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Solutions – Exercise Set 2

Exercise/Oppgave

1. Section/Sektion 2.1: 7, 12, 26

Solution. 2.1.7.

a) Remember that the order and repetition of elements do not matter in order to define a set.

So, since both sets contain the same elements, then the pair of sets are equal.

b) Notice that 1 ∈ {1, {1}} but 1 6∈ {{1}}, then the pair of sets are not equal.

c) Similarly to the previous item, ∅ ∈ {∅} but ∅ 6∈ ∅. Hence the pair of sets are not equal.

2.1.12. Remember that a ∈ {a} and {a} ⊂ {a}. Taking a = ∅, we have the following:

a) True.

b) True.

c) False.

d) True.

e) True.

f) True.

g) True.

2.1.26.

a) No. Notice that every power set contains the empty set. Since ∅ 6∈ ∅, then ∅ is not the power

set of a set.

b) Yes. It is the power set of the set {a}.
c) No. Let us call C = {∅, {a}, {∅, a}}. If C is the power set of a set X, then ∅ ∈ X. Hence {∅}

should be an element of C, but this is not the case.

d) Yes. It is the power set of the set {a, b}.

�
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2. Section/Sektion 2.2: 20c,e, 36, 52

Proof. 2.2.20.
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• c) Recall that A−B = {x |x ∈ A ∧ x 6∈ B}. Hence

x ∈ (A−B)− C ⇔ x ∈ A−B ∧ x 6∈ C

⇔ x ∈ A ∧ x 6∈ B ∧ x 6∈ C

⇒ x ∈ A ∧ x 6∈ C

⇔ x ∈ A− C,

where we used that p ∧ q ⇒ p. Hence (A−B)− C ⊂ A− C.

• e)

x ∈ (B −A) ∪ (C −A) ⇔ x ∈ B −A ∨ x ∈ C −A

⇔ (x ∈ B ∧ x 6∈ A) ∨ (x ∈ C ∧ x 6∈ A)

⇔ (x ∈ B ∨ x ∈ C) ∧ x 6∈ A (Distributive Law)

⇔ x ∈ B ∪ C ∧ x 6∈ A

⇔ x ∈ (B ∪ C)−A.

Hence (B −A) ∪ (C −A) = (B ∪ C)−A.

2.2.36. By definition of cartesian product, we have

(x, y) ∈ A× (B ∪ C) ⇔ x ∈ A ∧ y ∈ B ∪ C

⇔ x ∈ A ∧ (y ∈ B ∨ y ∈ C)

⇔ (x ∈ A ∧ y ∈ B) ∨ (x ∈ A ∧ y ∈ C) (Distributive Law)

⇔ (x, y) ∈ A×B ∨ (x, y) ∈ A× C

⇔ (x, y) ∈ (A×B) ∪ (A× C).

Hence A× (B ∪ C) = (A×B) ∪ (A× C). For the case of the intersection we have

(x, y) ∈ A× (B ∩ C) ⇔ x ∈ A ∧ y ∈ B ∩ C

⇔ x ∈ A ∧ (y ∈ B ∧ y ∈ C)

⇔ (x ∈ A ∧ y ∈ B) ∧ (x ∈ A ∧ y ∈ C) (Commutative, Associative and Idempotent Law)

⇔ (x, y) ∈ A×B ∧ (x, y) ∈ A× C

⇔ (x, y) ∈ (A×B) ∩ (A× C).

Hence A× (B ∩ C) = (A×B) ∩ (A× C).

2.2.52. We know that |X ∪ Y | = |X|+ |Y | − |X ∩ Y |. Take X = A ∪B and Y = C and we obtain

|A ∪B ∪ C| = |A ∪B|+ |C| − |(A ∪B) ∩ C|.

Note that

|(A ∪B) ∩ C| = |(A ∩ C) ∪ (B ∩ C)| = |A ∩ C|+ |B ∩ C| − |A ∩B ∩ C|

and |A ∪B| = |A|+ |B| − |A ∩B|. Substituting, we conclude

|A ∪B ∪ C| = |A|+ |B| − |A ∩B|+ |C| − (|A ∩ C|+ |B ∩ C| − |A ∩B ∩ C|)

= |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.
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3. Section/Sektion 2.3: 12, 40, 44

Solution. 2.3.12.

a) Yes. Notice that f(m) = f(n)⇒ m− 1 = n− 1⇔ m = n.

b) No. Notice that f(1) = 2 = f(−1) and 1 6= −1.

c) Yes. Notice that f(m) = f(n)⇒ m3 = n3 ⇔ m = n in Z.

d) No. Since f(1) = 1 = f(2), and 1 6= 2.

