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Exercise/Oppgave

SOLUTIONS EXERCISE SET 10

1. Write down the truth table for (p — q) A (=p — 7).

Solution. The truth table is the following

Exercise/Oppgave

pla|r|plp—=q|p—=r|®=>q9AN(p—7)
tlif1]o] 1 1 1
1l1jo]o]| 1 1 1
tlolt{o| o 1 0
tlololo| o 1 0
oj1]1| 1| 1 1 1
oj1jol 1| 1 0 0
oloj1| 1| 1 1 1
olojo| 1] 1 0 0

2. Give all steps together with reasons showing that (—pV —q) — (p AqAr) is logically equivalent to (pAq).

Solution. Observe that

(=pV=q) = (PAgAT)

Date: October 28, 2020.

~(=pV-q) V(pAgAT)
(pAg)V(pAgAT)
(pAgANT)V(pAgAT)
(pAg) AN (T V)

(PN AT

pPAq

: Definition of conditional

: DeMorgan’s Law and Double negation

: s =s AT for a tautology T

: Distributive Law

: Absorption Law T'V r =T for a tautology T
: s =s AT for a tautology T'.
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3. Use the rules of inference to verify the following argument (give all steps together with reasons)
(-pVaq)—r
r— (sVit)
—s A U
—u — —t
LD
Solution. By the rules of inference, we have
Step Reason
1 | —sA—-u Premise
2 | Conjuctive Simplification from (1)
3| ~u——t Premise
4 |t Modus Ponens from (2) and (3)
5 | —s Conjunctive Simplification from (1)
6 | "sA—t Rule of Conjunction from (4) and (5)
7T|r—(sVt) Premise
8 | ~(sVvt) — —r | Contrapositive from (7)
9 | (=s A—t) — —r | DeMorgan’s Law in (8)
10 | —r Modus Ponens from (6) and (9)
11| (=pVgqg) —r Premise
12 | =r — (p A ~q) | Contrapositive and DeMorgan’s Law in (11)
13| pA—gq Modus Ponens from (10) and (12)
14| p Conjunctive Simplification from (13)
(I
Exercise/Oppgave

4. Let { fn}n>0 be the sequence of Fibonacci numbers. Show that for k > 0, ged(fr, fe+1) = 1.

Solution. By induction on k > 0. For the base case k = 0, observe that ged(fo, f1) = ged(0,1) = 1. For the
induction hypothesis, assume that there exists an integer m > 0 such that ged(fy,, fmr1) = 1. We shall
show that this property also happens for m+ 1. Indeed, let d = ged(fm+1, fm+2). We will show that d = 1.
Indeed, since d is a common divisor of f,,11 and f,4+2, then there exist integers s,t such that f,,+1 = ds

and fp,4+2 = dt. Also, by definition of Fibonacci numbers, we have

dt = fmy2 = fmt1 + fim = ds + fm.

Hence f,, = dt —ds = d(t — s) and we have that d is a divisor of f,. Since d also divides fy,+1, then d is a
common divisor of f,,, and fy,+1. However, by induction hypothesis, ged(fp,, fm+1) = 1 implies that d = 1

that is what we wanted to show. O
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5. Consider sets W, X, Y, Z with respect to the universal set A. Simplify (WNX)U[XN((YNZ)U(YNZ))].
Provide all steps together with justifications from the laws of logic.

Solution. By the laws of logic, we have that
eWnxX)u[Xn((Yn2)uynz))]

& ze(WnX)vze [XN(YN2)Uu(Y nZ)) : Def. of union

& ze(WnX)V[zeXAze (YN2Z2)u(YNn2)) : Def. of intersection

S zeWnX)VzeXA(zeYNZ)Vaze(YNZ)) : Def. of union

S zeWnX)VzeXA((weYAzeZ)V(zeY AxzeZ))| : Def. of intersection

o ze(WnX)V[zeXA(zeYAN(xeZVae2))] : Distributive Law

s ze(WnX)V[zeXA(zeYAN(@eZVadZ))] : Def. of complement

& zeWnNX)VzeXA(zeY Az e A : Complement Law

& zeWnX)V[zeXAzeY] : Identity Law

& (reWAzeX)V[zeXAzeY] : Def. of intersection

& (reXAzeW)VzeXAzeY] : Commutative Law

&S ze XA [:L‘ ceWvze Y] : Distributive Law

& :cEX/\[ WUY] : Def. of union

& reXnN(WUY) : Def. of intersection
Therefore ( WNX)U [ XN (Y NZ)U(YNZ))]=XN(WUY). O
Exercise/Oppgave

6. Compute the number of solutions of the pair of equations
3 5
> ai-6=0, Y a;—15=0, @ >0, i=12345.

Solution. Observe that the above system is equivalent to
ar+ax+a3=6 AN ag4+a5=9, a;>0,i=1,2,3,4,5.

