1 Find the functions that have the following Laplace transforms:
a) $\frac{1}{s^{2}\left(s^{2}+1\right)}$;
b) $\frac{s}{s^{2}+2 s+1}$;
c) $\frac{2 s}{\left(s^{2}+1\right)^{2}}$;
d) $(s-3)^{-5}$.

2 Find the Laplace transforms of the following functions:
a) $f(t)=(u(t)-u(t-\pi)) \cos t$;
b) $f(t)=u(t-3) t^{4}$.

3 Solve

$$
y^{\prime \prime}+2 y=\delta(t-1), \quad y(0)=y^{\prime}(0)=0 .
$$

44 By definition, a function f has period $T, T>0$, if $f(t+T)=f(t)$. The following exercise gives you a nice Laplace transform formula for T-periodic functions.
a) Show that

$$
\int_{n T}^{(n+1) T} e^{-s t} f(t) d t=e^{-s n T} \int_{0}^{T} e^{-s t} f(t) d t
$$

for T-periodic f.
b) Show that if f has period T then its Laplace transform F satisfies:

$$
F(s)=\sum_{n=0}^{\infty} e^{-s n T} \int_{0}^{T} e^{-s t} f(t) d t
$$

c) Show that if f has period T then its Laplace transform F satisfies:

$$
F(s)=\frac{1}{1-e^{-s T}} \int_{0}^{T} e^{-s t} f(t) d t, \quad s>0
$$

Hint: use (proofs are given below)

$$
\begin{equation*}
\sum_{n=0}^{\infty} a^{n}=\frac{1}{1-a}, \quad \forall 0<a<1 . \tag{1}
\end{equation*}
$$

Remark: The proof of (1) is based on a simple but very useful formula

$$
\begin{equation*}
\sum_{n=0}^{N} a^{n}=\frac{1-a^{N+1}}{1-a}, \quad \forall a \in \mathbb{C}, \quad a \neq 1 . \tag{2}
\end{equation*}
$$

In fact, put

$$
I:=1+a+\cdots+a^{N} .
$$

Then of course

$$
a I=a+a^{2}+\cdots+a^{N+1} .
$$

Thus the difference is given by

$$
I-a I=1-a^{N+1}
$$

which implies that

$$
\sum_{n=0}^{N} a^{n}=I=\frac{1-a^{N+1}}{1-a}
$$

for $a \neq 1$. Let N go to infinity, the above formula gives (1).
Application of (2) in finite Fourier analysis: The finite Fourier transform of a discrete signal (think of it as a vector) of length N, say

$$
v=\left(v_{0}, \cdots, v_{N-1}\right) \in \mathbb{C}^{N},
$$

is given by another length N signal

$$
\hat{v}=\left(\hat{v}_{0}, \cdots, \hat{v}_{N-1}\right),
$$

where

$$
\hat{v}_{j}:=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega^{-j k} v_{k}, \quad \omega:=e^{2 \pi i / N}
$$

One may use (2) to prove the following
Fact: one may fully recover a signal from its Fourier transform.
More precisely, (2) implies the following Fourier inversion formula

$$
v_{j}=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega^{j k} \hat{v}_{k} .
$$

Below is the proof: notice that

$$
\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega^{j k} \hat{v}_{k}=\frac{1}{N} \sum_{p, k=0}^{N-1} \omega^{j k} \omega^{-k p} v_{p}=\frac{1}{N} \sum_{p, k=0}^{N-1} \omega^{k(j-p)} v_{p}
$$

It is enough to show

$$
\sum_{k=0}^{N-1} \omega^{k(j-p)}= \begin{cases}N & \text { if } p=j \\ 0 & \text { if } p \neq j\end{cases}
$$

The $p=j$ case is trivial since $\omega^{0}=1$; in case $p \neq j$, by (2) we have

$$
\sum_{k=0}^{N-1} \omega^{k(j-p)}=\frac{1-\omega^{N(j-p)}}{1-\omega}=0 \text { since } \omega^{N}=1
$$

You might also use (2) to prove the following fundamental Parseval identity

$$
\sum_{k=0}^{N-1}\left|v_{k}\right|^{2}=\sum_{j=0}^{N-1}\left|\hat{v}_{j}\right|^{2}
$$

Further readings (not assumed in this course): Think of a length $2 N$ signal as a combination of two length N signals (i.e. its even and odd part). Then the level $2 N$-Fourier transform reduces to two level N-Fourier transforms, this is the main idea of the famous Fast Fourier Transform Algorithm (short for FFT). A very nice description of FFT can be found in the following book:
E. Stein and R. Shakarchi, Fourier analysis, Princeton lectures in analysis.

