TMA4140 DISKRET MATEMATIKK – DISCRETE MATHEMATICS NTNU, HØST/FALL2020

SOLUTIONS EXERCISE SET 10

Exercise/Oppgave

1. Write down the truth table for $(p \to q) \land (\neg p \to r)$.

Solution. The truth table is the following

p	q	r	$\neg p$	$p \rightarrow q$	$\neg p \rightarrow r$	$(p \to q) \land (\neg p \to r)$
1	1	1	0	1	1	1
1	1	0	0	1	1	1
1	0	1	0	0	1	0
1	0	0	0	0	1	0
0	1	1	1	1	1	1
0	1	0	1	1	0	0
0	0	1	1	1	1	1
0	0	0	1	1	0	0

Exercise/Oppgave

2. Give all steps together with reasons showing that $(\neg p \lor \neg q) \to (p \land q \land r)$ is logically equivalent to $(p \land q)$.

Solution. Observe that

 $\begin{array}{lll} (\neg p \vee \neg q) \to (p \wedge q \wedge r) & \equiv & \neg (\neg p \vee \neg q) \vee (p \wedge q \wedge r) & : \text{ Definition of conditional} \\ & \equiv & (p \wedge q) \vee (p \wedge q \wedge r) & : \text{ DeMorgan's Law and Double negation} \\ & \equiv & (p \wedge q \wedge T) \vee (p \wedge q \wedge r) & : s \equiv s \wedge T \text{ for a tautology } T \\ & \equiv & (p \wedge q) \wedge (T \vee r) & : \text{ Distributive Law} \\ & \equiv & (p \wedge q) \wedge T & : \text{ Absorption Law } T \vee r \equiv T \text{ for a tautology } T \\ & \equiv & p \wedge q & : s \equiv s \wedge T \text{ for a tautology } T. \end{array}$

1

Date: October 28, 2020.

Exercise/Oppgave

3. Use the rules of inference to verify the following argument (give all steps together with reasons)

$$(\neg p \lor q) \to r$$

$$r \to (s \lor t)$$

$$\neg s \land \neg u$$

$$\neg u \to \neg t$$

$$\therefore p$$

Solution. By the rules of inference, we have

	Step	Reason
1	$\neg s \wedge \neg u$	Premise
2	$\neg u$	Conjuctive Simplification from (1)
3	$\neg u \rightarrow \neg t$	Premise
4	$\neg t$	Modus Ponens from (2) and (3)
5	$\neg s$	Conjunctive Simplification from (1)
6	$\neg s \wedge \neg t$	Rule of Conjunction from (4) and (5)
7	$r \to (s \lor t)$	Premise
8		Contrapositive from (7)
9	$(\neg s \land \neg t) \to \neg r$	DeMorgan's Law in (8)
10	$\neg r$	Modus Ponens from (6) and (9)
11	$(\neg p \lor q) \to r$	Premise
12	$\neg r \to (p \land \neg q)$	Contrapositive and DeMorgan's Law in (11)
13	$p \land \neg q$	Modus Ponens from (10) and (12)
14	p	Conjunctive Simplification from (13)

Exercise/Oppgave

4. Let $\{f_n\}_{n\geq 0}$ be the sequence of Fibonacci numbers. Show that for $k\geq 0$, $\gcd(f_k,f_{k+1})=1$.

Solution. By induction on $k \ge 0$. For the base case k = 0, observe that $\gcd(f_0, f_1) = \gcd(0, 1) = 1$. For the induction hypothesis, assume that there exists an integer $m \ge 0$ such that $\gcd(f_m, f_{m+1}) = 1$. We shall show that this property also happens for m+1. Indeed, let $d = \gcd(f_{m+1}, f_{m+2})$. We will show that d = 1. Indeed, since d is a common divisor of f_{m+1} and f_{m+2} , then there exist integers s, t such that $f_{m+1} = ds$ and $f_{m+2} = dt$. Also, by definition of Fibonacci numbers, we have

$$dt = f_{m+2} = f_{m+1} + f_m = ds + f_m.$$

Hence $f_m = dt - ds = d(t - s)$ and we have that d is a divisor of f_m . Since d also divides f_{m+1} , then d is a common divisor of f_m and f_{m+1} . However, by induction hypothesis, $gcd(f_m, f_{m+1}) = 1$ implies that d = 1 that is what we wanted to show.