For the first equation, notice that we can interpret a; as the number of objects of type ¢, for ¢ = 1,2, 3,
and the equation is equivalent to count the number of ways that we can take 6 objects of three different
type of objects, i.e. combinations with repetition. This number is given by

C(6+3—1,6) = @ _ 98,

In a similar way, the number of solutions for the second equation is given by

C(9+2-1,9) = <190> =10.

Hence the number of solutions of the given pair of equations is 28 - 10 = 280. O

Exercise/Oppgave
7. Section/Sektion 9.4: 16, 20, 24
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Solution. 16. Determine whether these sequences of vertices are paths in the directed graph:

e a,b,c,e: Yes.

e b e, c,be: No. Observe that we can go from b to e but from e we can only go to d, a, or e, not to
c.

e a,a,b,e,d, e: Yes.

e b.c,e d,a,a,b: No. Observe that we have the path b, ¢, e, d. However, we cannot go from d to a.

e b,c,c,b,e,d,e,d: Yes.

® a,a,b,b,c,c b,e,d: No. Observe that we have tha path a,a,b but we cannot go from b to b.

20. Let R be the relation that contains the pair (a, b) if @ and b are cities such that there is a direct nonstop
airline flight from a to b.

e From definition R? = Ro R. Then (a,b) € R? if and only if there is a city c such that (a,c) € R
and (c,b) € R. Hence (a,b) € R? if and only if there is a flight with exactly one intermediate stop
from a to b.

e In a similar way that above, (a,b) € R? if and only if, there is a flight with exactly two intermediate
stops from a to b.

e Recall that R* =J,,~; R". Then (a,b) € R* if and only if there is n > 1 such that (a,b) € R" and
this is if and only if there is n > 1 such that there is a flight with exactly n — 1 intermediate stops
from a to b. In conclusion, (a,b) € R* if and only if there is a flight from a to b with any number
of intermediate stops.

24. Assume that a relation R is irreflexive, i.e., there is no x such that (z,z) € R. We have that the
relation R? is not necessarily irreflexive. Indeed, consider the relation

R={(1,-1),(-1,1)} c N x N.
This is clearly an irreflexive relation. However
R2 = {(17 ]-)a (_L _1)}

is clearly reflexive and hence not irreflexive. Il

Exercise/Oppgave
8. Section/Sektion 9.5: 9, 16

Solution. 9. Let f be a function with domain A. Define R C A x A by (z,y) € R< f(z) = f(y). We will
show that R is an equivalence relation.

e Reflexivity. Since f(z) = f(x) for all x € A, we clearly have that (z,z) € R for all z € A.

e Symmetry. Since f(z) = f(y) < f(y) = f(z), we clearly have that (z,y) € R < (y,z) € R.

e Transitivity. Assume that (z,y),(y,2) € R. By definition, f(zx) = f(y) and f(y) = f(z). This

implies that f(x) = f(z) and hence (z, z) € R.

From above, we conclude that R is an equivalence relation. Now, for the equivalence classes, note that, if
x € A, the class of z is

[z]={yeA: (z,;y) eR}={yeA: f(z)=f(y)}
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Hence, the equivalence class of R are the maximal subsets of A which common image under f.

16. Define R C N? x N2 the relation ((a,b), (c,d)) € R < ad = bc. We will show that R is an equivalence
relation.
e Reflexivity. Let (a,b) € N2. We clearly have that ab = ba, so ((a,b), (a,b)) € R.
e Symmetry. Observe that ((a,b), (c,d)) € R < ad = bc < ¢b = da < ((¢,d), (a,b)) € R.
o Transitivity. Assume that ((a,b), (¢, d)), ((c,d), (e, f)) € R. Then we have ad = bc and cf = de.
Multiplying the last equation by a, we have cfa = dea = ade. Since ad = bc, we have cfa =
(ad)e = (bc)e. Dividing by ¢, we get af = be. Hence ((a,b), (e, f)) € R.

We conclude that R is an equivalence relation. [l

Exercise/Oppgave
9. Section/Sektion 9.6: 9, 18b, 27, 32

Solution. 9. It is not a partial order since it is not transitive. To see this, notice that there are directed
edges a — b and b — d. If the relation is transitive, there would be a directed edge a — d but this is not
the case.

18b. Recall the order of words: given two words a = aj - - a,, and b = by - - - b, and ¢t = min(m,n), we
say that a < bif ay---a; < by --- by (where this order is the lexicographic order), or aj - --a; = by - - - by and
m < n. Hence the ordered list is the following:

open, opened, opener, opera, operand.

27. Recall that we have to consider the reflexive and transitive property. Hence the relation defined by
the Hasse diagram is

R= {(b7 b)v (av a)) (C? C)v (gag)v (dv d)7 (67 e), (fv f)v <b7g)v (bv d)a (bv e)v (bv f),

(a,9), (a,d), (a,e), (a, f), (¢, 9), (¢, d), (¢, €), (¢, [); (9, ), (9, €), (9, ) }-
32.

a) The maximal elements are the vertices which do not have an outgoing edge: [ and m.
b) The minimal elements are the vertices which do not have an incoming edge: a,b and c.
¢) No. [ and m are maximal but they are not comparable. Hence there is no a greatest element.

