\documentclass[titlepage,a4paper,12pt,english]{IMFeksamen} \usepackage[utf8]{inputenc} \usepackage{setspace} % erstatt evt utf8 med latin1 \trykkinfo[tosidig,sorthvit] % [ensidig,farger] \emnekode{TMA4130/35} \emnenavn{Mathematics 4N/4D} \eksamensdato{December 02 2019} \eksamenstid{09:00–13:00} \fagligkontaktinfo{Helge Holden}{92 03 86 25} \fagligkontaktinfo{Peter Ho Cheung Pang}{41 34 74 46} \fagligkontaktinfo{Xu Wang}{94 43 03 43} \hjelpemiddel{Code C: Approved calculator \\ One yellow, stamped A5 sheet with own handwritten formulas and notes (on both sides)} \anneninfo{\begin{itemize} \item All answers have to be justified, and they should include enough details in order to see how they have been obtained. \item There are two versions of Problem 3: one for Mathematics 4N and one for Mathematics 4D. \item Good Luck! \end{itemize}} \runninghead{TMA4130/35 Mathematics 4N/D, December 2019 } \usepackage[T1]{fontenc} \usepackage{lmodern,amsmath,amssymb,amsfonts} \usepackage{color} \definecolor{mygray}{rgb}{0.9,0.9,0.9} \usepackage{listings} \lstset{language=python, basicstyle=\ttfamily} \lstset{linewidth=0.8\textwidth, showstringspaces=false} \lstset{backgroundcolor=\color{mygray}} \newcommand{\mb}[1]{\mathbf{#1}} \begin{document} \begin{oppgave} {[20 points]} \begin{punkt} Compute the Laplace transform of $$ f(t)= \begin{cases} 0 & 0\leq t\leq 1, \\ t & t>1 . \end{cases} $$ \end{punkt} \begin{punkt} Use the Laplace transform to find the solution of $$ y''+y=2e^t \hspace{1cm} {\mathrm{with}}\ y(0)=y'(0)=0. $$ \end{punkt} \begin{punkt} Compute the inverse Laplace transform $\mathcal{L}^{-1}(F)(t)$ of the following function $$ F(s)=\frac{1}{s^2+2s+17}. $$ \end{punkt} \end{oppgave} \begin{oppgave} { [14 points] } \begin{punkt} Let $$ f(x)=1+x, \ \ -\pi 0. $$ --- Compute by force is fine (but not easy!). Fix $s>0$. Put $$ g(x)=\int_{0}^\infty \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}} e^{-ts} \, dt $$ It is easy to see that the Gaussian integral gives $$ g(0)=\frac{1}{\sqrt{2s}}. $$ Moreover, since $g$ is even it is enough to prove the $x>0$ case. Since the heat kernel satisfies $h_t=\frac12 h_{xx}$, integration by parts gives $$ g''(x)= 2s g(x). $$ Thus for $x>0$, we have $$ g(x)=A e^{-x\sqrt{2s}}+ B e^{x\sqrt{2s}}. $$ Now $$ \lim_{x\to \infty} g(x)=0 $$ gives $$ B=0. $$ Together with the formula for $g(0)$, our result follows. \end{oppgave} \end{comment} %-------------------------------------------------------------------------------------- \vedlegg \subsection*{Fourier Transform} \begin{center} \begin{tabular}{c|c} ${\displaystyle f(x) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} \hat f(w)e^{iw x}\text{ d}w}$& ${\displaystyle \hat f(w) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} f(x)e^{-iw x}\text{ d}x}$ \\ \\[-1em] \hline\hline \\[-1em] % $f*g(x)$ & $ \sqrt{2\pi}\hat f(w)\hat g(\omega)$\\ \\[-1em] \hline % \\[-1em] % $f'(x)$ & $ iw\hat f(\omega)$\\ \\[-1em] \hline % \\[-1em] $e^{-ax^2}$ & ${\displaystyle \frac{1}{\sqrt{2a}} e^{-w^2/4a}}$\\ \\[-1em] \hline \\[-1em] $e^{-a|x|}$ & $ {\displaystyle \sqrt{\frac{2}{\pi}}\frac{a}{w^2+a^2}}$\\ \\[-1em] \hline \\[-1em] ${\displaystyle \frac{1}{x^2+a^2}}$ & $ {\displaystyle \sqrt{\frac{\pi}{2}}\frac{e^{-a|w|}}{a}}$\\ \\[-1em] \hline \\[-1em] ${\displaystyle \begin{cases} 1 & \text{for } |x|