Department of Mathematical

1 Try to verify the following computations
a) The Laplace transform of

$$
f(t)= \begin{cases}t & \text { if } 0 \leq t \leq a ; \\ 0 & \text { if } t>a\end{cases}
$$

is

$$
F(s)=\frac{1}{s^{2}}-\frac{e^{-a s}}{s^{2}}-a \frac{e^{-a s}}{s} .
$$

b) The Laplace transform of $f(t)=u(t-\pi) \sin t$ is $F(s)=-\frac{e^{-\pi s}}{s^{2}+1}$.
c) The solution $i(t)$ of

$$
i^{\prime}(t)+2 i(t)+\int_{0}^{t} i(\tau) d \tau=\delta(t-1), i(0)=0
$$

is

$$
i(t)=u(t-1)\left(e^{-(t-1)}-e^{-(t-1)}(t-1)\right) .
$$

2 Use Laplace transform to solve this convolution equation: $y-y \star t=t$.

Remark: One may also use Laplace transform method to solve some boundary value problems. For example: consider the following ODE

$$
f^{\prime \prime}=f
$$

with boundary restrictions

$$
f(0)=0, \quad f(1)=1 .
$$

If we apply the Laplace transform to the equation, we would get

$$
s^{2} F-s f(0)-f^{\prime}(0)=F
$$

Since $f(0)=0$, it reduces to

$$
s^{2} F-f^{\prime}(0)=F
$$

Thus

$$
F=\frac{f^{\prime}(0)}{s^{2}-1} .
$$

Taking the inverse transform we get

$$
f(t)=f^{\prime}(0) \sinh t
$$

Thus $f(1)=1$ is equivalent to

$$
f^{\prime}(0) \sinh 1=1,
$$

which implies $f^{\prime}(0)=1 / \sinh 1$ and

$$
f(t)=\frac{\sinh t}{\sinh 1} .
$$

You might also try to find other examples. Another application of Laplace transform is to solve system of ODEs. Please try to do the following exercise:

3 Solve the following system of equations:

$$
\left\{\begin{array}{l}
x^{\prime}=2 x-y \\
y^{\prime}=3 x-2 y
\end{array}\right.
$$

with initial conditions $x(0)=0, y(0)=1$.
Hint: apply Laplace transform to each equation and then solve the linear equation for X and Y.

Now let us move to the Fourier series part, recall that the complex Fourier series of a function f on $(-\pi, \pi)$ is defined by (you might compare it with the finite Fourier transform in the week 2 Exercise)

$$
\sum_{n \in \mathbb{Z}} c_{n} e^{i n x}, \quad c_{n}:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x .
$$

Try to use the above formula to verify the followings:

4 Prove the following formulas for complex Fourier series expansion:
a) $x=\sum_{n \neq 0} \frac{i(-1)^{n}}{n} e^{i n x}$ when $-\pi<x<\pi$.
b) $x(2 \pi-x)=-\frac{\pi^{2}}{3}+\sum_{n \neq 0}\left(\frac{2 \pi i(-1)^{n}}{n}+\frac{2(-1)^{(n+1)}}{n^{2}}\right) e^{i n x}$ when $-\pi<x<\pi$.

