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Exercise/Oppgave

1. Write down the truth table for (p→ q) ∧ (¬p→ r).

Solution. The truth table is the following

p q r ¬p p→ q ¬p→ r (p→ q) ∧ (¬p→ r)

1 1 1 0 1 1 1

1 1 0 0 1 1 1

1 0 1 0 0 1 0

1 0 0 0 0 1 0

0 1 1 1 1 1 1

0 1 0 1 1 0 0

0 0 1 1 1 1 1

0 0 0 1 1 0 0

�

Exercise/Oppgave

2. Give all steps together with reasons showing that (¬p∨¬q)→ (p∧ q∧r) is logically equivalent to (p∧ q).

Solution. Observe that

(¬p ∨ ¬q)→ (p ∧ q ∧ r) ≡ ¬(¬p ∨ ¬q) ∨ (p ∧ q ∧ r) : Definition of conditional

≡ (p ∧ q) ∨ (p ∧ q ∧ r) : DeMorgan’s Law and Double negation

≡ (p ∧ q ∧ T ) ∨ (p ∧ q ∧ r) : s ≡ s ∧ T for a tautology T

≡ (p ∧ q) ∧ (T ∨ r) : Distributive Law

≡ (p ∧ q) ∧ T : Absorption Law T ∨ r ≡ T for a tautology T

≡ p ∧ q : s ≡ s ∧ T for a tautology T .

�
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Exercise/Oppgave

3. Use the rules of inference to verify the following argument (give all steps together with reasons)

(¬p ∨ q)→ r

r → (s ∨ t)

¬s ∧ ¬u
¬u→ ¬t
∴ p

Solution. By the rules of inference, we have

Step Reason

1 ¬s ∧ ¬u Premise

2 ¬u Conjuctive Simplification from (1)

3 ¬u→ ¬t Premise

4 ¬t Modus Ponens from (2) and (3)

5 ¬s Conjunctive Simplification from (1)

6 ¬s ∧ ¬t Rule of Conjunction from (4) and (5)

7 r → (s ∨ t) Premise

8 ¬(s ∨ t)→ ¬r Contrapositive from (7)

9 (¬s ∧ ¬t)→ ¬r DeMorgan’s Law in (8)

10 ¬r Modus Ponens from (6) and (9)

11 (¬p ∨ q)→ r Premise

12 ¬r → (p ∧ ¬q) Contrapositive and DeMorgan’s Law in (11)

13 p ∧ ¬q Modus Ponens from (10) and (12)

14 p Conjunctive Simplification from (13)

�

Exercise/Oppgave

4. Let {fn}n≥0 be the sequence of Fibonacci numbers. Show that for k ≥ 0, gcd(fk, fk+1) = 1.

Solution. By induction on k ≥ 0. For the base case k = 0, observe that gcd(f0, f1) = gcd(0, 1) = 1. For the

induction hypothesis, assume that there exists an integer m ≥ 0 such that gcd(fm, fm+1) = 1. We shall

show that this property also happens for m+1. Indeed, let d = gcd(fm+1, fm+2). We will show that d = 1.

Indeed, since d is a common divisor of fm+1 and fm+2, then there exist integers s, t such that fm+1 = ds

and fm+2 = dt. Also, by definition of Fibonacci numbers, we have

dt = fm+2 = fm+1 + fm = ds + fm.

Hence fm = dt− ds = d(t− s) and we have that d is a divisor of fm. Since d also divides fm+1, then d is a

common divisor of fm and fm+1. However, by induction hypothesis, gcd(fm, fm+1) = 1 implies that d = 1

that is what we wanted to show. �
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Exercise/Oppgave

5. Consider sets W,X, Y, Z with respect to the universal set A. Simplify (W∩X)∪
[
X∩

(
(Y ∩Z)∪(Y ∩Z)

)]
.

Provide all steps together with justifications from the laws of logic.