Exercise/Oppgave

5. Consider sets W, X, Y, Z with respect to the universal set A. Simplify $(W \cap X) \cup [X \cap ((Y \cap Z) \cup (Y \cap \overline{Z}))]$. Provide all steps together with justifications from the laws of logic.

Solution. By the laws of logic, we have that

$$x \in (W \cap X) \cup \left[X \cap \left((Y \cap Z) \cup (Y \cap \overline{Z})\right)\right]$$

$$\Leftrightarrow x \in (W \cap X) \vee x \in \left[X \cap \left((Y \cap Z) \cup (Y \cap \overline{Z})\right)\right] \qquad : \text{ Def. of union}$$

$$\Leftrightarrow x \in (W \cap X) \vee \left[x \in X \wedge x \in \left((Y \cap Z) \cup (Y \cap \overline{Z})\right)\right] \qquad : \text{ Def. of intersection}$$

$$\Leftrightarrow x \in (W \cap X) \vee \left[x \in X \wedge \left(x \in (Y \cap Z) \vee x \in (Y \cap \overline{Z})\right)\right] \qquad : \text{ Def. of union}$$

$$\Leftrightarrow x \in (W \cap X) \vee \left[x \in X \wedge \left((x \in Y \wedge x \in Z) \vee (x \in Y \wedge x \in \overline{Z})\right)\right] \qquad : \text{ Def. of intersection}$$

$$\Leftrightarrow x \in (W \cap X) \vee \left[x \in X \wedge \left(x \in Y \wedge (x \in Z \vee x \notin \overline{Z})\right)\right] \qquad : \text{ Def. of complement}$$

$$\Leftrightarrow x \in (W \cap X) \vee \left[x \in X \wedge \left(x \in Y \wedge (x \in Z \vee x \notin Z)\right)\right] \qquad : \text{ Def. of complement}$$

$$\Leftrightarrow x \in (W \cap X) \vee \left[x \in X \wedge (x \in Y \wedge x \in A)\right] \qquad : \text{ Complement Law}$$

$$\Leftrightarrow x \in (W \cap X) \vee \left[x \in X \wedge x \in Y\right] \qquad : \text{ Identity Law}$$

$$\Leftrightarrow x \in (W \cap X) \vee \left[x \in X \wedge x \in Y\right] \qquad : \text{ Def. of intersection}$$

$$\Leftrightarrow (x \in W \wedge x \in X) \vee \left[x \in X \wedge x \in Y\right] \qquad : \text{ Commutative Law}$$

$$\Leftrightarrow x \in X \wedge \left[x \in W \vee x \in Y\right] \qquad : \text{ Distributive Law}$$

$$\Leftrightarrow x \in X \wedge \left[x \in W \vee x \in Y\right] \qquad : \text{ Def. of union}$$

$$\Leftrightarrow x \in X \wedge \left[x \in W \vee Y\right] \qquad : \text{ Def. of union}$$

$$\Leftrightarrow x \in X \wedge \left[x \in W \cup Y\right] \qquad : \text{ Def. of intersection}$$

Therefore $(W \cap X) \cup [X \cap ((Y \cap Z) \cup (Y \cap \overline{Z}))] = X \cap (W \cup Y)$.

