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Exercise/Oppgave

1. A fundamental product of the sets A1, A2, . . . , An is defined to be a set of the form Aε11 ∩ A
ε2
2 ∩

· · · ∩Aεnn , where Aεii is either the set Ai or its complement Ai.

i) List all fundamental products of three sets A1, A2, A3

ii) Find the number of fundamental products of n sets A1, A2, . . . , An

Solution. i) Note that for each εi, we have two choices: either taking the complement or just the set.

Then the fundamental products of A1, A2, A3 are the following eight sets:

A1 ∩A2 ∩A3, A1 ∩A2 ∩A3, A1 ∩A2 ∩A3, A1 ∩A2 ∩A3,

A1 ∩A2 ∩A3, A1 ∩A2 ∩A3, A1 ∩A2 ∩A3, A1 ∩A2 ∩A3.

ii) Now consider n sets A1, . . . , An. Note that a fundamental product is determined by the n-tuple

(ε1, . . . , εn), where εi establishes if we take the set Ai of its complement in order to give a fundamental

product. Since εi has two possible options for i = 1, . . . , n, then the number of fundamental products

of n sets is given by 2n. We can check that the number of fundamental products of three sets is

23 = 8 as we obtained in part i). �

Exercise/Oppgave

2. Show that the function h is surjective if and only if the following holds: for every two functions

g1 and g2 with domain of g1 equal to the domain of g2 equal to the codomain of h, the following right

cancellation is satisfied: if g1h = g2h then g1 = g2.

Solution. ⇒) Assume that h : A → B is surjective. Consider two functions g1, g2 : B → C such

that g1 ◦ h = g2 ◦ h. Take b ∈ B. Since h is surjective, there is a ∈ A such that h(a) = b. By

hypothesis, we have that (g1 ◦h)(a) = (g2 ◦h)(a). By definition of composition of functions, we have

that (g1 ◦ h)(a) = g1(h(a)) = g1(b) and (g2 ◦ h)(a) = g2(b). Hence g1(b) = g2(b). Since this holds for

any b ∈ B, we conclude that g1 = g2.
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⇐) Assume that any two functions g1, g2 : B → C such that g1 ◦h = g2 ◦h imply that g1 = g2. We

shall prove that h : A→ B is surjective. Proceed by contradiction. Assume that h is not surjective,

i.e., there exists b0 ∈ B such that there is no a ∈ A such that h(a) = b0. Consider the particular case

that B = C, g1 = idB, and g2 : B → B is a function such that g2(b) = b for any b ∈ B and b 6= b0,

and g(b0) is defined to be any other element of B different from b0. This is possible in the case that

B has more than one element (if |B| = 1 then obviously any non-empty function h is surjective and

the result follows). It is clear that g1(b) = g2(b) for b 6= b0. Now, since h(a) 6= b0 for any a ∈ A, we

then have that g1(h(a)) = g2(h(a)), for any a ∈ A. Now, by assumption, this implies that g1 = g2

but this is a contradiction since g1(b0) = b0 6= g2(b0). We conclude that our assumption is false.

Therefore h is surjective.

�

Exercise/Oppgave

3. Show that the function f(n) = 5n3 + 7n2 − n+ 7 ∈ O(n3).

Solution. Using the definition, we say that f(n) is O(n3) if there are constants C and k such that

|f(n)| ≤ Cn3 whenever x > k. We will give these constants. Take k = 7. Now, if n > 7, by triangular

inequality and using that n3 > n, we have

|f(n)| ≤ 5n3 + 7n2 + n+ 7 ≤ 5n3 + n3 + n3 + n3 = 8n3.

Taking C = 8, we have that |f(n)| ≤ Cn3 when n > 7. We conclude that f(n) is O(n3) as we wanted

to show. �

Exercise/Oppgave

4. Section/Sektion 4.4: 5b, c, 8, 11a, b, 21, 33, 37a

Solution. • 4.4.5b. Using Euclid’s algorithm, we have

141 = 7 · 19 + 8

19 = 2 · 8 + 3

8 = 2 · 3 + 2

3 = 1 · 2 + 1.