Solution. By the laws of logic, we have that

x ∈ (W ∩X) ∪
[
X ∩

(
(Y ∩ Z) ∪ (Y ∩ Z)

)]
⇔ x ∈ (W ∩X) ∨ x ∈

[
X ∩

(
(Y ∩ Z) ∪ (Y ∩ Z)

)]
: Def. of union

⇔ x ∈ (W ∩X) ∨
[
x ∈ X ∧ x ∈

(
(Y ∩ Z) ∪ (Y ∩ Z)

)]
: Def. of intersection

⇔ x ∈ (W ∩X) ∨
[
x ∈ X ∧

(
x ∈ (Y ∩ Z) ∨ x ∈ (Y ∩ Z)

)]
: Def. of union

⇔ x ∈ (W ∩X) ∨
[
x ∈ X ∧

(
(x ∈ Y ∧ x ∈ Z) ∨ (x ∈ Y ∧ x ∈ Z)

)]
: Def. of intersection

⇔ x ∈ (W ∩X) ∨
[
x ∈ X ∧

(
x ∈ Y ∧ (x ∈ Z ∨ x ∈ Z)

)]
: Distributive Law

⇔ x ∈ (W ∩X) ∨
[
x ∈ X ∧

(
x ∈ Y ∧ (x ∈ Z ∨ x 6∈ Z)

)]
: Def. of complement

⇔ x ∈ (W ∩X) ∨
[
x ∈ X ∧

(
x ∈ Y ∧ x ∈ A

)]
: Complement Law

⇔ x ∈ (W ∩X) ∨
[
x ∈ X ∧ x ∈ Y

]
: Identity Law

⇔ (x ∈W ∧ x ∈ X) ∨
[
x ∈ X ∧ x ∈ Y

]
: Def. of intersection

⇔ (x ∈ X ∧ x ∈W ) ∨
[
x ∈ X ∧ x ∈ Y

]
: Commutative Law

⇔ x ∈ X ∧
[
x ∈W ∨ x ∈ Y

]
: Distributive Law

⇔ x ∈ X ∧
[
x ∈ (W ∪ Y )

]
: Def. of union

⇔ x ∈ X ∩ (W ∪ Y ) : Def. of intersection

Therefore (W ∩X) ∪
[
X ∩

(
(Y ∩ Z) ∪ (Y ∩ Z)

)]
= X ∩ (W ∪ Y ). �

Exercise/Oppgave

6. Compute the number of solutions of the pair of equations

3∑
i=1

ai − 6 = 0,
5∑

i=1

ai − 15 = 0, ai ≥ 0, i = 1, 2, 3, 4, 5.

Solution. Observe that the above system is equivalent to

a1 + a2 + a3 = 6 ∧ a4 + a5 = 9, ai ≥ 0, i = 1, 2, 3, 4, 5.

For the first equation, notice that we can interpret ai as the number of objects of type i, for i = 1, 2, 3,

and the equation is equivalent to count the number of ways that we can take 6 objects of three different

type of objects, i.e. combinations with repetition. This number is given by

C(6 + 3− 1, 6) =

(
8

6

)
= 28.

In a similar way, the number of solutions for the second equation is given by

C(9 + 2− 1, 9) =

(
10

9

)
= 10.

Hence the number of solutions of the given pair of equations is 28 · 10 = 280. �

Exercise/Oppgave

7. Section/Sektion 9.4: 16, 20, 24
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Solution. 16. Determine whether these sequences of vertices are paths in the directed graph:

• a, b, c, e: Yes.

• b, e, c, b, e: No. Observe that we can go from b to e but from e we can only go to d, a, or e, not to

c.

• a, a, b, e, d, e: Yes.

• b, c, e, d, a, a, b: No. Observe that we have the path b, c, e, d. However, we cannot go from d to a.

• b, c, c, b, e, d, e, d: Yes.

• a, a, b, b, c, c, b, e, d: No. Observe that we have tha path a, a, b but we cannot go from b to b.

20. Let R be the relation that contains the pair (a, b) if a and b are cities such that there is a direct nonstop

airline flight from a to b.

• From definition R2 = R ◦ R. Then (a, b) ∈ R2 if and only if there is a city c such that (a, c) ∈ R

and (c, b) ∈ R. Hence (a, b) ∈ R2 if and only if there is a flight with exactly one intermediate stop

from a to b.

• In a similar way that above, (a, b) ∈ R3 if and only if, there is a flight with exactly two intermediate

stops from a to b.

• Recall that R∗ =
⋃

n≥1 R
n. Then (a, b) ∈ R∗ if and only if there is n ≥ 1 such that (a, b) ∈ Rn and

this is if and only if there is n ≥ 1 such that there is a flight with exactly n− 1 intermediate stops

from a to b. In conclusion, (a, b) ∈ R∗ if and only if there is a flight from a to b with any number

of intermediate stops.