Exercise/Oppgave

6. Compute the number of solutions of the pair of equations

$$\sum_{i=1}^{3} a_i - 6 = 0, \quad \sum_{i=1}^{5} a_i - 15 = 0, \quad a_i \ge 0, \ i = 1, 2, 3, 4, 5.$$

Solution. Observe that the above system is equivalent to

$$a_1 + a_2 + a_3 = 6$$
 \land $a_4 + a_5 = 9$, $a_i \ge 0$, $i = 1, 2, 3, 4, 5$.

For the first equation, notice that we can interpret a_i as the number of objects of type i, for i = 1, 2, 3, and the equation is equivalent to count the number of ways that we can take 6 objects of three different type of objects, i.e. combinations with repetition. This number is given by

$$C(6+3-1,6) = \binom{8}{6} = 28.$$

In a similar way, the number of solutions for the second equation is given by

$$C(9+2-1,9) = {10 \choose 9} = 10.$$

Hence the number of solutions of the given pair of equations is $28 \cdot 10 = 280$.

Exercise/Oppgave

7. Section/Sektion 9.4: 16, 20, 24

Solution. 16. Determine whether these sequences of vertices are paths in the directed graph:

- a, b, c, e: Yes.
- b, e, c, b, e: No. Observe that we can go from b to e but from e we can only go to d, a, or e, not to c.
- a, a, b, e, d, e: Yes.
- b, c, e, d, a, a, b: No. Observe that we have the path b, c, e, d. However, we cannot go from d to a.
- b, c, c, b, e, d, e, d: Yes.
- a, a, b, b, c, c, b, e, d: No. Observe that we have the path a, a, b but we cannot go from b to b.

20. Let R be the relation that contains the pair (a, b) if a and b are cities such that there is a direct nonstop airline flight from a to b.

- From definition $R^2 = R \circ R$. Then $(a, b) \in R^2$ if and only if there is a city c such that $(a, c) \in R$ and $(c, b) \in R$. Hence $(a, b) \in R^2$ if and only if there is a flight with exactly one intermediate stop from a to b.
- In a similar way that above, $(a, b) \in \mathbb{R}^3$ if and only if, there is a flight with exactly two intermediate stops from a to b.
- Recall that $R^* = \bigcup_{n \geq 1} R^n$. Then $(a, b) \in R^*$ if and only if there is $n \geq 1$ such that $(a, b) \in R^n$ and this is if and only if there is $n \geq 1$ such that there is a flight with exactly n-1 intermediate stops from a to b. In conclusion, $(a, b) \in R^*$ if and only if there is a flight from a to b with any number of intermediate stops.
- 24. Assume that a relation R is irreflexive, i.e., there is no x such that $(x, x) \in R$. We have that the relation R^2 is not necessarily irreflexive. Indeed, consider the relation

$$R = \{(1, -1), (-1, 1)\} \subset \mathbb{N} \times \mathbb{N}.$$

This is clearly an irreflexive relation. However

$$R^2 = \{(1,1), (-1,-1)\}$$

is clearly reflexive and hence not irreflexive.

Exercise/Oppgave

8. Section/Sektion 9.5: *9*, *16*

Solution. 9. Let f be a function with domain A. Define $R \subseteq A \times A$ by $(x,y) \in R \Leftrightarrow f(x) = f(y)$. We will show that R is an equivalence relation.

- Reflexivity. Since f(x) = f(x) for all $x \in A$, we clearly have that $(x, x) \in R$ for all $x \in A$.
- Symmetry. Since $f(x) = f(y) \Leftrightarrow f(y) = f(x)$, we clearly have that $(x, y) \in R \Leftrightarrow (y, x) \in R$.
- Transitivity. Assume that $(x,y),(y,z)\in R$. By definition, f(x)=f(y) and f(y)=f(z). This implies that f(x)=f(z) and hence $(x,z)\in R$.

From above, we conclude that R is an equivalence relation. Now, for the equivalence classes, note that, if $x \in A$, the class of x is

$$[x] = \{ y \in A : (x, y) \in R \} = \{ y \in A : f(x) = f(y) \}.$$

Hence, the equivalence class of R are the maximal subsets of A which common image under f.

