

2, 2, 2, 2, 2

)
=

10!

2!2!2!2!2!
= 113400.

�

Exercise/Oppgave

6. Find the number of distinct permutations of the sequence of letter:

i) T H O S E, ii) U N U S U A L, iii) S O C I O L O G I C A L ,

iv) S A N N S Y N L I G H E T S T E T T H E T S F U N K S J O N E N E
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Solution. We recall the formula for the number of permutations of rk elements of type k, for 1 ≤ k ≤ `
for some positive integer ` and r1 + r2 + · · ·+ r` = n:

n!

r1!r2! · · · rk!
.

1) Since the five letters of the word THOSE are all different, the number of distinct permutations is

given by 5! = 120.

2) Since the letter U appears three times and every other letter appears one time, then the number

of permutations is
7!

3!1!1!1!1!
= 840.

3) Note that the letter O appears three times, the letter C appears two times, the letter I appears

two times, the letter L appears two times, and every other letter appears one time, then the number

of permutations is
12!

3!2!2!2!1!1!1!
= 9979200.

4) Notice that there are 33 letters in the sequence such that there are

• 5 S,

• 1 A,

• 6 N,

• 1 Y,

• 1 L,

• 1 I,

• 1 G,

• 2 H,

• 5 E,

• 5 T,

• 1 F,

• 1 U,

• 1 K,

• 1 J,

• 1 O.

Hence the number of permutations is given by

33!

5!1!6!1!1!1!1!2!5!5!1!1!1!1!1!
= 3489630601695877739003904000.

�

Exercise/Oppgave

7. 1) The University of Bergen holds a five-a-side soccer tournament. The rules say that the members

of each team must have birthdays in the same month. How many mathematics students are needed

in order to guarantee that they can raise a team?

2) Let A = {1, 2, 3, 4, 5, 6, 7, 8}. How many distinct numbers must you select from the set A so as to

guarantee that there are two of them that sum to 9?
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Solution. 1) We will prove that we need 49 mathematics students in order to guarantee a team for

the soccer tournament. If we have at most 48 students, then it is possible to distribute four or less

students to each month since 4 · 12 = 48. Now we see that 49 students is possible. This follows from

the pigeonhole principle. Indeed, assume that we cannot have a team with 49 students. This means

that for each month, we have at most four students who share the birthday in such month. Then the

number of students is less or equal to 4·12 = 48, and this contradicts that the number of students is 49.

2) The answer is 5. If we choose at most 4, then it is possible to choose the subset {1, 2, 3, 4},
and this subset does not satisfy that there are two numbers that sum to 9. However, if we choose 5

numbers, by the pigeonhole principle, we will choose at least one of the following pairs:

{1, 8}, {2, 7}, {3, 6}, {4, 5},

and such pair sums to 9. This is what we wanted.

�

Exercise/Oppgave

8. Let Y := {1, 2, 3, 4, . . . , 600}. Use the inclusion-exclusion principle to find the numbers of positive

integers in Y that are not divisible by 3 or 5 or 7. Recall the definition of the floor function, bxc,
which returns the greatest integer less than or equal to the real number x.

Solution. Let A be the subset of Y of integers divisible by 3, B be the subset of Y of integers divisible

by 5, and C be the subset of Y of integers divisible by 7. We want to compute |Y | − |A ∪ B ∪ C|.
By the inclusion–exclusion principle, we we have that

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.

Note that

• |A| = 200 since b600/3c = 200,

• |B| = 120 since b600/5c = 120,

• |C| = 85 since b600/7c = 85.

Also, note that |A ∩ B| corresponds to the subset of Y of positive integers that are divisible at the

same time by 3 and 5, i.e. the positive integers in Y that are divisible by 15. In the same way, |A∩C|
corresponds to the subset of Y of positive integers that are divisible by 21, and |B ∩C| corresponds

to the subset of Y of positive integers that are divisible by 35. Hence

• |A ∩B| = 40 since b600/15c = 40,

• |A ∩ C| = 28 since b600/21c = 28,

• |B ∩ C| = 17 since b600/35c = 17.

Finally, |A∩B ∩C| corresponds to the subset of Y of positive integers that are divisible at the same

time by 3, 5, and 7, i.e. the positive integers in Y that are divisible by 105. Then |A ∩ B ∩ C| = 5

since b600/105c = 5. Therefore, the number of positive integers in Y that are not divisible by 3 or 5

or 7 is

|Y | − |A ∪B ∪ C| = 600− (200 + 120 + 85− 40− 28− 17 + 5) = 600− 325 = 275.

�
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Exercise/Oppgave

9. What is the number of ways of arranging the six letters A, E, M , O, U , and Y in a sequence,

such that the words ME and Y OU do not occur?

Solution. Since the six letters are all different, the number of permutations without restrictions is

given by 6! = 720. Now we will subtract the number of permutations such that the words ME and

YOU occur. It is easy to see that such permutations are the following:

MEAY OU,MEY OUA,AMEY OU, Y OUMEA, Y OUAME,AY OUME.

Hence the desired number of arrays is 720− 6 = 714. �

Exercise/Oppgave

10. 1) Let a = 8316 and b = 10920. Find the greatest common divisor of a and b and the corre-

sponding Bézout coefficients.

2) Use Fermat’s little theorem to compute the remainder when 347 is divided by 23.

3) Let (xnxn−1 · · ·x0)10 be the base 10 representation of the positive integer x. Show that x is congru-

ent
∑n

i=0(−1)ixi modulo 11. Use this to test whether the integer 1213141516171819 is divisible by 11.

4) Consider i) 6x ≡ 1(mod 33) and ii) 81x ≡ 1(mod 256). Find the solutions to these linear

congruences..

