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SOLUTIONS — EXERCISE SET 2

Exercise/Oppgave
1. Section/Sektion 2.1: 7, 12, 26

Solution. 2.1.7.

a) Remember that the order and repetition of elements do not matter in order to define a set.
So, since both sets contain the same elements, then the pair of sets are equal.

b) Notice that 1 € {1,{1}} but 1 ¢ {{1}}, then the pair of sets are not equal.

¢) Similarly to the previous item, () € {0} but @ & (). Hence the pair of sets are not equal.

2.1.12. Remember that a € {a} and {a} C {a}. Taking a = (), we have the following:

a) No. Notice that every power set contains the empty set. Since () & (), then ) is not the power
set of a set.

b) Yes. It is the power set of the set {a}.

¢) No. Let us call C = {0,{a},{0,a}}. If C is the power set of a set X, then ) € X. Hence {0}
should be an element of C, but this is not the case.

d) Yes. It is the power set of the set {a,b}.

Exercise/Oppgave
2. Section/Sektion 2.2: 20c,e, 36, 52

Proof. 2.2.20.
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e ¢) Recall that A— B={z|x € AAx ¢ B}. Hence
re(A-B)—C & z€A—-BAxgC
& xeANx g BAz gl
= xc€AANxg&C
& xeA-C,

where we used that p A ¢ = p. Hence (A—B)—-C C A—-C.
®¢)

re(B-—AU(C—-A) & zeB-Avze(C-A
& (xeBANzxgA)NV(@zeCAxgA)
& (xeBVzeO)hzgA (Distributive Law)
& ze€BUCAz g A
& ze(BUC)—A.

Hence (B—A)U(C —A)=(BUC)— A.
2.2.36. By definition of cartesian product, we have
(x,y) e Ax (BUC) & ze€ANyeBUC
< zeAN(yeBvyel)
& (reANyeB)V(xe ANye(C) (Distributive Law)
& (r,y) e AxBV(r,y) e AxC
& (r,y) € (Ax B)U(Ax(C).
Hence A x (BUC) = (A x B)U (A x C). For the case of the intersection we have
(x,y) e Ax(BNC) & ze€AAyeBNC
& zeAN(yeBAyel)
& (xeANyeB)AN(xe ANyeC) (Commutative, Associative and Idempotent Law
& (z,y) € AXBA(x,y) € AxC
& (z,y) € (AxB)N(AxC(C).

Hence A x (BNC)=(Ax B)N(AxC).
2.2.52. We know that [ X UY| = |X|+ |Y|—|X NY]|. Take X = AUB and Y = C and we obtain

JAUBUC|=|AUB|+|C|—-|[(AUuB)NC|.
Note that
(AUB)NC|=|(ANC)u(BNC)|=|AnC|+|BNC|-]|ANBNC|
and |[AU B| = |A| + |B| — |AN B|. Substituting, we conclude
|JAUBUC|=|A|+|B|-|ANB|+|C|-(|AnC|+|BNC|-|ANBNC))

=|A|+|B|+|C|-|ANB|—-|ANC|—|BNC|+|ANnBNC|.
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Exercise/Oppgave
3. Section/Sektion 2.3: 12, 40, 44

Solution. 2.3.12.
a) Yes. Notice that f(m ): fmy=m-1=n-1m=n.
b) No. Notice that f(1) =2 = f(—1) and 1 # —1.
c¢) Yes. Notice that f(m) :f( y=m?=n>em=ninZ.
d) No. Since f(1) =1= f(2), and 1 # 2.
2.3.40. Note that
fog(x)= f(9(z)) = f(cx +d) = a(cx + d) + b = acx + ad + b,
and
go f(x) =g(f(z)) = glax +b) = c(ax + b) + d = acx + bc + d.
Then fog=gof < ad+b=bc+d< dla—1) = b(c—1). This is our desired necessary and

sufficient condition on a,b, ¢ and d.
2.3.44. Consider f : R — R given by f(z) = 2.

a) fH({1}) ={1,-1}
b) fFl{z|0<z<1})={z|0< flz) <1} ={z|0<z<1}U{z| -1 <z <0}
c) x| >4}) ={z|f(x) =2® >4} ={z|z < -2} U {z|z > 2}.

O
Exercise/Oppgave
4. We define the functions:
(1) firR=R, z+— fi(x)=x+2
x
2 R—=R
(2) frR=R, 2 fo(@) = 53

1) Show that fi is injective and surjective. Determine its inverse.
2) Prove or disprove that fo is injective.

Solution. 1) We have that f; is injective. Indeed, if f1(z) = f1(y), then we have that z+2 =y+2 =
x = y. Hence fi is injective. f1 is also surjective. Given = € R, we can take y = x — 2 € R. Then
fily) =y+2=x—2+2=x. Since there exists y € R such that fi(y) = x, then we have that f; is
surjective. The inverse function of f; is given by g : R — R, g(x) = = — 2. Then we have

fiogla)=(x-2)+2=2, gofilz)=(+2)-2=uz.

Hence g is the inverse function of fi.

2) We can show, by algebraic manipulations, that

T Y 1
= = = = = V - —.

fa(z) = fo(y) o e Bt Ay

Hence, since in general x # 1/x, we have that fs is not injective. For instance, we can take f2(2) =

2/5 = f5(1/2), and 2 # 1/2. O

Exercise/Oppgave
5. Section/Sektion 2.4: 12d, 33b,d
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Solution. 2.14.12.d Let a,, = 2(—4)" + 3. Then we have

—3an_1 +dan—z = —3(2(=4)"7 +3) +4(2(-4)"7* +3)
= —3-2(-4)" 442424129
= —=3-2(-=4)"" —2(—4)""1 +3
= —2(-4)"'3+1)+3

= 2(-4)"+3
= ap.
Hence a,, = 2(—4)" 4 3 solves the recurrence relation a,, = —3a,—1 + 4a,—2.
2.4.33.
eb)
2 3 2 3 2 3 2 2
DD @i+37)=> ) 2+ > > 3j=> 8i+» 18=24+54=78
i=0 j=0 i=0 j=0 i=0 j=0 i=0 i=0
e d)
2 3 2 3 2
DD =iy j=) =6i=0+6+12=18.
i=0 j=1 i=0 j=1 i=0
U
Exercise/Oppgave

6. Section/Sektion 2.5: 16

Solution. Let B be a countable set and A C B. We want to show that A is also countable. If B is
finite, it is obvious that A is also finite, then it is countable. Otherwise, assume that B has the same
cardinality as the set of positive integers. Then there exists an injection ¢ : B — N. Consider the
inclusion map ¢ : A — B. Considering the composition function, we have an injection toi: A — N
since composition of injective functions is an injective as well. We conclude that A is countable as
well. O

Exercise/Oppgave
7. Use truth tables to determine which of the statements (if any) are tautologies, which are contra-
dictions:

1)((p—=q) —p)—p 2)~((pA-p)—q, 3)pV(p—-p

(1) It is a tautology, since the last column of the following table only contains 1’s:

pla|p—=q|p—=q —=p|((p—>q) —p) —p
11 1 1 1
1{o| o 1 1
01| 1 0 1
ojo| 1 0 1

(2) It is a contradiction, since the last column of the following table only contains 0’s:
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pla|pA-p|(pA—p)=q|~((pA—p) —q)

1)1 0 1 0

110 0 1 0

01 0 1 0

00 0 1 0

(3) Tt is a tautology, since the last column of the following table only contains 1’s:

plp|p—p|pV(p——p)
110 0 1
0] 1 1 1
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