- 16. Define $R \subset \mathbb{N}^2 \times \mathbb{N}^2$ the relation $((a,b),(c,d)) \in R \Leftrightarrow ad = bc$. We will show that R is an equivalence relation.
 - Reflexivity. Let $(a,b) \in \mathbb{N}^2$. We clearly have that ab = ba, so $((a,b),(a,b)) \in R$.
 - Symmetry. Observe that $((a,b),(c,d)) \in R \Leftrightarrow ad = bc \Leftrightarrow cb = da \Leftrightarrow ((c,d),(a,b)) \in R$.
 - Transitivity. Assume that $((a,b),(c,d)),((c,d),(e,f)) \in R$. Then we have ad = bc and cf = de. Multiplying the last equation by a, we have cfa = dea = ade. Since ad = bc, we have cfa = (ad)e = (bc)e. Dividing by c, we get af = be. Hence $((a,b),(e,f)) \in R$.

We conclude that R is an equivalence relation.

Exercise/Oppgave

9. Section/Sektion 9.6: 9, 18b, 27, 32

Solution. 9. It is not a partial order since it is not transitive. To see this, notice that there are directed edges $a \to b$ and $b \to d$. If the relation is transitive, there would be a directed edge $a \to d$ but this is not the case.

18b. Recall the order of words: given two words $a = a_1 \cdots a_m$ and $b = b_1 \cdots b_n$ and $t = \min(m, n)$, we say that $a \le b$ if $a_1 \cdots a_t \le b_1 \cdots b_t$ (where this order is the lexicographic order), or $a_1 \cdots a_t = b_1 \cdots b_t$ and m < n. Hence the ordered list is the following:

open, opened, opener, opera, operand.

27. Recall that we have to consider the reflexive and transitive property. Hence the relation defined by the Hasse diagram is

$$R = \{(b,b), (a,a), (c,c), (g,g), (d,d), (e,e), (f,f), (b,g), (b,d), (b,e), (b,f), (a,g), (a,d), (a,e), (a,f), (c,g), (c,d), (c,e), (c,f), (g,d), (g,e), (g,f)\}.$$

32.

- a) The maximal elements are the vertices which do not have an outgoing edge: l and m.
- b) The minimal elements are the vertices which do not have an incoming edge: a, b and c.
- c) No. l and m are maximal but they are not comparable. Hence there is no a greatest element.
- d) No. a and b are minimal but they are nor comparable. Hence there is no a least element.
- e) The only upper bound of $\{a, b, c\}$ is l.
- f) Since there is only one upper bound of $\{a, b, c\}$, then l is the least upper bound.
- g) The only elements below of f are c and f. But since we cannot compare h with f nor c, then we have that there is no lower bound of $\{f, g, h\}$.
- h) Since the set of lower bounds of $\{f, g, h\}$ is empty, then the greatest lower bound of $\{f, g, h\}$ does not exist.

Exercise/Oppgave

10. Section/Sektion 10.2: 18, 22, 26a, b, c, 57

Solution. 18. We will prove the statement for a finite graph. Assume that G = (V, E) with $|V| = n \ge 2$. By contradiction, assume that there is no pair of vertices with the same degree. Since the degree of any $v \in V$ must belong to the set $\{0, 1, \ldots, n-1\}$ since the graph is simple, we must have that

$$\{\deg(v_1), \deg(v_2), \dots, \deg(v_n)\} = \{0, 1, \dots, n-1\}$$

if $V = \{v_1, v_2, \dots, v_n\}$. This implies that there exist $v, w \in V$ such that $\deg(v) = 0$ and $\deg(w) = n - 1$. However, this is a contradiction, since $\deg(v) = 0$ implies that v is isolated, and $\deg(w) = n - 1$ implies that w is connected with any other element of V, in particular with v. This contradicts with the fact that v is isolated. We conclude that there exist $v, w \in V$ with $v \neq w$ and $\deg(v) = \deg(w)$.