Solution. 1)By the Euclid’s algorithm, we have that

10920 = 1 · 8316 + 2604

8316 = 3 · 2604 + 504

2604 = 5 · 504 + 84

504 = 6 · 84 + 0.

Hence gcd(10920, 8316) = 84. Now, reversing the algorithm, we can find the Bézout coefficients as

follows:

84 = 2604 + (−5) · 504

= 2604 + (−5)(8316 + (−3) · 2604)

= (−5) · 8316 + 16 · 2604

= (−5) · 8316 + 16(10920 + (−1) · 8316)

= 16 · 10920 + (−21) · 8316.

Hence 83 = 16 · 10920 + (−21) · 8316.

2) Since 23 is a prime number such that gcd(23, 3) = 1, we apply Fermat’s little theorem to get

322 ≡ 1 (mod 23).
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This implies

344 ≡ (322)2 ≡ 12 ≡ 1 (mod 23).

Hence

347 ≡ 33 · 344 ≡ 33 · 1 ≡ 27 ≡ 4 (mod 23).

We conclude that the remainder when 347 when is divided by 23 is 4.

3) Assume that (xnxn−1 · · ·x0)10 is the base 10 representation of the positive integer x. In other

words, we have that

x = x0 · 100 + x1 · 101 + · · ·+ xn−1 · 10n−1 + xn · 10n =
n∑
i=0

xi · 10i.

For i ∈ {0, . . . , n}, consider the integer 10i. Notice that 10 ≡ −1 (mod 11). Taking i-th power,

we have that 10i ≡ (−1)i (mod 11). By properties of congruences, we have that xi · 10i ≡ (−1)ixi

(mod 11), for any i ∈ {−, . . . , n}. Adding up the congruences, we conclude that

x ≡
n∑
i=0

xi · 10i ≡
n∑
i=0

(−1)ixi (mod 11),

as we wanted to show.

Now, let x = 1213141516171819. By the above property, we have 11|x if and only if 11|
∑n

i=0(−1)ixi.

Since

9− 1 + 8− 1 + 7− 1 + 6− 1 + 5− 1 + 4− 1 + 3− 1 + 2− 1 = 36,

and 11 6 | 36, we conclude that x is not divisible by 11.

4) i) We see that the linear congruence 6x ≡ 1 (mod 33) does not have any solution. Indeed, if

there is x solving the congruence, we have that there exists an integer t such that 6x − 1 = 33t.

Notice that 3|33 and 3|6x. Since 1 = 6x − 33t, we would have that 3|1, and this is a contradiction.

Hence our initial assumption must be false, i.e., the linear congruence does not have any solution.

ii). First, we will find the inverse of 81 modulo 256. By the Euclid’s algorithm, we have

256 = 3 · 81 + 13

81 = 6 · 13 + 3

13 = 4 ·+1

3 = 3 · 1 + 0.

Reversing the algorithm, we have

1 = 13 + (−4) · 3

= 13 + (−4)(81 + (−6) · 13)

= (−4) · 81 + 25 · 13

= (−4) · 81 + 25 · (256 + (−3) · 81)

= 25 · 256 + (−79) · 81.
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Hence −79 ≡ 177 (mod 256) is the inverse of 81 modulo 256. Multiplying the equation we get

81x ≡ 1 (mod 256)⇔ 177 · 81x ≡ 177 (mod 256)⇔ x ≡ 177 (mod 256).

Hence the integers x ≡ 177 (mod 256) solve the congruence 81x ≡ 1 (mod 256). �

Exercise/Oppgave

11. Consider the function f(n) = cos(n) + 3. Show that f(n) ∈ Θ(1).

Solution. Recall the definition: f(n) ∈ Θ(g(n)) if and only if there exist positive real numbers C1

and C2 and a positive real number k such that C1|g(n)| ≤ |f(n)| ≤ C2|g(n)|, for all n ≥ k. Note

that, by definition of cosine, we have that

−1 ≤ cos(n) ≤ 1, ∀ n ∈ N.

Adding 3, above inequality is equivalent to

2 ≤ cos(n) + 3 ≤ 4, ∀ n ∈ N ⇔ 2 · |1| ≤ | cos(n) + 3| ≤ 4 · |1|, ∀ n ≥ 1.

Taking C1 = 2, C2 = 4 and k = 1, we conclude that f(n) = cos(n) + 3 is Θ(1), as we wanted to

show. �

Exercise/Oppgave

12. Solve the recurrence relation an = −3an−1−3an−2−an−3 with initial conditions a0 = 1, a1 = −2,

and a2 = −1.

Solution. We see that the characteristic polynomial of the recurrence an + 3an−1 + 3an−2 +an−3 = 0

is given by

p(x) = x3 + 3x2 + 3x+ 1.

Next, we find the roots of the characteristic polynomial:

p(x) = 0 ⇔ x3 + 3x2 + 3x+ 1 = (x+ 1)3 = 0 ⇔ x = −1.

We see that the root r = −1 has multiplicity 3. Then, the solution of the recurrence is given by

an = a(−1)n + bn(−1)n + cn2(−1)n = (−1)n(a+ bn+ cn2)

where the constants a, b and c are determined by the initial conditions. We proceed to find such

constants. Indeed, we have

1 = a0 = (−1)0(a+ b · 0 + c · 02) = a,

−2 = a1 = (−1)1(a+ b · 1 + c · 12) = −a− b− c,

−1 = a2 = (−1)2(a+ b · 2 + c · 22) = a+ 2b+ 4c.

Solving the above system, we find a = 1, b = 3 and c = −2. Hence, the solution for our recurrence is

an = (−1)n(1 + 3n− 2n2), ∀n ≥ 0.

�


