Submission deadline: 20th November

For the exercises (marked with J) in which you are supposed to use/modify code in the Jupyter notebook, it is enough to write down (or screen-dump) the final output.

Mandatory problems

1 Consider the Runge-Kutta method given by the following Butcher-tableau:

0	0	0	0
$1 / 3$	$1 / 3$	0	0
$2 / 3$	0	$2 / 3$	0
	$1 / 4$	0	$3 / 4$

a) Using the order conditions to determine the order of this method.
b) Find the stability function for this method, and show that it is not $A(0)$-stable in the complex sense.

2 Recall that the trapezoidal rule is the implicit method given by

$$
y_{n+1}=y_{n}+\frac{h}{2}\left(f\left(x_{n}, y_{n}\right)+f\left(x_{n+1}, y_{n+1}\right)\right)
$$

Find the stability function for this method, and show that it is $A(0)$-stable in the complex sense.

Additional exercises

These additional exercises are completely optional and should not be handed in. The student assistants will not grade these problems.

3 See the solution for 2019 Ex11, 4a) Prove that the implicit midpoint rule

$$
\vec{y}_{n+1}=\vec{y}_{n}+h \vec{f}\left(x_{n}+\frac{h}{2}, \frac{1}{2} \vec{y}_{n}+\frac{1}{2} \vec{y}_{n+1}\right)
$$

is $A(0)$-stable.

4 See the solution for 2019 Ex11, 3) Consider the 3rd order Runge-Kutta method

$$
\begin{aligned}
\vec{k}_{1} & =f\left(x_{n}, \vec{y}_{n}\right) \\
\vec{k}_{2} & =\vec{f}\left(x_{n}+\frac{h}{2}, \vec{y}_{n}+\frac{h}{2} \vec{k}_{1}\right), \\
\vec{k}_{3} & =\vec{f}\left(x_{n}+\frac{3 h}{4}, \vec{y}_{n}+\frac{3 h}{4} \vec{k}_{2}\right), \\
\vec{y}_{n+1} & =\vec{y}_{n}+\frac{h}{9}\left(2 \vec{k}_{1}+3 \vec{k}_{2}+4 \vec{k}_{3}\right) .
\end{aligned}
$$

a) Write down the Butcher tableau of this method and determine its order.
b) Find the stability function $R(z)$ for this method.
c) Given the system of ODEs

$$
\vec{y}^{\prime}=A \vec{y} \quad \text { with } A=\left(\begin{array}{cc}
-41 & 38 \\
19 & -22
\end{array}\right)
$$

find the largest step-size that still results in a stable solution.
d) Implement the method and verify your results numerically. Use, for instance, $\vec{y}(0)=[1,1]^{T}$ as initial value and integrate over the interval $[0,5] .(\mathrm{J})$