22. The graph is bipartite. We can apply Theorem 4 and see that by coloring a, c with blue and b, d, e with red, we will have no adjacent vertices with the same color. Therefore the bipartition is (V_1, V_2) with $V_1 = \{a, c\}$ and $V_2 = \{b, d, e\}$.

26. For which values of n are these graphs bipartite?

- K_n . For n = 1, 2, K_n is clearly bipartite. For $n \geq 3$, K_n is not bipartite. By contradiction, assume that (V_1, V_2) is a bipartition of K_n for a fixed $n \geq 3$. Then, by the pigeonhole principle, there is one of V_1 or V_2 with at least two different vertices v and w. However, since K_n is complete, then there is an edge between v and w, contradicting that both vertices belong to the same V_i (remember that the elements of V_i are not connected, for i = 1, 2). Hence K_n is not bipartite for $n \geq 3$.
- C_n . We have that C_n is bipartite if n=2k for some $k\geq 1$. Indeed, if C_{2k} is the cycle $v_1\sim v_2\sim v_3\sim \cdots \sim v_{2k}\sim v_1$. Then consider $V_1=\{v_1,v_3,\ldots,v_{2k-1}\}$ and $V_2=\{v_2,v_4,\ldots,v_{2k}\}$. It is clear that the vertices in V_i are not connected, for $i=1,2,\ V_1\cap V_2=\emptyset$, and $V_1\cup V_2=V(C_{2k})$. Hence (V_1,V_2) is a bipartition of C_{2k} . On the other hand, C_n is not bipartite if n=2k+1 for some $k\geq 0$. By contradiction, assume that there is a bipartition (V_1,V_2) of the vertex set of $C_{2k+1}=\{v_1\sim v_2\sim v_3\sim \cdots \sim v_{2k+1}\sim v_1\}$. By the pigeonhole principle, one of V_1 or V_2 has at least k+1 vertices. Without loss of generality, assume that V_1 has at least k+1 vertices. Notice that V_1 cannot contain all the v_i for i odd, since $v_1\sim v_{2k+1}$. Hence, even in the extremal case that $|V_1|=k+1$, we have that there exists j such that $v_{2j}\in V_1$. By definition of bipartition, v_{2j-1} and $v_{2j+1}\in V_2$. The first condition implies that $v_{2j-2}\in V_1$, so $v_{2j-3}\in V_2$ and so on. Repeating this argument, we have that $v_1,v_3,\ldots,v_{2j-1}\in V_2$ and $v_2,\ldots,v_{2j}\in V_1$. Using the same argument starting with $v_{2j+1}\in V_2$, we have that $v_{2j+1},\ldots,v_{2k+1}\in V_2$. However, this is a contradiction since $v_1,v_{2k+1}\in V_2$ and $v_1\sim v_{2k+1}$. Therefore C_n is not bipartite for n=2k+1.
- W_n . We have that W_n is not bipartite for any $n \geq 3$. By contradiction, if W_n were bipartite with bipartition (V_1, V_2) , then there exists $i \in \{1, 2\}$ such that V_i contains the central vertex v_0 of W_n . Since this vertex is connected with any other vertex of W_n , then any other vertex different than v_0 belongs to V_i , and hence $V_i = \{v_0\}$ and the other V_i contains all the remaining vertices. However,

these vertices form a cycle and clearly we have connections between vertices in V_j . This contradicts the definition of bipartition. Hence W_n is not bipartite for any $n \geq 3$.

57. How many vertices does a regular graph of degree four with 10 edges have? Let G(V, E) be a regular graph of degree four with 10 edges. By the handshaking lemma, we have

$$20 = 2|E| = \sum_{v \in V} \deg(v) = \sum_{v \in V} 4 = 4|V| \quad \Rightarrow |V| = 20/4 = 5.$$

Hence the graph has 5 vertices.