24. Assume that a relation R is irreflexive, i.e., there is no x such that (x, x) ∈ R. We have that the

relation R2 is not necessarily irreflexive. Indeed, consider the relation

R = {(1,−1), (−1, 1)} ⊂ N× N.

This is clearly an irreflexive relation. However

R2 = {(1, 1), (−1,−1)}

is clearly reflexive and hence not irreflexive. �

Exercise/Oppgave

8. Section/Sektion 9.5: 9, 16

Solution. 9. Let f be a function with domain A. Define R ⊆ A×A by (x, y) ∈ R⇔ f(x) = f(y). We will

show that R is an equivalence relation.

• Reflexivity. Since f(x) = f(x) for all x ∈ A, we clearly have that (x, x) ∈ R for all x ∈ A.

• Symmetry. Since f(x) = f(y)⇔ f(y) = f(x), we clearly have that (x, y) ∈ R⇔ (y, x) ∈ R.

• Transitivity. Assume that (x, y), (y, z) ∈ R. By definition, f(x) = f(y) and f(y) = f(z). This

implies that f(x) = f(z) and hence (x, z) ∈ R.

From above, we conclude that R is an equivalence relation. Now, for the equivalence classes, note that, if

x ∈ A, the class of x is

[x] = {y ∈ A : (x, y) ∈ R} = {y ∈ A : f(x) = f(y)}.
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Hence, the equivalence class of R are the maximal subsets of A which common image under f .

16. Define R ⊂ N2×N2 the relation ((a, b), (c, d)) ∈ R⇔ ad = bc. We will show that R is an equivalence

relation.

• Reflexivity. Let (a, b) ∈ N2. We clearly have that ab = ba, so ((a, b), (a, b)) ∈ R.

• Symmetry. Observe that ((a, b), (c, d)) ∈ R⇔ ad = bc⇔ cb = da⇔ ((c, d), (a, b)) ∈ R.

• Transitivity. Assume that ((a, b), (c, d)), ((c, d), (e, f)) ∈ R. Then we have ad = bc and cf = de.

Multiplying the last equation by a, we have cfa = dea = ade. Since ad = bc, we have cfa =

(ad)e = (bc)e. Dividing by c, we get af = be. Hence ((a, b), (e, f)) ∈ R.

We conclude that R is an equivalence relation. �

Exercise/Oppgave

9. Section/Sektion 9.6: 9, 18b, 27, 32

Solution. 9. It is not a partial order since it is not transitive. To see this, notice that there are directed

edges a → b and b → d. If the relation is transitive, there would be a directed edge a → d but this is not

the case.

18b. Recall the order of words: given two words a = a1 · · · am and b = b1 · · · bn and t = min(m,n), we

say that a ≤ b if a1 · · · at ≤ b1 · · · bt (where this order is the lexicographic order), or a1 · · · at = b1 · · · bt and

m < n. Hence the ordered list is the following:

open, opened, opener, opera, operand.

27. Recall that we have to consider the reflexive and transitive property. Hence the relation defined by

the Hasse diagram is

R = {(b, b), (a, a), (c, c), (g, g), (d, d), (e, e), (f, f), (b, g), (b, d), (b, e), (b, f),

(a, g), (a, d), (a, e), (a, f), (c, g), (c, d), (c, e), (c, f), (g, d), (g, e), (g, f)}.

32.

a) The maximal elements are the vertices which do not have an outgoing edge: l and m.

b) The minimal elements are the vertices which do not have an incoming edge: a, b and c.

c) No. l and m are maximal but they are not comparable. Hence there is no a greatest element.

d) No. a and b are minimal but they are nor comparable. Hence there is no a least element.

e) The only upper bound of {a, b, c} is l.

f) Since there is only one upper bound of {a, b, c}, then l is the least upper bound.

g) The only elements below of f are c and f . But since we cannot compare h with f nor c, then we

have that there is no lower bound of {f, g, h}.
h) Since the set of lower bounds of {f, g, h} is empty, then the greatest lower bound of {f, g, h} does

not exist.

�
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Exercise/Oppgave

10. Section/Sektion 10.2: 18, 22, 26a, b, c, 57

Solution. 18. We will prove the statement for a finite graph. Assume that G = (V,E) with |V | = n ≥ 2.