)
)
)
d) No. a and b are minimal but they are nor comparable. Hence there is no a least element.
e) The only upper bound of {a,b,c} is [.

f) Since there is only one upper bound of {a,b, c}, then [ is the least upper bound.

g) The only elements below of f are ¢ and f. But since we cannot compare h with f nor ¢, then we

have that there is no lower bound of {f, g, h}.
h) Since the set of lower bounds of {f, g,h} is empty, then the greatest lower bound of {f, g,h} does

not exist.

O
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10. Section/Sektion 10.2: 18, 22, 26a, b, ¢, 57

Solution. 18. We will prove the statement for a finite graph. Assume that G = (V, E) with |V| =n > 2.
By contradiction, assume that there is no pair of vertices with the same degree. Since the degree of any
v € V must belong to the set {0,1,...,n — 1} since the graph is simple, we must have that

{deg(v1), deg(v2),...,deg(vn)} = {0,1,...,n — 1}

if V.= {v1,v2,...,v,}. This implies that there exist v,w € V such that deg(v) = 0 and deg(w) =n — 1.
However, this is a contradiction, since deg(v) = 0 implies that v is isolated, and deg(w) = n — 1 implies
that w is connected with any other element of V', in particular with v. This contradicts with the fact that
v is isolated. We conclude that there exist v,w € V' with v # w and deg(v) = deg(w).

22. The graph is bipartite. We can apply Theorem 4 and see that by coloring a, c with blue and b,d, e
with red, we will have no adjacent vertices with the same color. Therefore the bipartition is (V1, Va) with
Vi ={a,c} and V5 = {b,d, e}.

26. For which values of n are these graphs bipartite?

e K,. Forn =1,2, K, is clearly bipartite. For n > 3, K, is not bipartite. By contradiction, assume
that (V4, V3) is a bipartition of K, for a fixed n > 3. Then, by the pigeonhole principle, there is one
of V1 or Vo with at least two different vertices v and w. However, since K, is complete, then there
is an edge between v and w, contradicting that both vertices belong to the same V; (remember that
the elements of V; are not connected, for i = 1,2). Hence K, is not bipartite for n > 3.

e (,. We have that C, is bipartite if n = 2k for some k > 1. Indeed, if Cy is the cycle v; ~
Vg ~ U3 ~ -+ ~ vy ~ v1. Then consider Vi = {vy,vs,...,v95_1} and Vo = {vg,vg,...,v9}. It is
clear that the vertices in V; are not connected, for i = 1,2, Vi N Vo = 0, and V3 U Vo = V(Cqy).
Hence (V1,V3) is a bipartition of Cy;. On the other hand, C), is not bipartite if n = 2k + 1 for
some k > 0. By contradiction, assume that there is a bipartition (V3,V3) of the vertex set of
Copy1 = {v1 ~ vg ~ vz ~ -+ ~ w911 ~ v1}. By the pigeonhole principle, one of V; or V5 has at
least k + 1 vertices. Without loss of generality, assume that V; has at least k + 1 vertices. Notice
that V1 cannot contain all the v; for ¢ odd, since vy ~ vor11. Hence, even in the extremal case that
V1] = kK + 1, we have that there exists j such that vy; € V;. By definition of bipartition, va;_1
and vgj41 € Vo. The first condition implies that vo;_2 € Vi, so vgj_3 € V5 and so on. Repeating
this argument, we have that vi,vs,...,v2j1 € Vo and v2,...,v2; € V4. Using the same argument
starting with vo; 11 € Vo, we have that vg;i1,..., v 41 € Vo. However, this is a contradiction since
v1, Vogt1 € Vo and vy ~ wvor41. Therefore C), is not bipartite for n = 2k + 1.

e W,,. We have that W,, is not bipartite for any n > 3. By contradiction, if W,, were bipartite with
bipartition (Vi, V2), then there exists ¢ € {1,2} such that V; contains the central vertex vy of W,.
Since this vertex is connected with any other vertex of W,,, then any other vertex different than vy
belongs to Vj, and hence V; = {vg} and the other Vj; contains all the remaining vertices. However,
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these vertices form a cycle and clearly we have connections between vertices in V. This contradicts
the definition of bipartition. Hence W, is not bipartite for any n > 3.
57. How many vertices does a regular graph of degree four with 10 edges have? Let G(V, E) be a regular
graph of degree four with 10 edges. By the handshaking lemma, we have
20=2|E| =) deg(v) =) 4=4V| =|V|=20/4=5.
veV veV

Hence the graph has 5 vertices. (I



