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Problem 1

a) Use Laplace convolution theorem to compute
t+1
f(t) = / (t+1—2)'2°de
0

The idea is to look at the following two functions

by our definition of convolution in Laplace transform theory (different from the convolution in
Fourier analysis) we have

(ax)(t) = [ "ot — 2)b(z) dr = / (= 2yt .

Hence
ft) = (axb)(t+1).

Take the Laplace transform of a * b and apply the Laplace convolution theorem, we get

4! 51 4151'10!

together with

10!
10
'C(t ) = ﬁ’
it gives
Al
(ax0)() = 357 17 = 1560
Now we have (4 1)
t+

e 1 =

b) With the above f, find the solution y(t) of
t+1
/ y(t — )2’ do = ().
0

Take
ut) =yt —1), v(t) =1
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as before, we have
t+1 t+1
/ y(t—x)xgdx:/ u(t+1—x)v(x)der = (uxv)(t+1).
Jo 0

By our formula for f, we have

(t+1)1°
t+1) = —F
(wxo)(t+1) = 550
hence
th
t) = .
(u*v)(t) = 7565
Take the Laplace transform of u % v and apply the Laplace convolution theorem, we get
9!
L(uxv)=L(u) L(v) = L(u) —;-
s

Hence

9! 10 10!
Llu)-— =L =
(W) (1260) 12601

which gives

from which we get

and y(t) = 1/126.

Problem 2

Compute the Fourier transform of
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Input the value of f, we get

A

f(w):\/;_ﬂ/Rf(x)e_mwdx—\/_/ (z + 1)e ™" da.

When w =0, [ (z+1)e " dx = [' (x+1)dx = 2, hence f \[ When w # 0, compute

—izTw

1 ) 1 ,—tzw 2% —tw 1 ,—izw
/ (xr+1)e™dx = (:1:+1)e , _1—/ ‘ — dzr = e —/ ‘
—1 —1w -1 —1w

1 —w

Compute again

1 gmimw e”™w . 2isinw
/ o = 2l = 2
1 —iw (—iw)? w

we get

1 : 2ie”™  2jsinw
1 —irTw d — .
/ (@ +1)e * w w2

To summarize, we have

w?2

{ % w =0
1 2ie W 2isinw
Problem 3 TMA4135 Mathematics 4D:

Let us define u(z,y) = In(z* + y*) outside the origin, compute u,, and u,,, then show that

Uy + Uyy = 0
outside the origin.

Notice that outside the origin we have

Uy = 22 /(2 + y?)
which gives

Use = 2/ (2% + %) — 42®/(2® + y)?

=2(y* — %)/ (a* +y*)*.
Similarly

uy = 2y/(a* + )
and

vy = 2($2 - 92)/($2 + ?J2)2’
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hence
Ugy + Uyy = 0.

Problem 4 Given the partial differential equation
Ut + DUy + 4uacx =0

for u = u(z,t) and x € R and ¢t > 0.

a) Introduce new variables
E=x—4t, n=x—t.

Show that v(&,n) = u(x,t) satisfies the equation

Ugn =0.

b) We are given functions f and g. Show that

1 1 rz—t
u(z,t) = §(4f(:v —t)— f(z — 475)) + 3 /xilltg(z)dz
solves equation (1) with initial conditions
u(@,0) = f(x), w(z,0)=g(z).
Solution a) By repeated use of the chain rule we find
Uy = Vg + Uy, Ugy = Vgg + 2Ven + Upy,
Uy = —4ve — vy, Uy = 16vge + Bugy + vy,
Ugy = —4Vge — DUy — Upyy.
Inserting these expressions into equation (1), we find
0 = uy + Sy + 4Uze = —ug,.
b) With
1 1 rz—t
u(e,t) = S (4f(x —t) = fx —4t)) + 5 | g(2)dz
3 3 Jo—at

Page 4 of 12
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we find
up = ;( Af'(x —t) +4f (v — 41)) + ;(—g(a: —t) + 4g(x — 4t)),
um—;( Af'(x —t) +4f"(x )+; "z —t) +4g'(z — 4¢)),
we= 3 (£~ 1) = e —a0)) + (oo — 1) — gla — 40),
e = 5 (P = 1) = (&~ 40)) + 5(9 2 — 1) —  (x — 40)),
and hence

u(2,0) = 5 (470) = F@) + 5 [ gz = f(@),
wl,0) = 5 (~4F(2) + 47 (@) + 3(~0(x) + 4g(x) = g(a).