By contradiction, assume that there is no pair of vertices with the same degree. Since the degree of any

v ∈ V must belong to the set {0, 1, . . . , n− 1} since the graph is simple, we must have that

{deg(v1),deg(v2), . . . ,deg(vn)} = {0, 1, . . . , n− 1}

if V = {v1, v2, . . . , vn}. This implies that there exist v, w ∈ V such that deg(v) = 0 and deg(w) = n − 1.

However, this is a contradiction, since deg(v) = 0 implies that v is isolated, and deg(w) = n − 1 implies

that w is connected with any other element of V , in particular with v. This contradicts with the fact that

v is isolated. We conclude that there exist v, w ∈ V with v 6= w and deg(v) = deg(w).

22. The graph is bipartite. We can apply Theorem 4 and see that by coloring a, c with blue and b, d, e

with red, we will have no adjacent vertices with the same color. Therefore the bipartition is (V1, V2) with

V1 = {a, c} and V2 = {b, d, e}.

26. For which values of n are these graphs bipartite?

• Kn. For n = 1, 2, Kn is clearly bipartite. For n ≥ 3, Kn is not bipartite. By contradiction, assume

that (V1, V2) is a bipartition of Kn for a fixed n ≥ 3. Then, by the pigeonhole principle, there is one

of V1 or V2 with at least two different vertices v and w. However, since Kn is complete, then there

is an edge between v and w, contradicting that both vertices belong to the same Vi (remember that

the elements of Vi are not connected, for i = 1, 2). Hence Kn is not bipartite for n ≥ 3.

• Cn. We have that Cn is bipartite if n = 2k for some k ≥ 1. Indeed, if C2k is the cycle v1 ∼
v2 ∼ v3 ∼ · · · ∼ v2k ∼ v1. Then consider V1 = {v1, v3, . . . , v2k−1} and V2 = {v2, v4, . . . , v2k}. It is

clear that the vertices in Vi are not connected, for i = 1, 2, V1 ∩ V2 = ∅, and V1 ∪ V2 = V (C2k).

Hence (V1, V2) is a bipartition of C2k. On the other hand, Cn is not bipartite if n = 2k + 1 for

some k ≥ 0. By contradiction, assume that there is a bipartition (V1, V2) of the vertex set of

C2k+1 = {v1 ∼ v2 ∼ v3 ∼ · · · ∼ v2k+1 ∼ v1}. By the pigeonhole principle, one of V1 or V2 has at

least k + 1 vertices. Without loss of generality, assume that V1 has at least k + 1 vertices. Notice

that V1 cannot contain all the vi for i odd, since v1 ∼ v2k+1. Hence, even in the extremal case that

|V1| = k + 1, we have that there exists j such that v2j ∈ V1. By definition of bipartition, v2j−1

and v2j+1 ∈ V2. The first condition implies that v2j−2 ∈ V1, so v2j−3 ∈ V2 and so on. Repeating

this argument, we have that v1, v3, . . . , v2j−1 ∈ V2 and v2, . . . , v2j ∈ V1. Using the same argument

starting with v2j+1 ∈ V2, we have that v2j+1, . . . , v2k+1 ∈ V2. However, this is a contradiction since

v1, v2k+1 ∈ V2 and v1 ∼ v2k+1. Therefore Cn is not bipartite for n = 2k + 1.

• Wn. We have that Wn is not bipartite for any n ≥ 3. By contradiction, if Wn were bipartite with

bipartition (V1, V2), then there exists i ∈ {1, 2} such that Vi contains the central vertex v0 of Wn.

Since this vertex is connected with any other vertex of Wn, then any other vertex different than v0

belongs to Vi, and hence Vi = {v0} and the other Vj contains all the remaining vertices. However,
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these vertices form a cycle and clearly we have connections between vertices in Vj . This contradicts

the definition of bipartition. Hence Wn is not bipartite for any n ≥ 3.

57. How many vertices does a regular graph of degree four with 10 edges have? Let G(V,E) be a regular

graph of degree four with 10 edges. By the handshaking lemma, we have

20 = 2|E| =
∑
v∈V

deg(v) =
∑
v∈V

4 = 4|V | ⇒ |V | = 20/4 = 5.

Hence the graph has 5 vertices. �


