For those exercises (marked with J) in which you are supposed to use/modify code in the Jupyter notebook, it is enough to write down (or screen-dump) the final output.

Mandatory problems

(1) We consider the equation

$$
f(x)=x-e^{-x}=0
$$

a) Show that this equation has a unique solution $r \in \mathbb{R}$. Show in addition that the solution satisfies the estimate $1 / 2 \leq x \leq 1$.
b) (J) In order to compute the solution of this equation numerically, we consider the fixed point iterations

$$
x_{k+1}=g\left(x_{k}\right)
$$

where g is any of the following functions:

1. $g(x)=-\ln (x)$.
2. $g(x)=e^{-x}$.
3. $g(x)=\left(x+e^{-x}\right) / 2$.

Test the three iterations by using (and modifying appropriately) the function fixedpoint from the Jupyter notes. Use $x_{0}=1 / 2$ as an initial value.
Which of the iterations converges? Which of the iterations shows the fastest convergence speed?
c) Use the fixed point theorem in order to obtain a theoretical explanation for the numerical results.

2 We want to apply fixed point iteration to the solution of the equation $\cos (x)=$ $\frac{1}{2} \sin (x)$ using the mapping

$$
g(x)=x+\cos (x)-\frac{1}{2} \sin (x)
$$

with an initialisation $x_{0}=0$.
a) Show that the mapping g satisfies the conditions for the fixed point theorem on the interval $[a, b]=[0, \pi / 2]$.
b) Provide an estimate of the accuracy of the outcome of the method after the $5^{\text {th }}$ iteration. How many iterations will be needed to obtain a result with an error smaller than 10^{-12} ?

Hint: Use the a-priori error estimate in the fixed point theorem.

3 a) Derive the formula for Newton's method for the solution of the equation $x^{n}=a$ where n is a natural number and $a>0$. 1
b) Use Newton's method to approximate a solution of the equation $x^{4}=4$. Use $x_{0}=1$ as starting value and perform four iterations by hand.

Additional exercises

These additional exercises are completely optional and should not be handed in. The student assistants will not grade these problems.

4 a) Let $g(x)$ be a continuous function with continuous derivatives on (a, b) and assume that it has an inverse $g^{-1}(x)$. Show that if $r \in(a, b)$ is a fixed-point of $g(x)$, then r is also a fixed-point of $g^{-1}(x)$.
b) Let $r \in(a, b)$ be a fixed-point of $g(x)$. Show that if $\left|g^{\prime}(r)\right|>1$, then $\left|\left(g^{-1}\right)^{\prime}(r)\right|<$ 1. Using the convergence theorem of fixed-point iteration, we now know that if the algorithm does not converge for $g(x)$, then it will converge for $g^{-1}(x)$ if one initialises with x_{0} sufficiently close to r.
c) With this in mind, use fixed-point iteration to find an approximation to the solution r of the equation $x=\arccos (x)$.

[^0]
[^0]: ${ }^{1}$ For $n=2$ (that is, computation of square roots), this method actually goes back to antiquity and is known as "Heron's method" or the "Babylonian method". See http://en.wikipedia.org/wiki/Methods_ of_computing_square_roots\#Babylonian_method