OJM—‘

If we insert the computed derivatives in equation (1) we find that it is satisfied.
Problem 5 Consider the heat equation

Uy = Uy + acos(z — ) (2)
where ¢ > 0 and a € R are given constants.

a) Show that

v(x,t) = %cos(x — )

is a solution of (2).

b) Find the solution of equation (2) for € [0, 7] and ¢ > 0 such that
uz(0,t) = uy(m,t) =0, t>0,

and

¢) Find limy_, o u(z, ).
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Solution a) We have v; = 0, and v,, = —a/c®cos(z — ), which implies that v; — c®vg, =
acos(x — ).
b) Consider the function w = u — v. Linearity (or superposition) implies that w satisfies

Wy = CWee, wWe(0,t) = wy(m,t) =0, t>0,

(note that v, vanishes at x = 0 and 7), with initial data

s
29
™

w(z,0) = u(z,0) —v(x,0) = {

0, 0<zx<
s
2

x —m,
Standard separation of variables (Kreyszig, p. 563) gives that
w(zx,t) = i A, cos(nz)e )’

n=0
where A,, are given as the Fourier coefficients of the initial data, thus

> 0 0<z<3
w(:c,O):ZAncos(nx):{’ =TSy

s
=0 r—m, 5<x<m.

Standard formulas for Fourier series yield for n > 0

2 T
A, = —/ cos(nz)w(z,0)dx
7 Jo
2 ™
=— cos(nz)(x — m)dx
T Jm/2
271 1 1 =
= { —sin(nz)(x — ) — —/ sin(nz)dx
L2 n n Jr/2
1 nm 2 nmw
= Lsin () + maeos ()
In addition,
1 1 = T
A_—/ ,Od:—/ )y = -2
0 7TOw(ac )dx 7T7r/2(3: m)dx 3

Thus the answer reads
u(x,t) = v(x,t) + w(zx,t)

o T (1 nm 2 nm I
T2 cos(r — ) — 3 Z (n sin (7) + — cos (2>> cos(nz)e (en)t,

n=1
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¢) We see that each term in the infinite sum contains the exponentially decaying factor e ()t
Thus these terms will all vanish in the limit when ¢ — co. Hence

a 7r
u(z,t) — gcos(a:—w) ~ 3 t — oo.

Problem 6 We want to use a fixed point iteration xy.; = g(xx), K = 0,1,... to solve the
nonlinear equation

0= f(z) = exp(z) - 2, (3)

a) Find all solutions of (3) using basic calculus. Reason why these are in fact all solutions.

b) Consider the following choices for g — both given by a Python code snippet (assume that
the numpy library is imported)

e (i)
def gi(x):
return -2*x(exp(x)-2)/4 + x

def gl(x):
return -(exp(x)-2)/4 + x

def gil(x):
return 2*x(exp(x)-2)/4 + x

def gil(x):
return (exp(x)-2)/4 + x

def g2(x):
return exp(x) - 2xx - 2 + 3xlog(2)

Based on the convergence theorem for fixed point iterations (The fixed point theorem),
prove or disprove in both cases whether the fixed point iteration converges towards a
solution of f(z) = 0 if the initial guess zy is chosen sufficiently close to a solution.

What order of convergence do you expect in the case of g2 and why?

c) Write down Python code that implements the according fixed point iteration function of
Newton’s method for problem (3).
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Solution:

a) exp(x) — 2 = 0 is equivalent to x = In(2). These are all solutions, as the function f(z) =
exp(x) — 2 is strictly monotone.

b) The fixed point of gl is x = In(2). x = —% + x is equivalent to x = In(2), and so
z=In

In(2) is a fixed point of g1. We have [g1'(z)| = | — & - exp(z) + 1| ne | — & +1|. We have
the following variants:

o M = —2: |gl'(x)] = |1+ 1] =2 £ 1. So the fixed point iteration does not converge
towards a solution of f(z) = 0.

e M = —1: |gl'(z)] = |5+ 1] = 3 £ 1. So the fixed point iteration does not converge
towards a solution of f(x) = 0.

e M =1: |gl'(zx)] =|—5+1] =4 < 1. So the fixed point iteration converges towards a
solution of f(z) = 0.

o M =2: |gl'(z)]=|—1+1] =0 < 1. So the fixed point iteration converges towards a
solution of f(z) = 0.

We can easily see that = = In(2) satisfies x = ¢g2(z), and therefore, z = In(2) is a fixed point

of g2. We have |¢g2'(x)| = |exp(z) — 2| "“2® ) < 1. So the fixed point iteration converges

towards a solution of f(z) = 0.
As the value of the derivative is zero, one should locally expect (at least) second order conver-
gence (as in the proof for convergence of Newton’s method)

(c) For the above function f, the derivative is given by f’(z) = exp(x). For Newton’s method,
one therefore obtains
exp(z) — 2
Tpo1 = Tp — f(z "(21) = gNewton (Tr) = Tfp — —————
k1 = Tk — f(2) /[ (k) = gNewton(T1) = Ti exp(7)
As Python code, this can be implemented in various ways, straightforward, it is similar to

def gNewton (x):
return x - (exp(x)-2)/exp(x)

Problem 7 Let

sin(z) (x <0)

o) = { In(z+1) (x>0)

and consider the nodes 1 = —1, 2o = 0 and z3 = 1.
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a) What is the degree of the polynomial interpolation using the above nodes?
b) Compute the polynomial interpolation to f using the Lagrange form.
c) Determine the Newton form of the interpolating polynomial.

