

TMA4135 Mathematics 4D Fall 2020

Exercise set 7

For those exercises (marked with J) in which you are supposed to use/modify code in the Jupyter notebook, it is enough to write down (or screen-dump) the final output.

Mandatory problems

1 We consider the equation

$$f(x) = x - e^{-x} = 0.$$

- a) Show that this equation has a unique solution $r \in \mathbb{R}$. Show in addition that the solution satisfies the estimate $1/2 \le x \le 1$.
- **b)** (J) In order to compute the solution of this equation numerically, we consider the fixed point iterations

$$x_{k+1} = g(x_k),$$

where g is any of the following functions:

1.
$$g(x) = -\ln(x)$$
.
2. $g(x) = e^{-x}$.
3. $g(x) = (x + e^{-x})/2$.

Test the three iterations by using (and modifying appropriately) the function fixedpoint from the Jupyter notes. Use $x_0 = 1/2$ as an initial value.

Which of the iterations converges? Which of the iterations shows the fastest convergence speed?

- c) Use the fixed point theorem in order to obtain a theoretical explanation for the numerical results.
- 2 We want to apply fixed point iteration to the solution of the equation $\cos(x) = \frac{1}{2}\sin(x)$ using the mapping

$$g(x) = x + \cos(x) - \frac{1}{2}\sin(x)$$

with an initialisation $x_0 = 0$.

a) Show that the mapping g satisfies the conditions for the fixed point theorem on the interval $[a, b] = [0, \pi/2]$.

b) Provide an estimate of the accuracy of the outcome of the method after the 5th iteration. How many iterations will be needed to obtain a result with an error smaller than 10^{-12} ?

Hint: Use the a-priori error estimate in the fixed point theorem.

- **3** a) Derive the formula for Newton's method for the solution of the equation $x^n = a$ where *n* is a natural number and a > 0.¹
 - b) Use Newton's method to approximate a solution of the equation $x^4 = 4$. Use $x_0 = 1$ as starting value and perform four iterations by hand.

Additional exercises

These additional exercises are completely optional and should not be handed in. The student assistants will not grade these problems.

- **4 a)** Let g(x) be a continuous function with continuous derivatives on (a, b) and assume that it has an inverse $g^{-1}(x)$. Show that if $r \in (a, b)$ is a fixed-point of g(x), then r is also a fixed-point of $g^{-1}(x)$.
 - b) Let $r \in (a, b)$ be a fixed-point of g(x). Show that if |g'(r)| > 1, then $|(g^{-1})'(r)| < 1$. Using the convergence theorem of fixed-point iteration, we now know that if the algorithm does not converge for g(x), then it will converge for $g^{-1}(x)$ if one initialises with x_0 sufficiently close to r.
 - c) With this in mind, use fixed-point iteration to find an approximation to the solution r of the equation $x = \arccos(x)$.

¹For n = 2 (that is, computation of square roots), this method actually goes back to antiquity and is known as "Heron's method" or the "Babylonian method". See http://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.