Going backwards, we get that 1 can be written as a linear combination as follows:

1 = 3− 1 · 2

= 3− 1 · (8− 2 · 3)

= 3 · 3 + (−1) · 8

= 3 · (19− 2 · 8) + (−1) · 8

= (−7) · 8 + 3 · 19

= (−7) · (141− 7 · 19) + 3 · 19

= (−7) · 141 + 52 · 19.

Hence 1 = (−7) · 141 + 52 · 19. We conclude that the inverse of 19 modulo 141 is 52.
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• 4.4.5c. Using Euclid’s algorithm, we have

89 = 1 · 55 + 34

55 = 1 · 34 + 21

34 = 1 · 21 + 13

21 = 1 · 13 + 8

13 = 1 · 8 + 5

8 = 1 · 5 + 3

5 = 1 · 3 + 2

3 = 1 · 2 + 1

2 = 2 · 1 + 0.

Going backwards, we get that 1 can be written as a linear combination as follows:

1 = 3− 1 · 2

= 3− (5− 1 · 3)

= 2 · 3 + (−1) · 5

= 2 · (8− 1 · 5) + (−1) · 5

= (−3) · 5 + 2 · 8

= (−3) · (13− 1 · 8) + 2 · 8

= (−3) · 13 + 5 · 8

= (−3) · 13 + 5 · (21− 1 · 13)

= (−8) · 13 + 5 · 21

= (−8) · (34− 1 · 21) + 5 · 21

= (−8) · 34 + 13 · 21

= (−8) · 34 + 13 · (55− 1 · 34)

= (−21) · 34 + 13 · 55

= (−21) · (89− 1 · 55) + 1355

= (−21) · 89 + 34 · 55.

Hence 1 = (−21) · 89 + 34 · 55. We conclude that the inverse of 55 modulo 89 is 34.

• 4.4.8. Assume that d := gcd(a,m) > 1. We will show that the inverse of a modulo m does

not exist. We proceed by contradiction assuming that such inverse exists. This means that

there is an integer r such that ar ≡ 1 (mod m). This is equivalent to say that m|ar− 1, i.e.,

there exists t ∈ Z such that mt = ar− 1. Now, using that d is a common divisor of a and m,

we have that d also divides mt and ar. This implies that d divides 1 = ar −mt and hence

d = 1. This contradicts that d > 1. Then our initial assumption is not true. We conclude

that a does not have an inverse modulo m.

• 4.4.11a. We will solve 19x ≡ 4 (mod 141). Since 52 is the inverse of 19 modulo 141 we have

x ≡ 52 · 19x ≡ 52 · 4 ≡ 208 ≡ 67 (mod 141).
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The solution is given by all the integers x such that x ≡ 67 (mod 141).

• 4.4.11b. We will solve 55x ≡ 34 (mod 89). Since 34 is the inverse of 55 modulo 89, we have

x ≡ 34 · 55x ≡ 34 · 34 ≡ 1156 ≡ 88 (mod 89).

The solution is given by all the integers x such that x ≡ 88 (mod 89).

• 4.4.21. We will find the solution for the system

x ≡ 1 (mod 2), x ≡ 2 (mod 3), x ≡ 3 (mod 5), x ≡ 4 (mod 11).

According to the proof of the Chinese Remainder Theorem, we set

a1 = 1, a2 = 2, a3 = 3, a4 = 4

m1 = 2, m2 = 3, m3 = 5, m4 = 11

m = 2 · 3 · 5 · 11 = 330

M1 = 330/2 = 165, M2 = 330/3 = 110, M3 = 330/5 = 66, M4 = 330/11 = 30

Since gcd(mi,Mi) = 1 for i = 1, 2, 3, 4, we can find the inverse yi mod mi, i.e. yi is an

integer such that Miyi ≡ 1 (mod mi), for i = 1, 2, 3, 4.

– i = 1: 165y1 ≡ y1 ≡ 1 (mod 2). Then we can take y1 = 1.

– i = 2: 110y2 ≡ 2y2 ≡ 1 (mod 3). We can easily see that 2 is the inverse mod 3 of 2.

Multiplying by 2 we have 2(2y2) ≡ 4y2 ≡ y2 ≡ 2 (mod 3). So, we can take y2 = 2.

– i = 3: 66y3 ≡ y3 ≡ 1 (mod 5). So, we can take y3 = 1.

– i = 4: 30y4 ≡ 8y4 ≡ 1 (mod 11). We can easily see that 7 is the inverse mod 11 of 8

since 7 · 8 ≡ 56 ≡ 1 (mod 11). Then we have 7(8y4) ≡ y4 ≡ 7 (mod 3). So, we can take

y4 = 7.

Finally, the solutions to the system are those x such that

x ≡ a1M1y1 + a2M2y2 + a3M3y3 + a4M4y4

≡ 1 · 165 · 1 + 2 · 110 · 2 + 3 · 66 · 1 + 4 · 30 · 7

≡ 1643 ≡ 323 (mod 330).

• 4.4.33. Note that 13 is a primer number such that gcd(7, 13) = 1. By the Fermat’s little

theorem, we have that 712 ≡ 1 (mod 13). Taking 10th-power, we have

(712)10 ≡ 712·10 = 7120 ≡ 110 ≡ 1 (mod 13).

Finally, multiplying by 7 we conclude that

7121 = 7 · 7120 ≡ 7 · 1 ≡ 7 (mod 13).

Hence 7121 mod 13 is equal to 7.

• 4.4.37a. Note that 11 is a primer number such that gcd(2, 11) = 1. By the Fermat’s little

theorem, we have that 210 ≡ 1 (mod 11). Since 2340 = (210)34, we have that

2340 ≡ (210)34 ≡ 134 ≡ 1 (mod 11).

�

Exercise/Oppgave

5. Section/Sektion 4.5: 12
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Solution. The power generator is a method for generating pseudorandom numbers. To use the power

generator, parameters p and d are specified, where p is a prime, d is a positive integer such that p 6 |d,

and a seed x0 is specified. The pseudorandom numbers x1, x2, . . . are generated using the recursive

definition xn+1 ≡ xdn (mod p). We give the the sequence of pseudorandom numbers generated by

the power generator with p = 11, d = 2, and seed x0 = 3.

x1 ≡ 32 ≡ 9 (mod 11),

x2 ≡ 92 ≡ 81 ≡ 4 (mod 11),

x3 ≡ 42 ≡ 16 ≡ 5 (mod 11),

x4 ≡ 52 ≡ 25 ≡ 3 (mod 11).

Hence x0 = x4 and the sequence is periodic. �

Exercise/Oppgave

6. Section/Sektion 4.6: 26

Solution. We first find the decryption exponent d, which is the inverse of e = 17 modulo 52·60 = 3120.

Using Euclid’s algorithm, we find that 2 ·3120−367 ·17 = 1, and our decryption exponent, the inverse

of e, is given by

d ≡ −367 ≡ 2753 (mod 3120).

Consequently, to decrypt a block c, we compute m ≡ cd (mod 3233). Using computational aid, we

have

31852753 ≡ 1816 (mod 3233),

20382753 ≡ 2008 (mod 3233),

24602753 ≡ 1717 (mod 3233),

25502753 ≡ 0411 (mod 3233),

Hence, the decrypted message is 1816 2008 1717 0411. The translation is SQUIRREL. �

Exercise/Oppgave

7. Section/Sektion 6.1: 27, 46

Solution. • 6.1.27. Note that, for each state, the representative can be chosen by one of the

governor and the two senators. This mean that for each state, we have 3 options. Since this

applies to each of the 50 states and the choice of each state is independent of the other states,

the number of ways that the committee can be formed is equal to 350.