Solution:

a) The degree of an interpolating polynomial is at most 2.

(b) The Lagrange polynomials ¢;(z) are quadratic functions. Since f(x2) = 0, we only need
to consider ¢; and /5

r—x; (r—0)-(z—1) oz
gllE = = - — — —
s = I 2= = =543

The interpolating polynomial (in Lagrange form) is given by
, . > x r?  a?
plo) = flan) - 640 + ) o) = (=sin) - (G = 5 ) 42 (5 + 5 ).

(Further simplified is this identical to 22580l . g2 4 sinl=dIn2y ~ —(.07416 - 22 + 0.7673 - z)

(c) Interpolating polynomial in Newton form

r=—1 f=—sinl
sin 1
0 F=0 —sinl +1n2
2
In2
r=1 f=In2
So, we get the polynomial
—sinl+1In2
p(;r;)——sinl—i-(;c—l-l)'(sinl—l—(w—())~m2+n>

Problem 8 Let
In(z+1) forx >0,

o=

T else.

It holds I := [, f(x)dx = 2-In(2) — 2 ~ 0.71962769445. When using the composite Simpson’s
rule to approximate I, one obtains the following results:
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number of subintervals m approximation S,, error e,, := |I —S,,|
3 0.70131264673 1.83150E-02
9 0.71757280057 2.05489E-03
27 0.71939910470 2.28590E-04
81 0.71960229224 2.54022E-05
243 0.71962487194 2.82251E-06

What order of convergence does this data suggest? Give a detailed explanation of these results
on the basis of the theoretical error analysis of composites Simpson’s rule from the lectures.

Solution:

The theorem from the lectures says that the composite Simpson’s rule is fourth order accurate.
That means that a reduction of the step size (aka a tripling of the number of steps) results
(asymptotically) in a reduction of the error by a factor of 3* = 81.

However, in the numerical experiment, we see the following error reductions (where in every
step the number of steps is indeed tripled):

. €
m; =3~ myg=29 error reduction =+ ~ 8.9129

)

my =9 ~» myg =27  error reduction ?ﬂ ~ 8.9894
o

mq = 27 ~» my = 81  error reduction f’# ~~ 8.9988

“mo

my = 81 ~» my = 243 error reduction :’# ~ 8.9999
777,2

This observation corresponds to second order convergence (as 3> = 9). The reason is that the
integrand is not (as required by the theoretical result) four times continuously differentiable.
Instead, one has

. / . 1 . . /

lim f'(x)= lim =1#4#0= lim 2-z= lim f'(z).

z—0,2>0 " z—0,2>0 1 + 2 —0,2<0 z—0,2<0

Numerics of ODEs

Problem 9 We want to solve the second order ODE

=11 —10u+2,  u(0)=1, «'(0) = -1,
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using the explicit Euler method.

What is the largest step length for which we obtain a stable numerical solution?
Solution:

We start by rewriting the ODE as the system

yll = Y2,
Yo = —10y; — 11ys + 2,

or
7 = Aj+b

0 1 - 0
A= <_10 _11> and b= <2>

The Euler method is stable, if all the eigenvalues of the matrix A multiplied by the step size h lie
within its stability region. Here, the eigenvalues of A are the roots of its characteristic polynomial
p(A) = A2 + 11X + 10, that is, Ay = —1 and A\ = —10. The stability region of the Euler method is

with

R(z)={2z€C:|1+2z <1}
We thus arrive at the conditions
[1—h| <1 and |1 —10A| < 1.

The first condition is equivalent to 0 < h < 2, whereas the second is equivalent to 0 < h < 2/10.
Together, these results imply that A = 2/10 is the largest step size for which the solution remains
stable.

Numerics of PDEs

Problem 10 Consider the two-point boundary value problem

3 for0<z <1

' 42t —u==x
with boundary conditions

u(0) = 2 and (1) = -1
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Set up a finite difference scheme for this problem using central differences. For the boundary
condition at x = 1, use the idea of a false boundary and central differences. Use equidistant
grid points x; = iAx with a grid size Ax = 1/N.

Set up the specific system of equations for the case N = 2.
Solution:

We first replace the derivatives in the equation by finite differences and obtain the equation
u(x + Ax) — 2u(z) + u(x — Ax) qu(x + Azx) —u(z — Ax)
+x
Az? 2Ax

Next we approximate u; ~ u(z;) and drop the O(Az?) term. This results at the interior grid points
x;,t=1,...,N — 1, in the equation

—u(z) + O(Az?) = 23

Uit — 205 + Uiy | gUip1 —Uic1 o3
Az? Y 2Ax LT
For i = 0 (and z; = 0) we use the Dirichlet boundary condition «(0) = 2, which results in the equation
ug = 2.
For i = N (and x; = 1) we use the Neumann boundary condition «/(1) = —1 and the idea of a false

boundary. That is, we introduce the fictitious node xn4+1 = 1 + Az and the corresponding fictitious
function value un41, and obtain the two equations

UN{1 — 2UN +UN_1 9 UN41 — UN-—1 3
3 + oy —unN = Ty,
Az 2Azx

UN+1 — UN-1

= —1.
2Ax

Solving the second equation for uyy1 yields that
UN+1 = un—1 — 2Azx.
Using that zy = 1, the first equation then results in

un_1 — 20z — 2uny + un_1 4 un_1 — 2Ar —un_q
Ax? 2Azx

_uNzla

or 2 9 9
UN—1 — 2uN
N1 AN =24 2
Ax? UN = 2F A

For the specific case N = 2 and Ax = 1/2, we obtain the equations

Uy = 2,

1 1

4(ug — 2uy + ug) + Z(ug —ug) —uy = 3’
8(up —u2) — ug = 6.
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Fourier Transform

o) == [ e dw | flu) = <= [ fa)e = ao
—az? L ?/ia
e \/%e /
—ale] 2 a
T w? + a?
1 — —alul
22 + a? 2 a
1 for|z| <a \/Esinwa
{O otherwise T ow

Laplace Transform

f) | Fls) = [T e at
s
t -
cos(wt) e
w
in(wt
sin(wt) S
s
cosh(wt) 2
. w
Slnh(u}t) m
" I'(n+1)
t 8n+1 ’
forn=20,1,2,...,'(n+1) =n!
1
eat
s—a
it —a) e

1 n
/x” cosaxr dr = —x"sinax — — /x”_l sin az dx
a a

1 n
2" sinaxr de = ——z" cosax + — /x” Leosazr dz
a a
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Numerics

e Newton’s method: xpi1 = ) — JJ:'((ZI;))'

e Newton’s method for system of equations: xzy1 = xp — J(x) " (xz),

e Lagrange interpolation: p,(z) = Y5 _o fx(2) f (1), With lx(2) =TTz 5 - xxfj.

f(n+1

e Interpolation error: €,(x) = w o (@ — 2).

e Chebyshev points: zj = cos (gkié ), 0<k<n.

e Newton’s divided difference: f(z) =~ fo + (v — o) f|xo, 1]+

(x — z0)(x — 21) 70, T1, T| + - + (T — 20) (¥ — 21) -+ - (T — Tp1) flT0, - -, T
with flzo,...,xy] = Ll =flros el

Tp—T0

e Trapezoidal rule: [’ f(z) dz ~ h [%f(a) +ft+fott f + %f(b)}
Error of the trapezoid rule: |e| < %=2h? max,ejoy | ().

e Simpson’s rule: [’ f(z) dz ~ Afo+afi+2fs+4fs+ -+ 2fm2+ 4fm1 + ful-

Error of the Simpson rule: |e| < 22¢h* max,efq [P (2)].

e Euler method: y, ., =y, + hf(z,,y,).

e Improved Euler (Heun) method: y, y =y, + 3h[f(zn,y,) + f(@, + h,y} )], where yi | =
Yo + Wiz, y,).

e Classical Runge-Kutta method: k; = hf(z,,y,),
ko = hf(z, + h/2,y, + ki/2),
ks = hf(z, + h/2,y, + ko /2),
ky = hf(xn + h,y, +ks),
Yor1 = 1k1+1k2+1k3+1k4

e Backward Euler method: y, ., =y, + Af(@ni1, ¥,01)-
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e Butcher tableaux for different Runge-Kutta methods:

0j0 0 0 O
0/0 0 sl 000
00 1 L 1)1
N 111 0 510 5 00 .
% % 110 0 1 0
11 1 1
6 3 3 6
Euler Heun classical RK backward Euler

e Order conditions:

p=1:>,b=1.

p=2>,;bc;=1/2.

p=3: ;b =1/3 and 3, ; biaz;c; = 1/6.

p=4: bt =1/4, i biciaic; =1/8, ¥, biaijcjz =1/12,

and Zi,jJe biaijajkck = 1/24

e Finite differences:

, forward difference,

, backward difference,

central difference.

and

flx+h)—=2f(x)+ f(x —h

() ~ ( ) h(2 )+ f( ).

x

h b)

(24 2r)ugjr1 — T(Uigr g1+ Uic1 1) = (2 — 2r)ugy + 7 (Ui + Uit j).

e Crank—Nicolson method for the heat equation: r =