2.3.40. Note that

f ◦ g(x) = f(g(x)) = f(cx+ d) = a(cx+ d) + b = acx+ ad+ b,

and

g ◦ f(x) = g(f(x)) = g(ax+ b) = c(ax+ b) + d = acx+ bc+ d.

Then f ◦ g = g ◦ f ⇔ ad + b = bc + d ⇔ d(a − 1) = b(c − 1). This is our desired necessary and

sufficient condition on a, b, c and d.

2.3.44. Consider f : R→ R given by f(x) = x2.

a) f−1({1}) = {1,−1}.
b) f−1({x | 0 < x < 1}) = {x | 0 < f(x) < 1} = {x | 0 < x < 1} ∪ {x | − 1 < x < 0}.
c) f−1({x |x > 4}) = {x | f(x) = x2 > 4} = {x |x < −2} ∪ {x |x > 2}.

�
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4. We define the functions:

f1 : R→ R, x 7→ f1(x) = x+ 2(1)

f2 : R→ R, x 7→ f2(x) =
x

x2 + 1
(2)

1) Show that f1 is injective and surjective. Determine its inverse.

2) Prove or disprove that f2 is injective.

Solution. 1) We have that f1 is injective. Indeed, if f1(x) = f1(y), then we have that x+2 = y+2⇒
x = y. Hence f1 is injective. f1 is also surjective. Given x ∈ R, we can take y = x − 2 ∈ R. Then

f1(y) = y + 2 = x− 2 + 2 = x. Since there exists y ∈ R such that f1(y) = x, then we have that f1 is

surjective. The inverse function of f1 is given by g : R→ R, g(x) = x− 2. Then we have

f1 ◦ g(x) = (x− 2) + 2 = x, g ◦ f1(x) = (x+ 2)− 2 = x.

Hence g is the inverse function of f1.

2) We can show, by algebraic manipulations, that

f2(x) = f2(y)⇒ x

x2 + 1
=

y

y2 + 1
⇒ x = y ∨ x =

1

y
.

Hence, since in general x 6= 1/x, we have that f2 is not injective. For instance, we can take f2(2) =

2/5 = f2(1/2), and 2 6= 1/2. �
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5. Section/Sektion 2.4: 12d, 33b,d
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Solution. 2.14.12.d Let an = 2(−4)n + 3. Then we have

−3an−1 + 4an−2 = −3(2(−4)n−1 + 3) + 4(2(−4)n−2 + 3)

= −3 · 2(−4)n−1 + 4 · 2(−4)n−2 + 12− 9

= −3 · 2(−4)n−1 − 2(−4)n−1 + 3

= −2(−4)n−1(3 + 1) + 3

= 2(−4)n + 3

= an.

Hence an = 2(−4)n + 3 solves the recurrence relation an = −3an−1 + 4an−2.

2.4.33.

• b)

2∑
i=0

3∑
j=0

(2i+ 3j) =
2∑

i=0

3∑
j=0

2i+
2∑

i=0

3∑
j=0

3j =
2∑

i=0

8i+
2∑

i=0

18 = 24 + 54 = 78.

• d)

2∑
i=0

3∑
j=1

ij =

2∑
i=0

i

3∑
j=1

j =

2∑
i=0

= 6i = 0 + 6 + 12 = 18.

�
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6. Section/Sektion 2.5: 16

Solution. Let B be a countable set and A ⊆ B. We want to show that A is also countable. If B is

finite, it is obvious that A is also finite, then it is countable. Otherwise, assume that B has the same

cardinality as the set of positive integers. Then there exists an injection ι : B → N. Consider the

inclusion map i : A → B. Considering the composition function, we have an injection ι ◦ i : A → N
since composition of injective functions is an injective as well. We conclude that A is countable as

well. �
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7. Use truth tables to determine which of the statements (if any) are tautologies, which are contra-

dictions:

1) ((p→ q)→ p)→ p, 2) ¬((p ∧ ¬p)→ q), 3) p ∨ (p→ ¬p)

(1) It is a tautology, since the last column of the following table only contains 1’s:

p q p→ q (p→ q)→ p ((p→ q)→ p)→ p

1 1 1 1 1

1 0 0 1 1

0 1 1 0 1

0 0 1 0 1

(2) It is a contradiction, since the last column of the following table only contains 0’s:
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p q p ∧ ¬p (p ∧ ¬p)→ q ¬((p ∧ ¬p)→ q)

1 1 0 1 0

1 0 0 1 0

0 1 0 1 0

0 0 0 1 0

(3) It is a tautology, since the last column of the following table only contains 1’s:

p ¬p p→ ¬p p ∨ (p→ ¬p)
1 0 0 1

0 1 1 1