• 6.1.46. We count the possible linear order and then we divide by the number of times that

each linear order (i.e. not taking into account that the table is circular) is considered. One

notes that, there are 10 possibilities for the first chair; 9 possibilities for the second chair,

8 possibilities for the third chair, and 7 possibilities for the last chair. Then the number of

linear order is 10 · 9 · 8 · 7. Finally, since the table has four chairs, then every linear order is

counted 4 times. Hence the number of ways to seat the people is

10 · 9 · 8 · 7
4

= 1260.

�
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Exercise/Oppgave

8. Section/Sektion 6.2: 13, 18, 20

Solution. • 6.2.13. Recall that if (a, b, c), (x, y, z) ∈ R3, then the coordinates of the midpoint

of the segment defined by the two points is given by(
a+ x

2
,
b+ y

2
,
c+ z

2

)
.

Then, two points with integer coordinates will have a midpoint with integer coordinates if

and only if, each pair of components, (a, x), (b, y), (c, z) has the same parity.

Take one of the given nine points in R3 with integer coordinates (x, y, z). Look at the first

coordinate of the remaining eight points. By the pigeonhole principle, there are at least four

of such points with the same parity that of x. If there are five of more of such points, take

a subset of five points and forget of the other points; if there are exactly four points, take

the set of the original point (x, y, z) and the four such points. In any case, we have a subset

of five points such that their first coordinate has the same parity that the first coordinate of

the other points. Doing this, we will assure that the first coordinate of the midpoint of any

pair of points will be an integer.

We repeat the argument with the second coordinate. Take any point belonging to the

subset of five points considered above. By the pigeonhole principle, there are at least two

points of the other four points such that the second coordinate of each point has the same

parity that the first point. Again, if there three of more of such points, we take a subset of

three points and forget of the other points; if there are exactly two of such points, take the

set of the first point and the two such points. In any case, we have a subset of three points

such that all the first coordinates have the same parity, and all the second coordinates have

the same parity. Then, the midpoint of any pair of points in this new subset will have integer

coordinates on the first and second components.

Finally, repeating the above argument, by the pigeonhole principle, there are at least two

points such that their third component has the same parity. Since these points are chosen

such that their first coordinates have the same parity, and their second coordinates have

also the same parity, we conclude that the midpoint of these two points will have integer

coordinates, as we wanted to show.

• 6.2.18. The answer is 5. Note that we can divide the set in the integers A = {1, 3, 5, 7} and

B = {9, 11, 13, 15}. Note that for each element in the first set, there exists a unique element

in the second set such that the sum of the two elements is 16. Choosing four elements, it is

possible that our choice is the set A and this subset does not satisfy the desired property.

Now, note that we can divide our set in four subsets:

A1 = {1, 15}, A2 = {3, 13}, A3 = {5, 11}, A4 = {7, 9}.

If we choose a subset C of size 5, by the pigeonhole principle, there exists i ∈ {1, 2, 3, 4} such

that Ai ⊂ C. We conclude that any C of size 5 will have a pair of elements such that their

sum is equal to 16.

• 6.2.20. a) By contradiction. Assume that there are at most four male students and at most

four female students. This implies that there are at most eight students in the discrete

mathematics class. However, this contradicts that the class has nine students. Hence, our

initial assumption must be false and its negation must be true. Such negation is precisely
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that there are at least five male students or at least five female students. This argument is

similar to the proof of the pigeonhole principle.

b) By contradiction. Assume that there are at most two male students and at most six

female students. This implies that there are at most eight students in the discrete mathe-

matics class. However, this contradicts that the class has nine students. Hence, our initial

assumption must be false and its negation must be true. Such negation is precisely that there

are at least three male students or at least seven female students.

�


